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Abstract: In recent years, engineering degree programs have become fundamental to the teaching of
robotics and incorporate many fundamental STEM concepts. Some authors have proposed different
platforms for teaching different topics related to robotics, but most of these platforms are not practical
for classroom use. In the case of teaching autonomous navigation algorithms, the absence of platforms
in classrooms limits learning because students are unable to perform practice activities or cannot
evaluate and compare different navigation algorithms. The main contribution of this study is the
implementation of a free platform for teaching autonomous-driving algorithms based on the Robot
Operating System without the use of a physical robot. The authors present a case study using
this platform as a teaching tool for instruction in two undergraduate robotic courses. Students
evaluated the platform quantitatively and qualitatively. Our study demonstrates that professors and
students can carry out different tests and compare different navigation algorithms to analyze their
performance under the same conditions in class. In addition, the proposed platform provides realistic
representations of environments and data visualizations. The results claim that the use of simulations
helps students better understand the theoretical concepts, motivates them to pay attention, and
increases their confidence.

Keywords: mobile robotics; autonomous driving; Robot Operating System (ROS); educational
robotics; educational innovation; professional education; higher education

1. Introduction

STEM is the acronym for Science, Technology, Engineering, and Mathematics. In
recent years, this educational area has grown due to the fact that STEM graduates are in
high demand in the job market. For example, in the United States, there are 26 million
jobs that require knowledge in these areas [1]. Robotics is fundamentally rooted in STEM
education. Robotics can be described as a discipline that addresses a class of mechatronic
systems called robots, capable of performing different industrial, scientific, and commercial
applications. This discipline has become a critical part of industrial mechatronic systems in
recent years. That is why professional degree programs such as mechatronics engineering,
electronic engineering, and computer engineering have become fundamental to teaching
robotics and incorporate many of the basic STEM concepts [2].

Due to constant changes in technologies and robotics in different industries, ade-
quately preparing future engineers is critical. To carry this out, teachers must develop
and implement innovative ways to teach concepts and use new technologies to optimize
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educational processes [3]. In education, when information is transmitted with the ideal
didactic tools, the knowledge acquired will be retained longer than the standard methods
typically used [4].

One innovative way of teaching robotics concepts and offering practice activities is by
using robotics platforms. However, these platforms present various challenges in terms of
accessibility, cost, and flexibility. An accessible platform is helpful for obtaining or replacing
components if necessary and aiding students in education. Likewise, the flexibility of these
educational tools allows for their adaptation to different teaching methodologies and
curricula. Finally, cost is a significant consideration. In many cases, it is not feasible for
educational institutions with many students to have invest in more than one platform
to serve the needs of numerous classes [5]. Consequently, to develop a tool to perform
simulations in different environments and evaluate various autonomous-driving navigation
algorithms in the classroom ought to be an objective.

The main objective of this work is to propose a platform for simulating autonomous
driving algorithms that helps students improve their academic performance. Using the
proposed platform, teachers and students can analyze and compare various existing navi-
gation algorithms under the same conditions in a classroom setting. The contribution is a
free platform and scenarios that teachers and students can download as an academic tool
to perform autonomous driving laboratory practices and reinforce the theoretical concepts.

The proposed platform has some advantages for teaching autonomous driving. For
example, robotics teachers will be able to focus on this topic, and students will not be
distracted by other activities such as platform design, robot design, programming, among
others. Similarly, students can carry out practical simulations and compare the results of
different navigation algorithms in real environments under the same conditions. In order
to demonstrate how teachers could use this free platform in the classroom, the authors
present a case study comparing two local route planning algorithms for three different
scenarios: a hospital, a warehouse, and a laboratory. At the end of this activity, the students
evaluated the proposed platform quantitatively and qualitatively, these evaluations were
designed to study the impact of the platform on the student’s academic performance and
to identify the improvements of its use in the class. Finally, conclusions and future work
are outlined.

1.1. Teaching Robotics

Several platforms have been developed in previous research to teach various robotics
topics and concepts. Each platform has different components, tools, and learning objec-
tives. One of the tools that teachers use most for teaching robotics is LEGO™. The main
advantages of this platform include its accessibility and the wide variety of kits, which
can be adapted to different projects. Martínez et al. developed a platform using LEGO
NXT™ to teach reinforcement learning (RL), which can address a wide variety of problems
related to robotics [6]. Likewise, Rosillo et al. developed the first platform combining three
technological tools: LEGO™ Kits, Matlab™, and Simulink™. This platform rearranges
the code in Matlab™, translates it into C++ code with Simulink™ and transfers it to the
LEGO™ robots via Wi-Fi. The authors developed a second educational robotics tool using
Matlab and ROS. This framework develops and simulates complex robots [7].

