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Featured Application: Many large-scale water transmission projects, such as China’s South-to-
North Water Transfer Project, are hundreds of kilometers long and need real-time regulation
applications for management and control. This requires the calculation model to have higher
calculation accuracy and faster calculation speed. The existing calculation models are difficult to
take these two aspects into account at the same time. In this paper, the accuracy and efficiency of
one-dimensional model algorithms are studied and compared, and the best calculation scheme
is summarized.

Abstract: The water hammer phenomenon is the main problem in long-distance pipeline networks.
The MOC (Method of characteristics) and finite difference methods lead to severe constraints on the
mesh and Courant number, while the finite volume method of the second-order Godunov scheme
has limited intermittent capture capability. These methods will produce severe numerical dissipation,
affecting the computational efficiency at low Courant numbers. Based on the lax-Friedrichs flux
splitting method, combined with the upstream and downstream virtual grid boundary conditions,
this paper uses the high-precision fifth-order WENO scheme to reconstruct the interface flux and
establishes a finite volume numerical model for solving the transient flow in the pipeline. The
model adopts the GPU parallel acceleration technology to improve the program’s computational
efficiency. The results show that the model maintains the excellent performance of intermittent
excitation capture without spurious oscillations even at a low Courant number. Simultaneously, the
model has a high degree of flexibility in meshing due to the high insensitivity to the Courant number.
The number of grids in the model can be significantly reduced and higher computational efficiency
can be obtained compared with MOC and the second-order Godunov scheme. Furthermore, this
paper analyzes the acceleration effect in different grids. Accordingly, the acceleration effect of the
GPU technique increases significantly with the increase in the number of computational grids. This
model can support efficient and accurate fast simulation and prediction of non-constant transient
processes in long-distance water pipeline systems.

Keywords: water hammer; WENO scheme; GPU acceleration; finite volume method; Courant number

1. Introduction

The water hammer pressure wave generated when a pipeline suddenly closes a valve
can cause pipeline vibration, damage the valve, or cause a pipeline burst in severe cases,
resulting in significant engineering accidents. Simulating, predicting, and controlling
the water hammer phenomenon are critical research topics in relevant fields [1–3]. The
commonly used solution schemes, including the MOC and the finite difference method,
attempt to calculate water hammers [4,5]. The MOC requires a regular grid, while the
spatial step and time step are strictly constrained by the characteristic line, limiting its
applicability. Many scholars have improved the classical difference solution schemes. For
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example, Chaudhry and Hussaini employed the MacCormack scheme to construct an
explicit finite difference scheme for solving the pipeline water hammer problem [6]. They
found that the second-order finite difference scheme can achieve a computational accuracy
higher than the MOC. Wan and others applied the MacCormack scheme of variable grids
to transient flow simulation [7]. The mentioned scheme adopts the two-step prediction
correction method to realize the flexible division of the spatial grid. Wylie and Streeter
proposed an implicit finite-difference scheme for solving the water hammer problem in
pipe network systems [8]. Although the main advantage of this scheme is that it remains
stable for significant time steps, it requires a time-consuming iteration process. Harten
proposed a scheme for solving hyperbolic partial differential equations and proved that this
scheme has high resolution and no spurious oscillations at the discontinuities [4]. The finite
volume method has been widely utilized in recent years for solving water hammer waves
in pipelines [9]. It can provide better conservation performance and less computational
time than the TVD (Total Variation Diminishing) difference scheme. Zhao and Ghidaoui
constructed the first-order and second-order finite volume methods based on the Godunov
scheme using the MUSCL-Hancock method to solve the water hammer problem [10]. They
indicated that the second-order accuracy has better conservation at a low Courant number.
Waagan proposed the prediction-correction MUSCL-Hancock finite volume method, which
guarantees the accuracy of the scheme while ensuring good stability [11].

However, the second-order scheme is still limited in capturing accuracy for this aspect
of strongly excited intermittent waves, and better computational results can be obtained
using a higher-order scheme. The high-order ENO and WENO schemes significantly im-
prove the capability for intermittent wave capturing [12]. The ENO scheme selects only one
template among the multiple templates as the computational template, leading to inefficient
computation [13]. In contrast, the WENO scheme utilizes all the templates by assigning
corresponding weights to different templates through the convex combination between
different templates to improve the intermittent capture performance without causing the
waste of templates [14–17]. For example, Li et al. [18] obtained a new global smoothness
index through the Taylor expansion of the local smoothness index. In the framework of
the traditional WENO-Z format, an improved third-order finite-difference WENO format
was proposed. Li et al. [19] established an improved third-order finite-difference WENO
scheme based on convex combinations of different polynomials to calculate the numerical
fluxes at the cell boundaries and its truncation errors and parametrization are smaller than
those of other third-order WENO schemes. Moreover, the numerical results indicated that
the proposed scheme performs better than other third-order WENO schemes.

