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Abstract: An accurate battery model is of great importance for battery state estimation. This study
considers the parameter identification of a fractional-order model (FOM) of the battery, which can
more realistically describe the reaction process of the cell and provide more precise predictions. Firstly,
an improved sparrow search algorithm combined with the Tent chaotic mapping, quantum behavior
strategy and Gaussian variation is proposed to regulate the early population quality, enhance its
global search ability and avoid trapping into local optima. The effectiveness and superiority are
verified by comparing the proposed chaotic quantum sparrow search algorithm (CQSSA) with the
particle swarm optimization (PSO), genetic algorithm (GA), grey wolf optimization algorithm (GWO),
Dingo optimization algorithm (DOA) and sparrow search algorithm (SSA) on benchmark functions.
Secondly, the parameters of the FOM battery model are identified using six algorithms under the
hybrid pulse power characterization (HPPC) test. Compared with SSA, CQSSA has 4.3%, 5.9% and
11.5% improvement in mean absolute error (MAE), root mean square error (RMSE) and maximum
absolute error (MaAE), respectively. Furthermore, these parameters are used in the pulsed discharge
test (PULSE) and urban dynamometer driving schedule (UDDS) test to verify the adaptability of the
proposed algorithm. Simulation results show that the model parameters identified by the CQSSA
algorithm perform well in terms of the MAE, RMSE and MaAE of the terminal voltages under all three
different tests, demonstrating the high accuracy and good adaptability of the proposed algorithm.

Keywords: battery; fractional-order model; parameter identification; sparrow search algorithm;
chaotic mapping; quantum behavior

1. Introduction

Lithium-ion batteries have become the most promising energy solution by virtue of
their high energy density, long life cycle and low self-discharge rate [1]. However, they
are extremely intolerant of over-charging and over-discharging and prone to fire and even
explosion in the case of poor monitoring. Clearly, it is essential to monitor the current,
voltage and temperature and estimate the state of charge (SOC) and the state of health
(SOH) so as to ensure battery safety and efficiency [2]. However, the direct measurement of
the SOC is impractical; it usually needs to be estimated based on observable data such as
current and voltage. The most commonly used SOC estimation method is the model-based
method, which is usually implemented in two steps: firstly establishing a model for the
battery and then using an adaptive filter, such as the Kalman filter and its variants [3,4],
to estimate the SOC. Consequently, the battery model is the premise of SOC estimation.
Therefore, it is requisite to develop an appropriate model which can precisely describe
the dynamic process of the battery and reflect the relationship between the SOC and the
observable data so as to improve SOC estimation performance.

To date, considerable research efforts have been made on battery models, which can
be in general divided into three main categories: the black-box model, electrochemical
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model and equivalent circuit model (ECM). Firstly, the black-box model usually employs
artificial neural networks [5] or support vector machines [6] to learn the nonlinear rela-
tionship between the battery input and output. Chemali et al. [7] introduced a method
employing a recurrent neural network with long short-term memory (LSTM-RNN) to
perform correct SOC estimation for the lithium-ion battery. Chehade et al. [8] combined
the advantages of LSTM and the Gaussian process and achieved accurate estimates. With
a large amount of data, this method is able to estimate SOC without using any physical
models or filters. However, since the model parameters have no explicit physical mean-
ing, they require a large amount of data under different experimental conditions to train
the model, which puts a heavy demand on the quality of the sample data as well as the
computation capability [9,10]. The electrochemical model needs to develop a detailed and
complex model [11,12] to describe the internal chemical reaction. It involves a variety of
chemical parameters, which requires a great amount of tedious and expensive chemical
experiments. As a result, this model cannot realize real-time online detection. Compared
with the electrochemical model, the ECMs have been widely applied, which can mimic the
electric behavior of the battery through simple circuit elements, including a serial resistor,
one or more resistor-capacitor (RC) circuits and an ideal voltage source. Therefore, only a
few parameters are required in ECMs. By appropriately adjusting the model structure, it is
easy to reach a balance between accuracy and complexity. Hu et al. [13] compared 12 com-
monly used ECMs in terms of accuracy, robustness and complexity and concluded that the
first-order RC model is the most suitable one. Furthermore, as the RC order increases, the
model accuracy improves, whereas the computational efficiency decreases.

Related research [14,15] shows that the diffusion effect in lithium-ion batteries is
more appropriate to be described based on fractional order. This fact facilitated the rapid
development of the fractional-order model (FOM) of the battery. One improvement of
the ECMs was to replace the ideal capacitor with a constant phase element (CPE) in the
first-order RC model to more accurately simulate the behaviors of double layers on the
electrode [16]. It was found that the FOM with one CPE is equivalent to an integer-order
model (IOM) which has five RC networks [17]. To further improve the accuracy, a Warburg
component (W) was added in series with the polarization resistor [18] or the internal
ohmic resistor [19] to describe the battery dynamic characteristics more properly. Moreover,
Wang et al. [20] proposed an FOM with two CPEs, which exhibited more robustness
to uncertainties.

