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Abstract: This research paper proposes an analytical approach for evaluating electromagnetic scatter-
ing from a planar complex object made of a perfect electric conductor, which hosts a double negative
metamaterial half-layer on the lit face. The method is based on the physical optics approximation of
equivalent sources and works in the framework of the uniform geometrical theory of diffracion, so
that the scattered field in the surrounding free space is obtained by adding the reflected contribution
and the diffracted one, which is originated by the surface break. The effectiveness of the proposed
approach is tested and proved by using a full-wave numerical tool to generate reference values.
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1. Introduction

Artificial engineered materials propose new solutions in designing and manufacturing
structures with given peculiarities at working frequencies and allow one to overcome
the intrinsic limitations of standard materials. Negative real parts of permittivity and
permeability, as well as the negative refraction index, define very important artificial ma-
terials in this context. They are known as double-negative metamaterials (DNG MTMs),
negative index materials (NIMs), left-handed materials (LHMs), or backward (BW) media
(information about characteristics and applications, as well as additional references, can be
found in [1–6]). The above acronyms are associated with the unconventional characteristics,
e.g., the mutual position of the electric field, magnetic field and wave vector of a propa-
gating plane wave describe LHMs, and BW is related to the backward propagation with
the wave vector antiparallel to the Poynting one. The acronym DNG MTM will be used
from this point on to denote this class of artificial materials. From the viewpoint of their
fabrication, they can be manufactured by implanting small inclusions in host structures or
by adding inhomogeneity to host surfaces [1–6].

Studies, as well as communication and space applications, can take benefit from tech-
niques for the evaluation of the electromagnetic scattering from composite structure hosting
DNG MTMs. The uniform asymptotic physical optics (UAPO) approach suggests alterna-
tive analytical solutions to study scattering problems [7–14]. It has been already applied
to DNG MTM structures [7–9], and its usefulness has been proved by comparisons with
data resulting from well-assessed numerical tools. The approach implements convenient
approximations and asymptotic techniques to extract the high-frequency diffraction term
from the radiation integral, including electric and magnetic currents as equivalent surface
sources. The UAPO diffracted field is always expressed in closed form without requiring
the solution of differential/integral equations or the computation of special functions, save
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for the transition function of the uniform geometrical theory of diffraction (UTD) [15]. The
electromagnetic field in the region surrounding the scattering structure is then determined
by adding the UAPO diffraction contribution to the geometrical optics (GO) one.

This article refers to the exploitation of the UAPO method to evaluate the diffraction
of plane waves from the rectilinear discontinuity of a DNG MTM layer hosted by a planar
perfect electric conductor (PEC) support (see Figure 1). As is well known, a PEC is an
ideal medium typically adopted to approximate the electromagnetic characteristics of a
metal at high frequencies, where the UAPO approach works. Accounting for this, such a
particular composite structure can be useful, for example, to modify the scattering response
of a metallic body as requested by a smart radio environment. Therefore, the availability
of an efficient analytical approach to be used in the design process can be of interest for
electromagnetic and communication engineers from the application point of view as well as
for researchers and scientists from the theoretical point of view. Analytical and numerical
preliminary results were presented in [16], where the ability of the UAPO diffracted field to
compensate for the jump of the GO field at the reflection shadow boundary in the upper
half-space was demonstrated. The equivalent transmission line (ETL) models were applied
to the evaluation of the reflection coefficients associated to the DNG MTM external surface.
This step is important not only for determining the GO response of the composite structure,
but also for formulating the electric and magnetic PO equivalent surface currents in terms
of the incident electric field. Note that the PEC support is not present in the DNG MTM
structures considered in [7,8] and, therefore, the evaluation of reflection and transmission
coefficients needs a different method.
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Figure 1. Useful reference systems for the scattering problem.

The accuracy of the resulting data was not tested in [16], so that an analytical and/or
numerical validation is required to complete the study. Accordingly, the importance of
this article relies on the numerical validation of the corresponding UAPO solution by
means of comparisons with data obtained from the radio frequency (RF) unit of Comsol
Multiphysics® (Version 5.6).

2. UAPO Solution for the Diffracted Field

A plane wave propagates in the free space with propagation constant k0 and im-
pinges at the oblique incidence with respect to the discontinuity of a DNG MTM half-
layer hosted by the upper surface of an infinite PEC support (see Figure 1). Permittivity
ε = −ε0(ε

′ + jε′′) = ε0εr , permeability µ = −µ0(µ
′ + jµ′′) = µ0µr (ε′, ε′′, µ′, µ′′ are posi-

tive numbers and ε0, µ0 are associated to the free space), and thickness d characterize the
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DNG MTM half-layer. The unit vector ŝ′ = − sin β′ cos φ′ x̂− sin β′ sin φ′ŷ + cos β′ ẑ defines
the incidence direction.