To judge the performance of the model, in addition to the calculation accuracy of
the model, the calculation efficiency of the model is also crucial. If the computational
efficiency of the numerical scheme is too low, it will affect the scope of application, such as
complex pipe network systems or timely warning of emergency events. Parallel computing
is the primary strategy developed in recent years to improve computational efficiency,
while the graphics processing unit (GPU) acceleration technology is the direction of rapid
development [20–23]. Liang et al. [24] employed the GPU acceleration technology to
establish a high-efficiency and high-precision hydrodynamic model of a rapid movement
process of surface water flow for simulating rain and flood in a large-scale watershed
resulting in a good acceleration effect. Meng et al. [25] combined the GPU technology with
the MOC of a one-dimensional open channel and indicated that the GPU technology could
significantly improve the computational efficiency when the number of grids is large. Some
scholars applied the GPU technique to solve the system of shallow water equations by
taking the WENO scheme and achieved a significant acceleration effect [26,27].

In this paper, the fifth-order WENO finite volume scheme is applied to a one-dimensional
pipeline transient flow system, and a pipeline water hammer wave solution model is
established based on GPU acceleration technology. This can provide technical support for
the intelligent management of complex pipeline systems and rapid prediction of accident
emergency dispatch.
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2. Control Equations

To calculate water hammers in pipes, the following momentum and continuity equa-
tions can be employed [1].

g
∂h
∂x

+
∂v
∂t

+ v
∂v
∂x

+
f

2D
v|v| − g sin θ = 0 (1)

∂h
∂t

+ v
∂h
∂x

+
c2

g
∂v
∂x

= 0 (2)

where h is the head of the pressure head, v is the average flow velocity of the pipe section,
f = 8gn2(4/D)1/3 is the resistance coefficient along the pipe, n is the roughness, D is the
pipe diameter, x is the distance along the pipe axis, and c is the wave speed in the pipe.

Equations (1) and (2) can be expressed in the following linear form:

∂u
∂t

+ A
∂u
∂x

= s (3)

where

u =

[
h
v

]
A=
[

v c2/g
g v

]
s =

[
0

g sin θ − f |v|v
2D

]
Equation (3) can be written in the following approximate form, which can be solved

by solving the Riemann problem [28].

∂u
∂t

+
∂F(u)

∂x
= s(u) (4)

where F(u)x = Au, A =

[
v c2/g
g v

]
, v is the average flow velocity. If the effect of convective

terms is ignored, it can be taken as v = 0. This paper takes the arithmetic average
proposed by Toro [29] as v = (vi + vi+1)/2. The eigenvalues of the coefficient matrix
A are λ± = v± c.

Figure 1 shows the schematic diagram of pipeline meshing, and the finite volume
method is utilized to attain the discrete solution. Fi−1/2 is the value of i− 1/2 interface flux
and Ui is the mean value of u in cell i. Taking the control cell i as an example, Equation (4)
can be integrated along the x-direction from the control cell interface i− 1/2 to the interface
i + 1/2 (The range of i is 0 to N, and N is the number of pipe grids).

∂

∂t

∫ i+1/2

i−1/2
udx + Fi+1/2 − Fi−1/2 =

∫ i+1/2

i−1/2
sdx (5)
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Equation (5) is the conservation form of the momentum and continuity equations in
the control unit i. Let Ui =

1
dx

∫ i+1/2
i−1/2 udx; if both sides of the Equation (5) are divided by ∆x,

the following equation can be obtained (n is a known time step and n + 1 is an unknown
time step).

Un+1
i = Un

i +
∆t
∆x

∫ i+1/2

i−1/2
sdx− ∆t

∆x
(Fi+1/2 − Fi−1/2) (6)
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3. Numerical Calculation Method

This paper takes the WENO-JS format proposed by Jiang and Shu as an example to
illustrate how the WENO scheme is applied in a one-dimensional pipeline [14–16].

3.1. Numerical Flux Decomposition

The Lax-Friedrichs flux splitting method is employed to obtain the cell boundary flux
values as [30]

Fn+1
i+1/2(Ui) = F+(Ui) + F−(Ui) =

1
2
(Fn(Ui) + αUi) +

1
2
(Fn(Ui+1)− αUi+1) (7)

where α = max(|F′(Ui)|) = max(|v± c|) is the maximum eigenvalue of the Jacobi matrix
A = ∂F / ∂u , and it is recommended to take v + c. The fifth-order accuracy WENO scheme
is employed to obtain the flux solution by reconstructing the positive and negative flux
vectors F±(Ui).