In addition to the accurate modeling of the battery, another key challenge is model
parameter identification. In general, precise model parameters are not only crucial for
SOC estimation but they can also reflect the battery SOH which is usually defined by
the internal resistance or the capacity. For the IOMs of ECM, a typical method is offline
identification based on the HPPC test which, however, has poor accuracy under dynamic
operating conditions. Therefore, plenty of online parameter identification algorithms have
been put forward, such as the recursive least squares (RLS) [21], RLS with forgetting fac-
tors (FFRLS) [22], extended Kalman filters (EKF) [23] and universal adaptive stabilizers
(UAS) [24]. Moreover, some researchers have designed an online parameter identification
method considering multiple time scales according to the fast and slow change charac-
teristics of the model parameters [25]. Nevertheless, these methods are not adequate for
FOM models. A heuristic optimization algorithm is one feasible solution. For example, the
genetic algorithm (GA) was adopted to obtain the order of the fractional element and other
model parameters [26–28]. Moreover, Su et al. [29] used the particle swarm optimization
(PSO) algorithm to identify the parameters of a fractional-order two-RC circuit model.
Zhang et al. [30] proposed a time-frequency-domain-based fractional-order model parame-
ter identification method using a genetic particle swarm optimization algorithm. However,
the naive forms of these algorithms are prone to fall into local optimal solutions. To account
for this weakness, quantum behavior has been combined with intelligent algorithms, such
as the PSO [31], artificial bee colony algorithm [32] and bacterial foraging algorithm [33].
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Recently, to further improve the solution accuracy, a sparrow search algorithm (SSA)
was proposed [34]. However, like PSO and GA, it may also be trapped into local optimum
although the global search ability is excellent. In addition, the SSA converges slowly
because a random wandering strategy is adopted when there are no neighboring peers
around an individual sparrow. To address these issues, many studies have been carried
out. Zhang et al. [35] proposed an improved SSA which applied the logistic chaotic
mapping and adaptive parameters to the sparrow position initialization and update and
obtained good configuration parameters. Zhu et al. [36] added an adaptive learning rate
to accelerate the process and avoid the inefficient random wandering. Furthermore, levy
flight strategies [37,38] and Gaussian variation strategies [39] have been applied to improve
the ability of avoiding getting stuck in a local optimal solution.

In this study, we adopt a fractional-order model with two CPEs as a battery model
and formulate the model parameter identification problem as an optimization problem.
The chaotic mapping and quantum behavior strategies are combined with the SSA to
minimize the sum of squared errors (SSE) between the measured and estimated voltages of
the model. Experiments are performed under three different operating conditions, namely,
the hybrid pulsed power characteristic test (HPPC), pulsed discharge test (PULSE) and
urban dynamometer driving schedule test (UDDS). Compared with PSO, GA, GWO [40],
DOA [41] and SSA, the proposed chaotic quantum sparrow search algorithm (CQSSA)
exhibits superior performance in accuracy and adaptability.

The main contributions of this study are as follows:

(1) A novel chaotic quantum sparrow search algorithm (CQSSA) is proposed, which uses
the quantum behavior strategy to improve the intelligence of the algorithm and the
ability to jump out of the local optimum and adopts Gaussian variation to enhance the
population diversity. Moreover, it employs the Tent chaotic mapping to initialize the
sparrow population to improve the diversity of the initial population and accelerate
the convergence rate.

(2) The proposed CQSSA algorithm is applied to realize the parameter identification of
the fractional-order model of the lithium-ion battery based on the HPPC experimental
data. Simulation results indicate that CQSSA can identify the model parameters much
more accurately than the GA, PSO, GWO, DOA and SSA algorithms.

(3) These parameters are used in the pulsed discharge test and UDDS test to verify the
adaptability of the CQSSA algorithm. Simulation results show that the parameters
obtained by CQSSA also perform best under the pulsed discharge test and UDDS
test, illustrating the good adaptability of the proposed algorithm under different
operating conditions.

The remainder is organized as follows. Section 2 introduces the sparrow search
algorithm. A series of improvements is proposed in Section 3, and the performance
verification is made using six test functions. In Section 4, the experimental results and
analysis for battery parameter identification are presented. The last section provides
the conclusion.

2. Lithium-Ion Battery Model
2.1. Battery Modeling

Compared with the integer-order model (IOM) of ECM, the fractional-order model
(FOM) can simulate more electrochemical processes of the cell. Therefore, the FOM model
can realistically describe the reaction process of the cell [42,43] and give more precise
predictions. To make a trade-off between accuracy and complexity, an FOM with two CPEs
is constructed in this study, as shown in Figure 1.
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Figure 1. The fractional order model with two CPEs of the lithium-ion battery.

The structure is similar to that of the IOM, except for the use of the constant phase
element. R0 is the ohmic internal resistance; Uoc represents the open-circuit voltage (OCV);
UT denotes the terminal voltage; I is the operating current; the first loop formed by R1 and
the constant phase element CPE1 represents the lithium-ion diffusion behavior in solid
phases; the second loop formed by R2 and the constant phase element CPE2 mimics the
double layer effect. U1 and U2 are the voltages of the loops. C1 and C2 are the abbreviations
of CPE1 and CPE2. In order to make fractional order theory applicable to Kalman filtering,
the Grünwald–Letnikov (GL) definition is employed to build the fractional-order battery
model. As such, we have:

ρDθ
t f (t) = lim

Ts→0
T−θ

S

[(t−ρ)/Ts ]

∑
i=0

(−1)i
(

θ
i

)
f (t− iTs) (1)

where ρDα
t represents the fractional calculus operator, θ is the fractional order, ρ and t stand

for the upper and lower bounds of the integral and Ts indicates the step size.
Discretizing (1), we can obtain

Dθ f (k) = T−θ
s

Lm

∑
i=0

(−1)i
(

θ
i

)
f (k− i) (2)

where Lm is a memory length. In theory, Lm should be the integer part of t/Ts, including
every sample point. However, the larger the value of Lm, the greater the computational
burden and the slower the computation. Therefore, we take a suitable integer for the value
of Lm for simplicity.