The UAPO approach provides the following expression for the electric diffracted
field at the observation point P(s, β, φ) on Keller’s cone (s denotes the distance from
the diffraction point Q to P, β = β′, and φ describes the angular path of P on the half-
circumference having center on the discontinuity and radius ρ = s sin β) [16]:(

Ed
β

Ed
φ

)
=

[
Id
MTM M

= MTM
+ Id

PEC M
= PEC

](Ei
β′

Ei
φ′

)
= D

=

(
Ei

β′

Ei
φ′

)
exp(−jk0s)√

s
(1)

The diffraction matrix D
=

is formed by the contributions associated to the DNG MTM
half-layer and the PEC support. Each diffraction contribution consists of a scalar function
and a matrix so given:

Id
MTM =

exp(−jπ/4)
2
√

2πk0

F
(

2k0s sin2 β′ cos2
(

φ+φ′

2

))
sin2 β′(cos φ + cos φ′)

exp(−jk0s)√
s

(2)

Id
PEC = −exp(−jπ/4)

2
√

2πk0

F
(

2k0s sin2 β′ cos2
(
(π−φ)+(π−φ′)

2

))
sin2 β′(cos φ + cos φ′)

exp(−jk0s)√
s

(3)

M
= MTM

= A
=1

[
A
=2

A
=4

A
=5

+ A
=3

A
=4

A
=6

]
A
=7

(4)

M
= PEC

= A
=1

[
B
=2

B
=4

B
=5

]
A
=7

(5)

The UTD transition function F(·) [15] is employed in (2) and (3), whereas the matrices
in (4) and (5) are so determined:

A
=1

=

(
cos β′ cos φ cos β′ sin φ − sin β′

− sin φ cos φ 0

)
(6)

A
=2

=

 1− sin2 β′ cos2 φ − sin β′ cos β′ cos φ

− sin2 β′ sin φ cos φ − sin β′ cos β′ sin φ

− sin β′ cos β′ cos φ sin2 β′

 (7)

A
=3

=

 0 − sin β′ sin φ
− cos β′ sin β′ cos φ

sin β′ sin φ 0

 (8)

A
=4

=
1√

1− sin2 β′ sin2 φ′

(
− cos β′ − sin β′ cos φ′

− sin β′ cos φ′ cos β′

)
(9)

A
=5

=

(
0 (1− R⊥) sin β′ sin φ′

1 + R‖ 0

)
(10)

A
=6

=

(
(1− R‖) sin β′ sin φ′ 0

0 −1− R⊥

)
(11)

A
=7

=
1√

1− sin2 β′ sin2 φ′

(
cos β′ sin φ′ cos φ′

− cos φ′ cos β′ sin φ′

)
(12)

B
=2
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 1− sin2 β′ cos2 φ − sin2 β′ sin φ cos φ − cos β′ sin β′ cos φ

− sin2 β′ sin φ cos φ 1− sin2 β′ sin2 φ − cos β′ sin β′ sin φ
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B
=4

=
1√

1− sin2 β′ sin2 φ′

 − cos β′ − sin β′ cos φ′

0 0
− sin β′ cos φ′ cos β′

 (14)

B
=5

=

(
0 2 sin β′ sin φ′

2 0

)
(15)

The matrices A
=5

and A
=6

account for the expressions of the electric and magnetic PO

equivalent surface currents on the lit surface of the DNG MTM layer at y = 0, x > 0 and
contain the reflection coefficients for parallel (R‖) and perpendicular (R⊥) polarizations.
These last ones are evaluated according to the corresponding ETL model [16]. The matrix
B
=5

is equal to A
=5

and accounts for R‖ = 1, R⊥ = −1 at the PEC surface.

3. GO Field

According to (1), the UAPO diffracted field is UTD-like and expressed using opportune
ray-fixed co-ordinate systems. This last choice also imposes the evaluation of the GO field
in the same co-ordinate systems in order to obtain the total field at P by adding GO and
UAPO contributions. The following formulations adopt proper transformation matrices to
this end.

As regards the incident electric field, it results as(
Ei

β

Ei
φ

)
= T

=

i

(
Ei

β′

Ei
φ′

)
exp

(
−jk0s(cos2 β′ − sin2 β′ cos(φ− φ′))

)
(16)

where

T
=

i =

(
cos2 β′ cos(φ− φ′)− sin2 β′ cos β′ sin(φ− φ′)
− cos β′ sin(φ− φ′) cos(φ− φ′)

)
(17)

Accounting for the knowledge of R‖ and R⊥, the calculation of the reflected electric
field requires two transformation matrices, i.e.,(

Er
β

Er
φ

)
= T

=

r

(
Ei

β′

Ei
φ′

)
exp

(
−jk0s(cos2 β′ − sin2 β′ cos(φ + φ′))

)
(18)

with

T
=

r =
1√

1− sin2 β′ sin2 φ′
T
=

(
R‖ 0
0 R⊥

)
A
=7

(19)

and

T
=

=

(
cos β′

{
sin φ + sin2 β′ sin φ′[1 + cos(φ + φ′)]