3.2. Fifth-Order WENO Scheme Flux Reconstruction

According to Equation (7), the numerical flux can be obtained by summing the positive
and negative parts, while the following template is chosen for the positive flux F+(Ui):
S0 = {xi−2, xi−1, xi}, S1 = {xi−1, xi, xi+1}, S2 = {xi, xi+1, xi+2}. Figure 2 shows the location
of the templates.
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From the above template, the flux reconstruction method of the fifth-order WENO
scheme can be obtained as

fn
0 =

1
3

Fn
i−2 −

7
6

Fn
i−1 +

11
6

Fn
i (8)

fn
1 = −1

6
Fn

i−2 +
5
6

Fn
i−1 +

1
3

Fn
i (9)

fn
2 =

1
3

Fn
i−2 +

5
6

Fn
i−1 −

1
6

Fn
i (10)

The above three templates are employed for weighted reconstruction in the actual
calculation, and the weights can be determined using the template smoothness function.
This paper employs the template smoothness function IS±k proposed by Vukovic and
Sopta [15].

IS+
k =

3

∑
α=1

xi+1/2∫
xi−1/2

(∆x)2α−1
(

dαfk(x)
dxα

)2

dx , (k = 0, 1, 2) (11)

Bringing fn
k from Equations (8)–(10) into Equation (11) gives

IS+
0 =

13
12
(
Fn

i−2 − 2Fn
i−1 + Fn

i
)2

+
1
4
(
Fn

i−2 − 4Fn
i−1 + 3Fn

i
)2 (12)
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IS+
1 =

13
12
(
Fn

i−1 − 2Fn
i + Fn

i+1
)2

+
1
4
(
Fn

i−1 + 0Fn
i − Fn

i+1
)2 (13)

IS+
2 =

13
12
(
Fn

i − 2Fn
i+1 + Fn

i+2
)2

+
1
4
(
3Fn

i − 4Fn
i+1 + Fn

i+2
)2 (14)

where the weighting factor ωk is defined as

ωk =
βk

3
∑

i=1
βk

(15)

where βk =
Ck

(ε+IS+
k )

2 , (k = 0, 1, 2), and linear combination coefficients are chosen as

C0 = 0.3, C1 = 0.6, C2 = 0.1 (16)

Based on the template smoothness function, the positive vector flux expression can be
derived as

F+
i+1/2(Ui) =

2

∑
k=0

ωk IS+
k (F

n
i−2, Fn

i−1, Fn
i , Fn

i+1, Fn
i+2) (17)

Similarly, the negative flux expression F−i+1/2(Ui) can be obtained from the symmetric
distribution of the grid interface i + 1/2, while the value of the interface flux Fn+1

i+1/2(Ui) at
the moment of n + 1 can be obtained from Equation (7).

3.3. Time Layer Discrete Method

The above steps can only find the value of the interface flux at n + 1 times, while the
value of the source term s(u) is required to calculate the Un+1

i
at n + 1 times. Now, the

second-order Runge-Kutta method is employed to solve the initial value problem.
First, the flow term is updated as

Un+1
i = Un

i +
∆t
∆x

(F(UiL)− F(UiR)) (18)

In the second step, the source item time step is updated as

Un+1
i = Un+1

i + ∆ts(Un+1
i +

∆t
2

s(Un+1
i )) (19)

3.4. Boundary Condition Processing

In this paper, the treatment methods of upstream and downstream boundary condi-
tions and pipeline bifurcation boundary are given.

3.4.1. Upstream Boundary Conditions

In actual engineering, the upstream boundary of the pipeline is primarily constant
pressure boundary conditions, such as pressure front pool and constant reservoir level.
Combining the boundary conditions with MOC gives{

vn
(1,1) =

g
c

(
hn
(1,1) − h(1,0)

)
+ v(1,0)(1 +

g∆t sin θ
c − f ∆t

2D1

∣∣∣v(1,0)

∣∣∣)
h(1,0) = h0

(20)

where h0 is the upstream constant water pressure and c is the pipeline pressure wave speed.