Based on this discrete expression and the mathematical description of the electrical
behaviors of the battery using the FOM model
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the following equations can be obtained:
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(4)

The state of charge (SOC) is obtained by using the ampere-time integration method as:

SOC(t) = SOC0 −
∫

λI(t)dt
Qn

(5)
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where λ is the coulombic efficiency and Qn is the nominal capacity of the battery.
The terminal voltage is given by

Ub(k) = Uoc(SOC)−U1(k)−U2(k)− R0 I(k) (6)

where Uoc(SOC) represents the relationship between the open-circuit voltage (OCV) and
the SOC, which is fitted using a polynomial function based on the experimental data,
shown as:

Uoc = −152.94× SOĈ8 + 595.53× SOĈ7− 931.73× SOĈ6 + 751.62× SOĈ5
−338.93× SOĈ4+92.04× SOĈ3− 17.73× SOĈ2 + 3.14× SOĈ1 + 3.23

(7)

Then, if we take U1, U2 and SOC as the state vector x and the battery terminal voltage
as the output and current as the input, the matrix from of the state space equations can be
expressed as follows: xk+1 = Tθ

s Axk + Tθ
s BIk + Tθ

s ωk −
k+1
∑

i=1
(−1)iφixk+1−i

yk = Cxk + DIK + UOC + vk

(8)

where

A =

−Ts/(R1C1)
−Ts/(R2C2)

1


B =

[
Ts/C1 Ts/C2 −Ts/QN

]T

x =
[
U1 U2 SOC

]T

C =
[
−1 −1 0

]
D = [−R0]

y = [Ub]

θ =
[
m n 1

]T

and φi represents the generalized binomial coefficient, which is calculated as follows:

φi =

(
θ
i

)
= diag

[(
m
i

)(
n
i

)(
1
i

)]
(

r
i

)
=

{
1 i = 0

r(r− 1) . . . (r− i + 1)/i! i > 0

2.2. Objective Function of Parameter Identification

For an FOM model, the traditional online identification algorithms such as RLS are not
suitable owing to the complexity brought by fractional order calculus. Intelligent offline
optimization algorithms are usually effective for this problem. The FOM model parameters
include ohmic internal resistance (R0), polarized internal resistance (R1, R2), a constant
phase element (C1, C2) and two orders of fractional calculus (m, n) in this study. They can
be determined by minimizing the sum of squared errors (SSE) between the actual measured
terminal voltage Vr and the estimated terminal voltage Ve of the battery model. Therefore,
the objective function of optimization is established as:

F(x) = min
T

∑
i=1

(Ve
i −Vi

r )
2

(9)

where T indicates the total number of voltage sampling points.
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3. Sparrow Search Optimization Algorithm

By studying the group predation of the sparrow species, Xue [34] proposed a sparrow
search algorithm (SSA) which abstracts the flock predation behavior of the sparrows into a
producer-follower model.

The basic idea of the SSA algorithm is as follows. It divides the individuals in the
sparrow population into two categories, producers and followers, which take on different
tasks in the predation behavior. Usually, producers are responsible for identifying and
discovering abundant food sources and providing feeding directions for followers. The
follower remains in the same direction as the producer with the best position, and some
followers monitor the positions of the producers and compete with other followers for
food to improve their own predation rates. The ratio of the producers to followers remains
constant throughout the sparrow population, but each sparrow has the potential to become
a producer depending on its fitness value.

Following the behavior of the sparrows in predation and escape from predators, a
mathematical model is established. Assuming there exists a population of sparrows with
population size N, the position X of the sparrow population is represented as:

X =


X1,1 X1,2 · · · · · · X1,D
X2,1 X2,2 · · · · · · X2,D

...
...

...
...

...
XN,1 XN,2 · · · · · · XN,D

 (10)

where each row of the matrix represents the position of a sparrow. Xi,j indicates the position
of the jth (j = 1,2, . . . ,D) dimension for the ith (i = 1,2, . . . ,N) sparrow. Each individual
sparrow represents a feasible solution.

The producers, which generally occupy 10–20% of the entire sparrow population, need
to search for food with full freedom in the search space and lead the entire population to
forage. Therefore, the producers play a crucial role in the guarantee of global optimization
performance. Their positions are updated as follows:

Xt+1
i,j =

{
Xt

i,j · exp( −i
α·itermax

) ALV < ST
Xt

i,j + Q · L ALV ≥ ST
(11)

where t denotes the current iteration number, itermax denotes the maximum iteration
number, α represents a random number uniformly distributed between (0, 1], Q is also a
random number that follows the standard normal distribution and L stands for an all-one
matrix. ST denotes the safety threshold and ALV denotes the alert value. An alert value
less than the safety threshold means that there is no predator near this location, and the
producers can conduct an extensive search following this search direction. On the contrary,
the producers need to lead the followers to other safe areas.

The follower positions are updated as follows:

Xt+1
i,j =

Q · exp(
Xt

worst−Xt
i,j

i2 ) i > N/2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L otherwise
(12)

where Xt
worst and Xt

P denote the global worst position and best position of the producer.
A is a matrix of size 1 × D whose elements are randomly assigned with 1 or −1 and A+

indicates the additive inverse, which can be defined as A+ = AT(AAT)
−1. When i > N/2,

this follower has a low fitness value. It is largely hungry and may compete and find food
more actively, while the rest of the followers are monitoring the position of the producer
and competing for food.
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In addition, 10–20% of sparrows in the population take charge of early warning. When
they become aware of a dangerous situation, the locations of these sparrows are updated as:

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ fi > fg

Xt
i,j + K ·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
fi = fg

(13)

where Xt
best denotes the global best position, β and K represent the step control parameters

of the direction of movement, which can be any number between [−1, 1], ε represents a
small positive constant used to avoid dividing by zero, fi is the fitness value of sparrow i,
fg denotes the current optimal fitness value and fw denotes the current worst fitness value.
If fi > fg, the current sparrow will move toward the position of the producer when it
realizes the danger. If they are equal, it means the current sparrow is already at the middle
of the population and it will approach the other sparrows when it realizes the danger.

4. Improvements on the Sparrow Search Algorithm

To enhance the intelligence of the population evolution and improve the overall
performance of the algorithm, a chaotic quantum sparrow search algorithm (CQSSA)
is proposed in this study. It adopts the Tent chaos mapping to expand the population
diversity and uses the quantum behavior and Gaussian variation strategy to intelligentize
the motion trajectory of the population’s individuals and improve global search capability
while effectively avoiding getting trapped in a local optimal solution.