}
sin2 β′ cos φ′ − cos2 β′ cos φ

cos φ− sin2 β′ sin φ′ sin(φ + φ′) cos β′ sin φ

)
(20)

4. Tests

The ability of the UAPO diffracted field to compensate for the GO gap at the reflection
boundary in the upper half-space was proved in [16]. Accounting for the numerical exam-
ples in [16] as preliminary results, Comsol Multiphysics® data are used in this section to test
the effectiveness of the above formulations for the evaluation of GO and diffracted fields.
The incidence direction is normal to the discontinuity (β′ = 90◦) to save computational
resources, and the observation domain is a half-circumference with center at the discontinu-
ity, and ρ = 5λ0 (λ0 is the free-space wavelength). Save for Figure 6, the following figures
contain two plots: (a) amplitude of the total field component evaluated by means of the
UAPO-based approach and compared with the corresponding Comsol Multiphysics® data;
and (b) comparison between the resultant phase values.
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Figures 2–6 refer to Case I, which is related to a DNG MTM layer characterized by
εr = −(6.5+ j0.0013), µr = −1, and d = 0.05λ0, whereas Figures 7 and 8 show comparisons
concerning Case II, which is identified by a DNG MTM layer with εr = −(2.5 + j0.002),
µr = −(3 + j0.001), and the same thickness of Case I. Case II is presented to assess the
approach reliability also when considering magnetic losses.
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β′ = 1, Ei

φ′ = 0.
(a) Amplitude of the total field β–component. (b) Phase of the total field β–component.
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φ′ = 1.
(a) Amplitude of the total field φ–component. (b) Phase of the total field φ–component.
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Figure 4. Case I: comparisons with Comsol Multiphysics® data when φ′ = 135◦, Ei
β′ = 1, Ei

φ′ = 0.
(a) Amplitude of the total field β–component. (b) Phase of the total field β–component.
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Figure 5. Case I: comparisons with Comsol Multiphysics® data when φ′ = 135◦, Ei
β′ = 0, Ei

φ′ = 1.
(a) Amplitude of the total field φ–component. (b) Phase of the total field φ–component.
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Figure 6. Case I: comparisons with Comsol Multiphysics® data when φ′ = 10◦. (a) Amplitude of the
total field β–component when Ei

β′ = 1, Ei
φ′ = 0. (b) Amplitude of the total field φ–component when

Ei
β′ = 0, Ei

φ′ = 1.
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Figure 7. Case II: comparisons with Comsol Multiphysics® data when φ′ = 60◦, Ei
β′ = 1, Ei

φ′ = 0.
(a) Amplitude of the total field β–component. (b) Phase of the total field β–component.
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Figure 8. Case II: comparisons with Comsol Multiphysics® data when φ′ = 135◦, Ei
β′ = 1, Ei

φ′ = 0.
(a) Amplitude of the total field β–component. (b) Phase of the total field β–component.

Figures 2 and 3 are relevant to β− and φ− components, respectively, when the inci-
dence direction is in the first quadrant (φ′ = 60◦). Since incident, reflected and diffracted
fields cooperate to obtain the total field, large oscillations can be observed in the whole
observation range, thus producing severe testbeds for the proposed methodology. The
interested reader can surely appreciate the excellent agreements in drawing the lobes of
the amplitude patterns as well as jumps and arcs of the phase behaviors. Because there
is no symmetry of the structure with respect to the yz-plane, it is important to test the
performance also when the incidence direction is in the second quadrant. Figures 4 and 5
are relevant to φ′ = 135◦ and, despite the fast fluctuations, the data fit together very well,
too. On the contrary, the comparisons in Figure 6, which shows the magnitude of β− and
φ− components when the incidence direction is near the grazing condition (φ′ = 10◦),
are unsatisfactory. According to [9], this result is not surprising since the UAPO approach
neglects the surface waves and accounts for the PO limitations.

UAPO performance is well assessed also when considering a DNG MTM layer with
electric and magnetic losses as in Case II. Figures 7 and 8 show very good agreements in
amplitude and phase of the β− component when φ′ = 60◦ and φ′ = 135◦, respectively,
thus confirming the reliability of the proposed method for incidence directions not close to
the grazing one. The same comments hold for the φ− component.

5. Discussion and Concluding Remarks

Comsol Multiphysics® data were used as reference values to validate the UAPO
approach for solving the electromagnetic scattering from a DNG MTM half-layer hosted by
a planar PEC support. Although severe testbeds were considered to establish the reliability
of the proposed method, very good results have been obtained when the incidence direction
was far from the grazing condition, whereas inaccuracies have been detected when the
plane wave direction was close to the lit surface. Moreover, it have been proved that the
effectiveness of the UAPO approach is not affected by the permittivity and permeability
values of the DNG MTM layer. At last, it is necessary to stress that the UAPO solution
works in the UTD context as an approximate PO-based solution, which is easy to apply
and does not need solving differential/integral equations or calculating special functions,
save for the standard UTD transition function.
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