3.4.2. Downstream Boundary Conditions

The downstream boundary can be the flow rate boundary, flow boundary, or valve bound-
ary. The downstream flow rate is given as v(i,N(i)) or flow rate as

(
v(i,N(i)) = Q(i,N(i))/Ai

)
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for the flow rate boundary or flow boundary (Here i represents the pipe number of the pipe
network, the same as below). Now, the head at the end of the pipe can be calculated as

h(i,N(i)) = hn−1
(i,N(i)−1) − v(i,N(i))

ci
g
+ vn−1

(i,N(i)−1)

 ci
g
+ ∆t sin θ −

f ∆x
∣∣∣vn−1

(i,N(i)−1)

∣∣∣
2gDi

 (21)

Based on the MOC at the boundary and the orifice outflow law, the relationship
between head and flow velocity under a valve boundary condition can be determined as

v(i,N(i)) =
vm√

h′0
τj

√
h(i,N(i)) (22)

where vm stands for the valve fully open valve at the average flow rate, h′0 stands for the
pipeline constant flow state at the valve head, and τj is the valve opening degree.

To obtain the upstream and downstream boundary flux values F−1/2 and FN+1/2, the
virtual boundary values outside the cell inside the pipe should be determined. The dummy
grid technique proposed by Mohamed et al. [31] is employed in this paper to improve the
computational efficiency while ensuring the accuracy of the results. As shown in Figure 1,
for the upstream constant pressure boundary, we have U−2 = U−1 = F−1/2, while for the
downstream flow velocity boundary or valve boundary, we have UN+2 = UN+1 = FN+1/2.

3.4.3. Bifurcated Pipe Interface Handling

When there is a bifurcation in the water delivery system, as shown in Figure 3, it can
be handled as the following.
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According to the positive characteristic line of pipe A and the negative characteristic
line of pipes B and C, we have

h(A,N(A)) +
cA
g v(A,N(A)) = hn−1

(A,N(A)−1) + vn−1
(A,N(A)−1)

(
cA
g + ∆t sin θA −

f ∆x
∣∣∣vn−1

(A,N(A)−1)

∣∣∣
2gDA

)

h(B,0) −
cB
g v(B,0) = hn−1

(B,1) − vn−1
(B,1)

(
cB
g + ∆t sin θB −

f ∆x
∣∣∣vn−1

(B,1)

∣∣∣
2gDB

)

h(C,0) −
cC
g v(C,0) = hn−1

(C,1) − vn−1
(C,1)

(
cC
g + ∆t sin θC −

f ∆x
∣∣∣vn−1

(C,1)

∣∣∣
2gDC

)
(23)

The following relation can be obtained from the conservation of flow at the bifurcation
and the equal head relationship.

AAv(A,N(A)) = ABv(B,0) + ACv(C,0) (24)

h(A,N(A)) = h(B,0) = h(C,0) (25)
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Equations (23)–(25) should be solved to derive the flow rate and head value at the
bifurcation connection of the corresponding moment. If there are more than three sections
of pipes connected at the bifurcation, referring to this paper, the number of pipes should be
expanded for calculation.

4. GPU Acceleration Implementation Method

Since the pipeline length can be hundreds of kilometers for large water transmission
projects, traditional CPU computing architecture is time-consuming and inefficient. With
the introduction of GPU acceleration technology, the model calculation efficiency can be
significantly improved with minimal loss of model accuracy, ensuring both calculation
accuracy and efficiency.

4.1. CPU and GPU Related Parameters

Due to the rapid development of science and technology, the CPU and GPU are chang-
ing year by year, while different models of GPU graphics cards have different acceleration
effects. The CPU and GPU used in the model are new products in recent years. The CPU is
the latest Core series of 10th-generation machines, and the GPU contains 1536 CUDA cores.
Table 1 shows the specific key parameters of the CPU and GPU.

Table 1. Key parameters of GPU and CPU.

GPU Type Computational
Framework

Number of
Transistors

Number of
Stream

Processors

Memory
Capacity

Single-Precision
Floating-Point

Video Memory
Bandwidth

NVIDIA GeForce
GTX 1660Ti Pascal 6 billion

600 million 1536 6000 MB 4.85 TERAFLOPS 288(Gb/s)

CPU Type Computational
Framework Basic Frequency Number of

Threads L3 Cache Maximum
Memory Support

Intel(R) Core
(TM) i7-10700 Comet Lake-S 2.90 GHz 8 threads 16 MB 8 GB

4.2. GPU Accelerated Parallel Computing Process

The model adopts C++ and CUDA language programming to implement the GPU
parallel acceleration process. The initial data is stored and initialized on the CPU side, and
the cudaMemcpy function is utilized to transfer the computational data to the GPU side as
fast as possible, and the GPU threads are called through the kernel function for parallel
processing. Figure 4 depicts the specific computation flow.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18 
 

4.1. CPU and GPU Related Parameters 
Due to the rapid development of science and technology, the CPU and GPU are 

changing year by year, while different models of GPU graphics cards have different 
acceleration effects. The CPU and GPU used in the model are new products in recent 
years. The CPU is the latest Core series of 10th-generation machines, and the GPU contains 
1536 CUDA cores. Table 1 shows the specific key parameters of the CPU and GPU. 