4.1. Quantum Behavior Improvement Strategies

In recent years, quantum mechanics has made great progress in both theoretical re-
search and engineering applications. Many studies have been inspired by the behavior
and properties of quantum, including algorithm design [44,45] and circuit quantum elec-
trodynamics system design [46]. In [47,48], the quantum behavior improvement strategy
inspired by the Delta potential well model in quantum mechanics was adopted to improve
the PSO algorithm to extend the search range of the particles. It uses the bound states to
describe the aggregation of particles in quantum space, in which the particles can appear
at any space point with a certain probability density and can be searched throughout the
feasible solution space without dispersion to infinity. As a result, combining the quantum
behavioral improvement strategy with SSA can increase the possibilities of the foraging
behavior of the sparrows and enhance the intelligence of the group search behavior.

Mathematically, based on quantum Delta potential well theory, the iterative update of
the individual sparrow position can be obtained as:

Xt+1
i,j = pt

i,j ±
Lt

i,j

2
ln(1/ut

i,j) (14)

where i denotes the ith individual, j denotes the jth dimension of the solution and t rep-
resents the time instant. pi,j

t denotes the center of the identified potential well, to which
the individual converges in probability. Li,j

tdenotes the characteristic length of the Delta
potential well. ui,j

t is a random variable uniformly distributed on [0, 1].
First, the characteristic length of the Delta potential well (Li,j

t) is evaluated as:

Lt
i,j = 2α ·

∣∣∣mbestt
j − Xt

i,j

∣∣∣ (15)
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where mbestj
t is the average best position of the individual and α is the contraction-

expansion coefficient of the current iteration. An efficient method to set α is to decrease the
value of α linearly during the search [49]. That is,

α= (αmax − αmin)
itermax − t

itermax
+ αmin (16)

mbestt
j =

1
N

N

∑
i=1

pbestt
i,j (17)

where αmax and αmin are the boundary values of the shrinkage-dilation coefficient, which
generally take on values of 1 and 0.5, and pbesti,j

t denotes the optimal position of the
individual from the beginning to the current iteration.

Next, the center of the identified potential well pt
i,j is expressed as a random point of

attraction between the global optimal position gbestj
t and the individual optimal position

pbesti,j
t and obtained as:

pt
i,j = ϕt

j · pbestt
i,j + (1− ϕt

j) · gbestt
j (18)

where ϕt
j is a random variable between [0, 1].

Finally, substituting (15) and (18) into (14), the final sparrow position is updated as

Xt+1
i,j = ϕt

j · pbestt
i,j + (1− ϕt

j) · gbestt
j ± α ·

∣∣∣mbestt
j − Xt

i,j

∣∣∣ · ln(1/ut
i,j) (19)

4.2. Tent Chaotic Mapping

Due to the merit of the unification of randomness and ergodicity, the Tent chaotic
mapping [50,51] can enhance the population variability during the initialization. Therefore,
to improve the population quality, the Tent chaotic mapping is applied to initialize the
SSA algorithm.

The process of sparrow population initialization using the Tent chaotic mapping
method is as follows:

Step 1: Generate the initial value of chaos zk
0.

Step 2: Adding a random number to the Tent mapping expression to eliminate the
effect of small periodic points [52], N k-dimensional chaotic variables can be generated as

zi+1 =

{
zi/0.5 + rand(0, 1)× 1

N , 0 ≤ zi ≤ 0.5
(1− zi)/0.5 + rand(0, 1)× 1

N , 0.5 < zi ≤ 1
(20)

where N is the number of sparrows and rand (0, 1) is a random number uniformly dis-
tributed in the range [0, 1].

Step 3: Map the chaotic variables to the solution space so as to achieve the population
initialization using the inverse mapping of the generated chaotic variables, which is

Xk = Lk + (Hk − Lk) · zk (21)

where Lk and Hk are the lower and upper bounds of the values of the individual sparrow
position, respectively.

4.3. Chaotic Quantum Sparrow Search Algorithm

Combing the above improvement strategies with SSA, the CQSSA algorithm is pro-
posed. The basic idea is as follows. Firstly, the Tent chaotic mapping is used for initialization
to generate a more diverse sparrow population to improve the iteration efficiency and
enhance the global search capability. Secondly, the Gaussian variation is performed to
produce more types of individuals and thus increase the population diversity if the indi-
vidual optimal solution is smaller than the individual average optimal solution. Moreover,
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the quantum behavior is employed, which can search throughout the solution space and
reduce the probability of getting trapped in the local optimum.

The processing steps are as follows:
Step 1: Initialize the number of iterations itermax, the number of sparrows in the

population N and the dimension of the solution space D and determine the upper bounds
U and lower bounds L of the parameters.

Step 2: Use the Tent chaos mapping to generate a chaotic sequence and map them
to the solution space using an inverse mapping, and then initialize the positions of the
sparrow population by (20) and (21).

Step 3: According to the cell model and the objective function (9), calculate the fitness
values of sparrows Fitp and compare them with the individual optimal position Xp, global
optimal position Xbest, global worst position Xworst as well as the optimal fitness value Fitbest.
Then, rank the sparrows according to the fitness value to get better and worse positions
among the sparrows.

Step 4: Regard the top 20% of the ranked sparrows as producers. Use (11) to update
their positions.

Step 5: Take sparrows other than the producers as followers. Moreover, use (12) to
update the positions.

Step 6: Select 20% of sparrows randomly as guard sparrows, whose positions are
updated by (13).

Step 7: Calculate the average fitness value of the population FitAve and compare it
with the optimal individual fitness value Fitp.