Table 1. Key parameters of GPU and CPU. 

GPU Type Computational 
Framework 

Number of 
Transistors  

Number of Stream 
Processors 

Memory 
Capacity 

Single-Precision 
Floating-Point 

Video Memory 
Bandwidth 

NVIDIA GeForce 
GTX 1660Ti 

Pascal 6 billion 600 
million 

1536 6000 MB 4.85 TERAFLOPS 288(Gb/s) 

CPU Type Computational 
Framework 

Basic 
Frequency 

Number of 
Threads 

L3 Cache Maximum 
Memory Support 

 

Intel(R) Core (TM) 
i7-10700  

Comet Lake-S 2.90 GHz 8 threads 16 MB 8 GB  

4.2. GPU Accelerated Parallel Computing Process 
The model adopts C++ and CUDA language programming to implement the GPU 

parallel acceleration process. The initial data is stored and initialized on the CPU side, and 
the cudaMemcpy function is utilized to transfer the computational data to the GPU side 
as fast as possible, and the GPU threads are called through the kernel function for parallel 
processing. Figure 4 depicts the specific computation flow. 

 
Figure 4. GPU acceleration flowchart. 

5. Model Validation and Case Analysis 
To evaluate the model’s computational accuracy and efficiency, this paper selects 

typical working conditions for simulation and validation. It selects the MOC and the first-
order and second-order Godunov schemes [10] for comparison and analysis. The Courant 
number sensitivity of the model is qualitatively verified through the dissipation analysis 
of different schemes under the same Courant number. By increasing the number of grids, 
the acceleration effect of the GPU technology in dividing different grids is studied. 

Figure 4. GPU acceleration flowchart.



Appl. Sci. 2022, 12, 7350 8 of 16

5. Model Validation and Case Analysis

To evaluate the model’s computational accuracy and efficiency, this paper selects
typical working conditions for simulation and validation. It selects the MOC and the
first-order and second-order Godunov schemes [10] for comparison and analysis. The
Courant number sensitivity of the model is qualitatively verified through the dissipation
analysis of different schemes under the same Courant number. By increasing the number
of grids, the acceleration effect of the GPU technology in dividing different grids is studied.

5.1. Parameter Sensitivity Analysis

By calculating and evaluating the numerical dissipation and surge intermittent capture
performance of the pressure wave curve at the pipe’s valve at different Courant numbers,
the sensitivity of different simulation methods to the Courant number is verified.

Assuming that the two calculation conditions are recorded as Case 1 and Case 2,
the pipeline length is 1960 m and 39,200 m, the calculation time is 40 s and 800 s, the
grid number is 20 and 40, and the Courant number is 0.1 and 0.01, respectively. Other
parameters are the same. The pipe diameter is 1.0 m, the initial flow velocity is 0.5 m/s, the
upstream constant water level is 10 m, the wave speed is 980 m/s, and the gravitational
acceleration is 9.806 m/s2. The viscous term is ignored, so the roughness of the pipe is 0,
and the end valve is suddenly closed.

Figure 5 shows the pressure fluctuation characteristics at the end valve and the 540 m
upstream of the pipeline when the model Courant number is 0.1 and the model grid is 20
(case 1). According to the Joukowsky theorem, the change value of water hammer pressure:

∆h =
c∆v

g
=

980× 0.5
9.806

= 49.97 m (26)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18 
 

 
(a) (b) 

Figure 5. Comparison of results of different schemes for Cr = 0.1. (a) Comparison of pressure wave 
curve at value. (b) Comparison of pressure wave curves at 540 m 

 
(a) (b) 

Figure 6. Comparison of results of different schemes for Cr = 0.01. (a) Comparison of pressure 
wave curve at value. (b) Comparison of pressure wave curves at 10 km 

5.2. Model Application and GPU Acceleration Performance Evaluation 
The idealized long-distance water pipeline network shown in Figure 7 is constructed 

to evaluate the simulation’s computational accuracy and the GPU program’s acceleration 
effect. It is assumed that all the pipelines are long-distance transmission pipes of several 
tens of kilometers, and points A and B are the branch points of the trig point. The relative 

Figure 5. Comparison of results of different schemes for Cr = 0.1. (a) Comparison of pressure wave
curve at value. (b) Comparison of pressure wave curves at 540 m.