If Fitp is less than FitAve, regard the individual within the population and update
its position to enhance the population diversity by using Gaussian variation. Gaussian
variation applies a random number that obeys a Gaussian distribution to perturb the
original position. The Gaussian variation equation is shown as follows:

XGaussian = X · (1 + N(m, σ2)) (22)

where XGaussian is the position after Gaussian variation, X is the original position and
N(m, σ2) is a Gaussian distributed random variable.

If Fitp is greater than FitAve, regard the individual as far away from the community and
use the quantum behavior by (19), which draws the individual towards a certain position
between the individual optimal and global optimal positions.

Then, compare the updated position with the original position and select the best
individual for the next iteration.

Step 8: After completing an iteration, calculate the fitness values and update the
optimal position Xp, global optimal position Xbest, global worst position Xworst and global
optimal fitness value Fitbest of the sparrow individual.

Step 9: Determine whether the current number of iterations reaches the maximum
number of iterations. If so, the algorithm ends and the output result is returned; otherwise,
return to Step 3.

The algorithmic flow of the CQSSA algorithm is shown in Figure 2.

4.4. Simulation and Verification

Six benchmark test functions including unimodal and multimodal functions are used
to verify the effectiveness of CQSSA by comparing with PSO, GA, GWO, DOA and SSA.
This study uses an Intel®Core™i5 processor and MATLAB 2018a for algorithm verification
on Windows 10. The selected test functions are shown in Table 1.
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Table 1. Test Function (Dim = 30).

Name Function Dim Initial Range Fmin

Quaritic F1 =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Schwefe l2.26 F2 =
n
∑

i=1
−xi sin(

√
|xi |) 30 [−500, 500] −418.9829 × dim

Rosenbrock F3 =
n−1
∑

i=1
[100(xi+1 − xi

2)
2
+ (xi − 1)2] 30 [−30, 30] 0

Griwank F4 = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos( xi√
i
) + 1 30 [−600, 600] 0

Ackley
F5 = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )− exp
(

1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

30 [−32, 32] 0

Penalized1

F6 = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi + 1)] +(yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

30 [−50, 50] 0

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m xi > a
0 −a < xi < a

k(−xi − a)m xi < −a

F1 and F3 are unimodal functions which can reflect the convergence and exploration
abilities of the algorithm. F2, F4, F5 and F6 are multimodal functions which have multiple
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local extreme points which can reflect the local search and global search capabilities of
the algorithm.

To ensure the verification accuracy, six algorithms are implemented independently
30 times on each function. The population size is 100. For the PSO algorithm, the learning
factors and the inertia coefficient are set as c1 = c2 = 1.49618 and w = 0.7298. For the GA
algorithm, the genes are encoded in binary and the roulette method is used to select the
genes that enter the next generation. The solution of each dimension is represented by
6 genes, the chromosome length is 6 × Dim, and the mutation and crossover probabilities
are set to 0.05 and 0.5, respectively. For GWO, the weight of the location distance of the
wolf pack decreases linearly and r1 and r2 are random vectors within [0, 1]. For DOA, β1 is
a scaling factor that can change the trajectory of the dingoes and it is a random number
uniformly distributed over [−2, 2]; β2 is a random number uniformly generated in the
interval [−1, 1]. For SSA, the proportions of producers and guards are both 20%. For
CQSSA, the maximum and minimum quantum contraction expansion coefficients are 1.0
and 0.5, respectively. The performance of the six different algorithms under each test
function is shown in Table 2.

Table 2. The simulation results of the six algorithms on different test functions.

Function PSO GA GWO DOA SSA CQSSA

F1 Best 1.6792 × 10−1 8.0814 × 10−5 6.2782 × 10−5 4.7453 × 10−6 9.2096 × 10−6 4.2640 × 10−6

Ave 7.1141 × 10−1 1.3028 × 10−3 4.8361 × 10−4 1.0664 × 10−4 8.1352 × 10−5 7.5527 × 10−5

Std 3.0420 × 10−1 1.3417 × 10−3 6.0031 × 10−4 1.3815 × 10−4 7.6052 × 10−5 5.3268 × 10−5

F2 Best −9.29 × 103 −1.25 × 104 −1.25 × 104 −8.39 × 103 −9.61 × 103 −1.04 × 104

Ave −7.31 × 103 −1.24 × 104 −1.19 × 104 −6.53 × 103 −8.67 × 103 −9.47 × 103

Std 8.78 × 102 2.64 × 102 7.71 × 102 9.58 × 102 5.08 × 102 4.65 × 102

F3 Best 1.4081 × 102 3.6877 × 102 2.5251 × 101 2.8700 × 101 2.4401 × 10−10 9.1537 × 10−11

Ave 6.0121 × 102 1.3177 × 103 2.5889 × 101 2.8829 × 101 4.3553 × 10−6 5.9915 × 10−7

Std 4.3758 × 102 3.0390 × 103 1.8254 × 10−1 4.5647 × 10−2 1.7396 × 10−5 1.5278 × 10−6

F4 Best 6.3826 × 10−1 1.6803 × 100 0.0000 0.0000 0.0000 0.0000
Ave 1.1170 × 100 1.7286 × 100 2.1608 × 10−3 0.0000 0.0000 0.0000
Std 1.4760 × 10−1 2.0729 × 10−1 5.6434 × 10−3 0.0000 0.0000 0.0000

F5 Best 3.9496 × 100 4.2819 × 100 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16

Ave 5.3482 × 100 4.4290 × 100 3.9672 × 10−15 1.4803 × 10−15 8.8818 × 10−16 8.8818 × 10−16

Std 1.0122 × 100 3.3094 × 10−1 2.0298 × 10−15 1.3467 × 10−15 0.0000 0.0000
F6 Best 1.3308 × 100 5.3099 × 10−1 1.9654 × 10−5 4.4535 × 10−2 7.1302 × 10−19 1.5705 × 10−32

Ave 6.3947 × 100 1.3249 × 100 2.7880 × 10−4 1.9846 × 10−1 2.7284 × 10−14 1.5705 × 10−32

Std 3.6420 × 100 1.2239 × 100 1.2421 × 10−3 1.3124 × 10−1 5.0740 × 10−14 5.5674 × 10−48

For the unimodal function F1, PSO performs worst on this high-dimensional problem,
whereas CQSSA has significantly better accuracy and stability than the other five algo-
rithms. For function F2, GA has the best optimization result, followed by CQSSA, and
they both significantly outperform the other algorithms. For function F3, CQSSA has the
best optimization result. Furthermore, it can be clearly seen that the optimization result
of CQSSA is significantly superior to the other algorithms for the multimodal functions
F4–F6. It indicates that the proposed CQSSA algorithm performs better in convergence and
stability probably due to the good capability of escaping from the local extreme.

The convergence characteristic curves of the six algorithms under the six benchmark
functions are shown in Figure 3. The convergence criterion is the minimum number of
iterations to reach the required accuracy or the highest convergence accuracy under the
fixed iteration number. Overall, the CQSSA algorithm converges faster and has higher
convergence accuracy. Specifically, CQSSA achieves the best value in about 200 iterations
in F1, which is much smaller than the other algorithms. For F2, CQSSA also converges to
a good fitness value, second only to the GA algorithm. For F3 and F4, the convergence
results of PSO, GA, GWO and DOA are comparable and both worse than SSA and CQSSA.
Moreover, CQSSA has faster convergence speed and higher convergence accuracy than SSA.
For F5, both SSA and CQSSA achieve the best convergence accuracy and GWO and DOA
are slightly inferior, while PSO and GA perform the worst. For F6, it can be seen from the
convergence curve that although GWO and DOA have the best fitness values at the 200th
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iteration, they fall into local optimal solutions after that. However, CQSSA finally achieves
the best convergence accuracy. Different than F3 and F6, the convergence processes of the
CQSSA and SSA are almost the same under F4 and F5. The best convergence results are
observed for both. In general, compared to SSA, CQSSA uses an improved strategy to
make a more intelligent search and jump out of the local optimal solutions in time. This
allows CQSSA to exhibit good convergence accuracy on both unimodal and multimodal
test functions in high dimensions.
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5. Battery Model Parameter Identification Based on Improved Sparrow Search
Optimization Algorithm
5.1. Experiment Platform

The ICR18650 lithium-ion battery has been widely used in grid power storge, electric
vehicles and consumer electronics. Therefore, it is used to perform the simulated discharge
tests on a battery tester (NEWARE CT-4008T-5V6A). The battery specification is shown in
Table 3. Three different discharge tests, including the HPPC test [53], pulsed discharge test
(PULSE) and UDDS test, are performed. By using the test data under the three different
tests, the performance of CQSSA is verified in the parameter identification of the cell model.

Table 3. The battery specification description.

Battery Type Nominal Capacity Nominal Voltage Upper Cut-Off Voltage Lower Cut-Off Voltage

ICR18650-26F 2600 mAh 3.7 V 4.2 V 2.75 V

In one cycle of the HPPC test, the battery is firstly charged for 20 s and rested for
80 s, then discharged for 20 s and rested for 80 s and finally stood for 1 h after 10% SOC
is consumed. The pulse discharge test is to conduct a discharge for 10 min with a current
of 0.5 C and rest for 20 min, repeating this cycle until the cut-off voltage of the discharge
is reached.

The UDDS test is a test procedure used by the U.S. Environmental Protection Agency
(EPA) in 1972 to certify vehicle emissions. It is commonly referred to as the “urban test” in
terms of application scenarios since it usually represents the urban driving conditions for
light-duty vehicles. Moreover, it includes a wide range of driving behaviors with varying
intensities. The current in this study is scaled down according to the tolerance of the battery,
as shown in Figure 4.
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5.2. Experimental Results

Firstly, six different optimization algorithms (CQSSA, SSA, DOA, GWO, PSO and GA)
are respectively utilized to identify the parameters of the FOM model based on the HPPC
test data. Then, the identified parameters are employed to obtain the estimated terminal
voltages in the PULSE and UDDS tests. By comparing the errors between the estimated
and measured terminal voltages, the effectiveness and superiority of the CQSSA algorithm
for cell model parameter identification are verified.

The value ranges of the identified model parameters are shown in Table 4. The
parameters of the PSO, GA, GWO, DOA, SSA and CQSSA algorithms have been set in
accordance with Section 4.4.
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Table 4. The value range of model parameters.

R0/Ω R1/Ω R2/Ω C1/F C2/F n1 n2

Minimum 0.01 0.001 0.001 800 10,000 0 0
Maximum 0.5 0.05 0.05 50,000 500,000 1 1

5.2.1. Parameter Identification Results under HPPC Test

Table 5 shows the battery parameters identified by six different algorithms under the
HPPC test. Table 6 shows the estimation errors of the terminal voltage with six different
algorithms. The MAE, RMSE, MaAE and SSE are used to reflect the accuracy of the cell
model. Clearly, in terms of SSE, MAE, RMSE and MaAE, CQSSA has the best accuracy
while GA has the worst accuracy. Compared with SSA, CQSSA has 4.3%, 5.9% and 11.5%
improvement in MAE and MaAE, respectively. Figure 5 shows the graphical comparison
of terminal voltages. It can be seen that the CQSSA has the smallest error, which is
consistent with the above analysis. In addition, we observed that the maximum absolute
error usually occurs when the input current has a sudden change. Therefore, the smallest
MAE and MaAE states that the model parameters identified by CQSSA not only perform
optimally in the average error but also maintain a smaller error in the current loading and
unloading stage.

Table 5. Model parameter identification results of six optimization algorithms under HPPC test.