The maximum pressure is 59.97 m, the minimum pressure is −39.97 m, and the
phase length (the time for traveling one wavelength) of the pressure wave is
T = 2l/c = 2× 1960÷ 980 = 4 s. As shown in Figure 5, the calculation results of the MOC
and the first-order Godunov scheme indicate significant numerical dissipation with increas-
ing time, while the peak pressure waves captured by both schemes are decreasing. The
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extreme value of the pressure wave at the end valve can be captured accurately during
the calculation period using the second-order Godunov scheme. The calculation results
at 540 m upstream exhibit a significant error, and the scheme’s numerical dissipation is
still more severe. Simultaneously, the second-order Godunov scheme cannot capture the
abrupt interruptions. In contrast, the fifth-order WENO scheme accurately captures the
actual pressure wave peak and provides performance superior to the other three schemes in
capturing the abrupt interruptions of the excitation wave. Figure 5a shows that the second-
order Godunov scheme captures a complete excitation interruption with a response time of
about 4 s, while the fifth-order WENO scheme captures a complete interruption within 1 s.
Besides, the non-physical oscillations generated by the fifth-order WENO scheme are so
minimal that their impact on the actual results can be neglected.

Figure 6 shows the pressure fluctuation characteristics when the Courant
number is taken as 0.01 and the model grid is 40 (Case 2). Similarly, the pressure change
value is ∆h = c∆v/g = 49.97 m, and the phase length of the pressure wave is
T = 2l/c = 2× 39200÷ 980 = 80 s. Compared with Figure 5, the numerical dissipation of

the MOC and the first-order Godunov scheme decreases slightly by increasing the number
of computational grids. However, the scheme cannot capture the pressure wave extremes
after 100 s, and the scheme calculation results are almost distorted. The second-order
Godunov scheme can better capture the intermittent excitation waves and slightly reduce
the dissipation of the scheme values. The fifth-order WENO scheme has no significant
nonphysical oscillations and numerical dissipation while maintaining high performance in
capturing intermittent excitation waves. In summary, the fifth-order WENO scheme has
lower numerical dissipation and better intermittent capture capability than the traditional
MOC and Godunov scheme for calculating water hammer waves in pipes with low Courant
number conditions.
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5.2. Model Application and GPU Acceleration Performance Evaluation

The idealized long-distance water pipeline network shown in Figure 7 is constructed
to evaluate the simulation’s computational accuracy and the GPU program’s acceleration
effect. It is assumed that all the pipelines are long-distance transmission pipes of several
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tens of kilometers, and points A and B are the branch points of the trig point. The relative
elevation of the upstream reservoir constant water level Z1 and Z2 and the downstream
water level Za and Zb are 85 m and 5 m, respectively, while the regulating valve at the
end of the pipeline is closed by linear variation with a closing time of the 60 s. The MOC
and second-order finite volume Godunov scheme are employed to validate the model.
The calculation time step is taken as 0.01 s, and the gravitational acceleration is chosen
as 9. 806 m/s2. The pipeline model parameters are shown in Table 2.
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Table 2. The pipeline model parameters.

Pipe Number Pipe Length/km Pipe Diameter/m Roughness Wave Speed/(m/s) Initial Flow/(m3/s)

Pipe 1 39.75 0.981 0.013 996 0.47
Pipe 2 39.75 0.981 0.013 996 0.47
Pipe 3 99.40 1.389 0.012 1000 0.94
Pipe 4 59.64 0.981 0.014 994 0.47
Pipe 5 59.64 0.981 0.014 994 0.47