PSO GA GWO DOA SSA CQSSA

R0/Ω 0.1516 0.1501 0.1486 0.1508 0.1493 0.1470
R1/Ω 0.0493 0.0329 0.0321 0.0353 0.0487 0.0316
R2/Ω 0.0423 0.0298 0.0201 0.0381 0.0479 0.0207
C1/F 7341.34 6933.34 5603.23 8299.90 5085.70 3542.91
C2/F 10,040.81 367,778.78 315,286.39 121,562.45 10,040.81 465,848.78

n1 0.9196 0.9714 0.9470 0.9397 0.7520 0.9201
n2 0.9861 0.4571 0.6952 0.9397 0.9134 0.9959

Table 6. Terminal voltage errors of six different algorithms under HPPC test.

PSO GA GWO DOA SSA CQSSA

SSE/V2 0.4022 0.5378 0.4337 0.4359 0.4138 0.3666
MAE/mV 2.5611 2.8209 2.7038 2.6342 2.6521 2.5355
RMSE/mV 3.5573 4.1136 3.6943 3.7037 3.6085 3.3966
MaAE/mV 21.9365 19.5735 17.8127 20.6484 18.9053 16.7271
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Figure 6 shows the iterative processes of the six algorithms. Obviously, the fitness
values (SSE) all gradually converge. However, CQSSA converges to under 0.4 V2 with the
least number of iterations. Furthermore, the final fitness value is also the smallest, revealing
the highest convergence accuracy.
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5.2.2. Model Verification under PULSE Test

The experimental data in the pulsed discharge test are used to verify the model
accuracy. Furthermore, the terminal voltages are obtained using the identified parameters
given in Table 5. Figure 7 presents the comparison of the estimated and measured terminal
voltages. Moreover, the errors of terminal voltage with six different groups of FOM
parameters under the PULSE test are displayed in Table 7. It is clear that the MAE, RMSE
and MaAE with the battery parameters identified by CQSSA are 3.3242 mV, 4.3880 mV and
17.6197 mV, respectively, which are all the smallest among the six algorithms. Moreover,
although the FOM parameters obtained by PSO are not far behind CQSSA in MAE and
RMSE, they have the worst performance in terms of MaAE. These findings reveal the
superior performance of the proposed algorithm in the total error.
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Table 7. Terminal voltage errors with six different groups of FOM parameters under PULSE test.

PSO GA GWO DOA SSA CQSSA

MAE/mV 3.5833 4.1330 4.2167 3.9922 4.0579 3.3242
RMSE/mV 4.7421 5.5249 5.1398 5.1015 4.9662 4.3880
MaAE/mV 22.9509 19.9808 17.9134 20.8257 18.8050 17.6197
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5.2.3. Model Verification under UDDS Test

Table 8 shows the terminal voltage errors with six different groups of FOM parameters
under the UDDS test. It is clear that the CQSSA outperforms the other algorithms in terms
of MAE and RMSE of the terminal voltage although both GWO and DOA have smaller
MaAE than CQSSA. In addition, the MAE, RMSE and MaAE of the proposed algorithm are
larger than these in the HPPC test and PULSE test. This phenomenon can also be seen in
the estimated and actual terminal voltages shown in Figure 8. The overall terminal voltage
errors fluctuate between 60 mV and 100 mV due to the large current variation during the
discharge process in UDDS test.

Table 8. Terminal voltage errors with six different groups of FOM parameters under UDDS test.

PSO GA GWO DOA SSA CQSSA

MAE/V 6.8785 6.7375 7.8769 7.4498 7.8005 6.5561
RMSE/V 9.3589 9.3657 10.2224 9.8503 10.1413 9.0941

MaAE/mV 92.0834 93.0041 90.0701 90.7653 91.7841 91.5958

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 22 
 

5.2.3. Model Verification under UDDS Test 
Table 8 shows the terminal voltage errors with six different groups of FOM parame-

ters under the UDDS test. It is clear that the CQSSA outperforms the other algorithms in 
terms of MAE and RMSE of the terminal voltage although both GWO and DOA have 
smaller MaAE than CQSSA. In addition, the MAE, RMSE and MaAE of the proposed al-
gorithm are larger than these in the HPPC test and PULSE test. This phenomenon can also 
be seen in the estimated and actual terminal voltages shown in Figure 8. The overall ter-
minal voltage errors fluctuate between 60 mV and 100 mV due to the large current varia-
tion during the discharge process in UDDS test. 

Table 8. Terminal voltage errors with six different groups of FOM parameters under UDDS test. 

 PSO GA GWO DOA SSA CQSSA 
MAE/V 6.8785 6.7375 7.8769 7.4498 7.8005 6.5561 
RMSE/V 9.3589 9.3657 10.2224 9.8503 10.1413 9.0941 

MaAE/mV 92.0834 93.0041 90.0701 90.7653 91.7841 91.5958 
 

  

(a) (b) 

Figure 8. The comparison of estimated and measured voltages under UDDS test. (a) The compari-
son of measured and estimated terminal voltages. (b) The comparison of terminal voltage errors of 
six algorithms.  

5.2.4. Discussion 
From Table 6, we can see that using the model parameters identified by the proposed 

CQSSA algorithm can achieve the smallest MAE, RMSE and MaAE under the HPPC test. 
It implies that the battery model identified by CQSSA agrees better with the actual battery. 
Furthermore, it can be seen that the parameters obtained by CQSSA also perform best 
under the pulsed discharge test and UDDS test from Tables 7 and 8. It shows the CQSSA-
based battery model has better adaptability to different operating conditions. 

For the convergence characteristics of the algorithms shown in Figure 6, CQSSA has 
a better solution at the beginning of the iteration since it uses a Tent chaotic mapping to 
improve population diversity. Furthermore, the improvements of Gaussian variation 
mixed with quantum behavior enables it to overstep the local optima and obtain better 
convergence accuracy than PSO, GA, GWO, DOA and SSA. 