5.2.1. Comparative Analysis of the Results of Different Simulation Methods

Figure 8a shows the process of pressure wave curve change at valve C when the end
valves C and D are simultaneously closed for the working condition shown in Figure 7.
The working condition first runs steadily for 800 s, and then the valve closes linearly within
the 60 s. This paper adopts the fifth-order WENO finite-volume method to take 0.01 and
0.005, respectively. As shown in Figure 8a, the calculation results of different schemes are
almost the same, and the error of the extreme value point is within 1‰ when the WENO
scheme and the MOC take 0.005. This means that the fifth-order WENO scheme for solving
the pipeline water hammer wave can achieve a high accuracy under a very low Courant
number. Figure 8b compares the solution results after taking GPU acceleration with the
CPU program’s results. The GPU is programmed with double-precision floating-point
numbers to ensure calculation accuracy. The maximum error between the calculation result
and the CPU program calculation result is 0.5‰, significantly below the allowable error in
actual engineering.
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Figure 9 shows the flow and water hammer wave variations at different locations
when the end valves C and D are simultaneously closed. As shown in Figure 9, due to
the symmetry of points C and D location and the simultaneous closure of the valve, the
pressure wave curves at valves C and D overlap entirely. Simultaneously, after the valve
is closed linearly, the water hammer pressure wave reaches its maximum value (131.9 m).
The flow rate at A gradually decreases to 0 with the closure of the valve, while the flow rate
at B and C still decrease cyclical in the fluctuation changes due to the role of pipe friction,
which gradually decreases the amplitude of fluctuations. Figure 10 shows the flow and
pressure head variations at different locations when the valve is closed only at C (linear
closure within the 60 s). As shown in Figure 10a, after closing valve C, the pressure head at
C suddenly rises, and its peak reaches 95 m, then oscillates down and stabilizes at 64.3 m.
After about 40 min, due to the horizontal arrangement of the pipe, the flow rate in pipe 4
drops to zero, while the pressure head at point C is equal to that at point B. The maximum
pressure head generated by the whole process system is still at the end of valve C. It can be
seen that the downstream valve is still the most likely place to generate damage, even for a
complex bifurcated piping system.
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5.2.2. Analysis of Model Computation Efficiency and GPU Acceleration Performance

The water hammer change process at the end valve was calculated in time steps of
0.02 s, 0.015 s, 0.01 s, and 0.005 s. The model’s computational efficiency can be derived by
analyzing the computational time consumed by the different schemes, with a computational
time of 4800 s. According to the CFL constraint, the MOC and the first-order Godunov
scheme should meet Cr = 1, while the second-order Godunov scheme takes Cr = 0.5 to
obtain the best calculation effect [10], and the proposed fifth-order WENO finite volume
scheme can meet Cr > 0.01. The total computation times for different schemes are presented
in Table 3 and Figure 11. According to Table 3, the second-order Godunov scheme takes
the highest time, while the MOC and the first-order Godunov scheme take the middle time,
and the WENO scheme takes the least time for different time steps, while the Courant
number meets the scheme requirements. The fifth-order WENO scheme takes 35% to 90%
of the MOC and 15% to 39% of the time of the second-order Godunov scheme when the
calculation accuracy is guaranteed and the appropriate Courant number is chosen. It can
be concluded that the fifth-order WENO finite volume scheme proposed for the water
hammer solution model can significantly improve computational efficiency.

Table 3. The calculation time of different simulation methods.

Time Step (t/s) MOC (t/min) First-Order Godunov (t/min) Second-Order Godunov (t/min) Fifth-Order WENO (t/min)

0.020 3.99 7.76 9.55 3.05
0.015 6.72 13.47 16.75 6.34
0.010 16.31 28.73 36.90 14.36
0.005 59.00 118.75 146.54 22.47

The computational time consumption of CPU programs and GPU programs at different
grids was analyzed to evaluate the acceleration effect of the GPU-WENO scheme. The CPU
model is Intel(R) Core (TM) i7-10700, and the GPU graphics card is NVIDIA GeForce GTX
1660Ti, and both of them are the latest electronic products in recent years. Still using the
ideal operating conditions shown in Figure 7, the pressure wave variation during sudden
closure of the end valve was calculated for a total time of 48 s, as presented in Table 4.
As shown in Table 4, when the grid number is uniformly divided into 600 and the grid
length is 400 m, the single-threaded computation efficiency of the 8-core CPU is higher than
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that of the GPU. The reason is that the number of CPU program cycles is small, and the
CPU core performance can be fully utilized for the small number of grids, while the GPU
program is so time-consuming compared to the CPU program because the internal data is
copied from the host side to the device side and then copied from the device side to the host
side after completing the calculation. The computational efficiency of the GPU program
is significantly higher than that of the CPU program when the number of grids reaches
thousands and above. At this point, the CPU program’s large number of round-robin
calculations is a critical factor in the program’s time consumption, while the efficiency
of the GPU is superior to the CPU program by calling multiple threads on the kernel
block to perform parallel calculations. Figure 12 shows that when the number of threads
reaches 32 or more, the GPU acceleration effect does not change with the increase of threads,
indicating that for engineering problems within hundreds of thousands of grids, 32 threads
can achieve the best acceleration effect. Besides, the acceleration effects of different graphics
cards are significantly different. This model employs the NVIDIA GeForce GTX 1660Ti
graphics card, while the acceleration effect can be more than 13 times compared with a
single CPU program by using GPU parallel computing technology with a grid number
of 500,000 and a grid accuracy of 0.4 m. With the GPU-WENO scheme, which has a high
application prospect in solving practical engineering problems, the computation speed can
easily reach more than tens of times that of the commonly used MOC or differential scheme.
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Table 4. Effect analysis table of GPU acceleration.
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Grid
Accuracy/(m) CPU-WENO (t/s)

GPU-WENO (t/s) Acceleration Ratio/(Times)

Number of Threads Number of Threads

8 16 32 64 8 16 32 64

600 400 4.44 5.22 5.21 5.19 5.22 0.85 0.85 0.86 0.85
6000 40 48.16 11.55 6.33 5.20 5.23 4.17 7.61 9.26 9.21

6 × 104 4 479.24 91.28 57.88 47.27 46.96 5.25 8.28 10.14 10.21
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6. Discussion

This study indicates that the high-precision scheme can well simulate the propaga-
tion process of the pressure wave in the one-dimensional pipeline system. Compared to
the MOC and the second-order Godunov scheme, the fifth-order WENO scheme yields
lower numerical dissipation and no spurious oscillations. GPU acceleration technology is
introduced, and the acceleration effect is reached more than ten times. These results can
be applied to the regulation and control of long-distance water conveyance systems. This
study does not consider the effect of adding gas into the pipeline system. This issue will be
further studied in the future.

7. Conclusions

Based on the one-dimensional pipeline non-constant flow equation set, the virtual
boundary technique is adopted at the upper and lower ends of the model. The bifurcated
pipeline boundary solution method is combined with the Lax-Friedrichs splitting method
for flux decomposition, and the time term is discretized by the second-order Runge-Kutta
method. Moreover, a fifth-order WENO finite volume scheme water hammer solution
model is established for the long-distance water transmission system. The key results are
as follows.

(1) The model is verified to ensure low numerical dissipation and lack of spurious
oscillations at tiny Courant numbers under ideal conditions. The model is suitable for
large and complex water conveyance systems. Compared to the commonly used MOC, the
computation load of the model is 35% to 90% less than the MOC and 15% to 39% less than
the second-order Godunov scheme while maintaining the accuracy of the results.

(2) Using GPU acceleration technology to accelerate the model, the model can achieve
a significant acceleration effect while ensuring accuracy when the number of grids is
greater than thousands. As the number of meshes increases, the GPU acceleration effect
becomes more and more significant. The study found that GPU with 32 threads can
deal with engineering problems within hundreds of thousands of grids with the best
acceleration effect.
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Abbreviations
The following symbols are used in this paper:

A Pipe cross-sectional area (m2);
A, A Coefficient matrix and the linearized coefficient matrix;
c Water hammer wave speed in the pipeline (m);
C0, C1, C2 Weighting coefficients;
D Pipe diameter (m);
f Pipeline resistance coefficient;
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fn
0 , fn

1 , fn
2 Weighted reconstruction template at i + 1/2 interface at time n;

Fn
i , F+, F− The flux term at time n at interface i, and the positive and negative split flux terms;

g Acceleration due to gravity (m/s2);
h0, h′0 Pressure head in the upstream reservoir area and pressure head at the valve at

constant flow (m);
h, hj

(i,k) Water hammer pressure at node k at segment i at time j (m);

n Time step;
Q(i,N(i)) Flow value at node N of section i in the pipeline;
S0, S1, S2 Templates for WENO scheme;
s Source terms;
t Computing time (s);
u Flow variable;
Ui, UiL, UiR Mean value of u, that to left and right of interface i + 1/2, respectively;
Un

i , Un+1
i , Un+1

i Intermediate flow variables for Runge-Kutta scheme;
v, vj

(i,k) Velocity value at node k at segment i at time j (m/s);

v, vm Average velocity and maximum velocity (m/s);
x Distance from the most upstream (m);
∆x Incremental element in x ;
α Maximum eigenvalue of Jacobian matrix;
β0, β1, β2 Linear combination coefficients;
τj Valve opening at time j;
λ± Positive and negative eigenvalues of the Jacobian matrix;
θ The angle between the pipe and horizontal plane;
ω0, ω1, ω2 Linear combination coefficient weight;
IS+

0 , IS+
1 , IS+

2 Template smoothness functions;

The following abbreviations are used in the text:

MOC Method of characteristics;
WENO Weighted Essentially non-oscillatory;
GPU Graphic Processing Unit;
CPU Central Processing Unit;
TVD Total Variation Diminishing;
ENO Essentially non-oscillatory;
CUDA Compute Unified Device Architecture;
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