To sum up, the advantages and disadvantages of CQSSA algorithm can be analyzed 
by the performance of CQSSA and other five algorithms in benchmark functions and prac-
tical applications. The main advantage of the proposed algorithm is the high optimization 
accuracy and the ability of jump out of local optimal solutions due to combination with 

Figure 8. The comparison of estimated and measured voltages under UDDS test. (a) The comparison
of measured and estimated terminal voltages. (b) The comparison of terminal voltage errors of
six algorithms.

5.2.4. Discussion

From Table 6, we can see that using the model parameters identified by the proposed
CQSSA algorithm can achieve the smallest MAE, RMSE and MaAE under the HPPC test. It
implies that the battery model identified by CQSSA agrees better with the actual battery.
Furthermore, it can be seen that the parameters obtained by CQSSA also perform best under
the pulsed discharge test and UDDS test from Tables 7 and 8. It shows the CQSSA-based
battery model has better adaptability to different operating conditions.

For the convergence characteristics of the algorithms shown in Figure 6, CQSSA has
a better solution at the beginning of the iteration since it uses a Tent chaotic mapping
to improve population diversity. Furthermore, the improvements of Gaussian variation
mixed with quantum behavior enables it to overstep the local optima and obtain better
convergence accuracy than PSO, GA, GWO, DOA and SSA.

To sum up, the advantages and disadvantages of CQSSA algorithm can be analyzed by
the performance of CQSSA and other five algorithms in benchmark functions and practical
applications. The main advantage of the proposed algorithm is the high optimization
accuracy and the ability of jump out of local optimal solutions due to combination with the
Tent chaotic mapping and quantum behavior strategy. Especially when solving problems
with multiple local optimal solutions, the superiority of the CQSSA algorithm becomes more
prominent. Moreover, the proposed algorithm has a clear structure and few parameters. It
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is easy to apply in practical engineering to solve different optimization problems. However,
the complexity of the algorithm is relatively higher than that of the other algorithms.

6. Conclusions

In this study, a novel chaotic quantum sparrow search algorithm (CQSSA) is proposed
which combines Tent chaotic mapping, quantum strategy and Gaussian variation to im-
prove the abilities of global search and escaping from local optimal solution. Six benchmark
test functions with single peaks and multiple peaks are selected to validate the great con-
vergence performance of the CQSSA by comparing with PSO, GA, GWO, DOA and SSA.
Then, the six algorithms are applied to the parameter identification of the second-order
FOM model of the lithium-ion battery based on the HPPC experimental data. Finally, these
parameters are used in the pulsed discharge test and UDDS test to verify the adaptability
of the CQSSA algorithm. Simulation results indicate that CQSSA can identify the model
parameters much more accurately than the other three algorithms based on the HPPC
test. Furthermore, the parameters obtained by CQSSA also perform best under the pulsed
discharge test and UDDS test, illustrating the good adaptability of the proposed algorithm
under different operating conditions. This study provides an improved method for battery
model parameter identification, which is of significance for ensuring the precision of the
cell model and the accurate SOC and SOH estimation.
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Abbreviations

SOC the state of charge
ECM equivalent circuit model
LSTM-RNN recurrent neural network with long short-term memory
RC resistor-capacitor
FOM fractional-order model
IOM integer order model
W Warburg component
HPPC hybrid pulse power characterization
PULSE pulsed discharge test
UDDS urban dynamometer driving schedule
RLS recursive least squares
FFRLS recursive least squares with forgetting factors
EKF extended Kalman filter
UAS universal adaptive stabilizer
GA genetic algorithm
PSO particle swarm optimization algorithm
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GWO grey wolf optimization algorithm
DOA dingo optimization algorithm
SSA sparrow search algorithm
CQSSA chaotic quantum sparrow search algorithm
SSE sum of squared errors
MAE mean absolute error
RMSE root mean square error
MaAE maximum absolute error
GL Grünwald–Letnikov definition
Uoc(SOC) the relationship between the open-circuit voltage and the SOC
A system matrix
B control matrix
C observation matrix
D transition matrix
F(x) objective function

Parameters

Uoc open-circuit voltage
R0 ohmic internal resistance
R1, R2 polarization resistance
CPEx Cx constant phase element
U1 U2 voltages of the loops
UT the terminal voltage
D* fractional calculus operator
Ts the step size
θ the fractional order
Lm memory length
m n the fractional order of two CPEs
k discrete moments
λ coulombic efficiency
Qn nominal capacity of the battery
x the state vector
ϕi generalized binomial coefficient
Ve estimated terminal voltage
Vr actual measured terminal voltage
T total number of voltage sampling points
X the positions of sparrow population
N sparrow population size
D dimension of the solution space
ALV alert value
ST safety threshold
Xi,j

t the position of the jth dimension for the ith sparrow in the tth iteration
Xworst

t global worst position
Xbest

t global best position
XP

t the best position of the producer
A a matrix of size 1 × D
β, K step control parameters of the direction
ε a small positive constant used to avoid dividing by zero
fi fitness value of sparrow i
fg the current optimal fitness value
fw the current worst fitness value
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pi,j
t the center of the identified potential well

Li,j
t characteristic length of the Delta potential well

ui,j
t random variable uniformly distributed on [0, 1]

α, αmax, αmin contraction-expansion coefficient, max = 1, min = 0.5
mbestj

t the average best position of the individual
pbestj

t the optimal position of the individual
gbestj

t the global optimal position
ϕt

j a random variable between [0, 1]
zk chaos initialization value
Lk, Hk the lower and upper bounds
itermax the maximum number of iterations
Fitp the optimal individual fitness value
FitAve the average fitness value of the population
XGaussian the position of sparrow after Gaussian variation
Fitbest the global optimal fitness value
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