One of the most widely used physical platforms is TurtleBot [8]. The authors describe
how this platform is used in courses taught at the Katholieke Universiteit Leuven in Bel-
gium, providing an overview of the main functionalities, and suggesting improvements
to reduce student learning curves. They wrote the curriculum and reported the learn-
ing results from two courses that used the platform, which were positive according to
student feedback.

Another technological resource for teaching robotics is virtual reality (VR). VR allows
students to perform simple electronic laboratory experiments safely using relevant tools,
instruments, components, and virtual applications. Using virtual scenarios and study
materials allows students to learn by participating in a distance learning process and
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introduces other Industry 4.0 concepts such as the digital twin, Big Data, cloud computing,
IoT (Internet of Things), and cybersecurity. Another significant advantage of using VR
in teaching is in eliminating the risk of potentially harmful experimental strategies as
well as minimizing cost and time. An example is the Virtual Mechatronics Laboratory
(ViMeLa) project, developed by the Lodz University of Technology, the Ss. Cyril and
Methodius University in Skopje, the University of Tartu, and the University of Pavia, which
implemented the teaching and learning of electronics in higher education institutions [9].
Their results demonstrate that VR is of great assistance to the process of education and
facilitates the acquisition of knowledge by putting theory into practice.

In addition, there exist platforms that provide excellent content, activities, and tools for
learning robotics. One such platform is Universal Robots Academy, an open-access platform
containing a collection of exercises and activities to learn robotics and electronics, with a
focus on engineering. The activities found on this platform cover topics such as mobile
robots, industrial robotics, and even drones [10]. One of the most exciting perspectives in
teaching robotics is video games, which serve as comprehensible learning tools. Robles
and Quintero [4] developed a platform with various interactive video games that store all
the information generated by a player and then decoded, analyzed, and evaluated it using
an intelligent system. At the end of this analysis, the system displays all the statistical
information calculated during the interaction of users with the game and provides suitable
suggestions to reinforce the topics covered in the games. The platform aims to develop
high school students’ skills in mathematics; however, these platforms can teach innovative
and interactive robotics concepts dynamically.

Finally, these types of platforms allow for distance learning and are particularly
useful for situations such as the COVID-19 pandemic, which is the reason why many
schools suspended their face-to-face educational activities and began teaching online.
These platforms allow laboratory practices to be carried out and, thus, reinforce theoretical
knowledge. Practical activities can be carried out in virtual laboratories or simulations.
Technology in teaching has increased due to the pandemic. Specifically, robotics and digital
teaching platforms have been critical for students to learn various concepts and subjects.
On the other hand, incorporating these platforms into the classroom remains a challenge
due to their cost, availability, and learning curve. In addition, many of them have to be
redesigned to meet specific learning goals.

1.2. Autonomous Driving in Robotics

Autonomous driving is a method that consists of operating a vehicle without active
driver control. It involves multiple variables for the proper operation of the mobile robot
such as reading sensors, following a trajectory, maintaining a safe distance from other
vehicles or obstacles, and speed control, among others.

Because this subject has paved the way for thousands of applications in daily life,
industry, commerce, and more, research related to autonomous driving has increased in re-
cent years. STEM courses have garnered more interest in different topics related to robotics,
such as teaching and applying autonomous driving models. However, developing teaching
strategies that facilitate knowledge acquisition in an innovative way to put concepts and
theory into practice has proven challenging for robotics teachers [11].

One of the relevant autonomous vehicle components is sensors. In autonomous
vehicles, these include cameras, LiDAR radar, sonar, global positioning systems (GPS),
an inertial measurement unit (IMU), and wheel odometry. The sensors collect data to
be analyzed by the computer of the vehicle to control its direction, speed, and braking.
However, sensor fusion is also applied in autonomous vehicles, combining data from
disparate sources to assemble information coherently. The resulting information is more
reliable when these sources or sensors are used individually. This approach is essential
when combining different types of data. For example, it is crucial to have a camera to clone
human vision in autonomous vehicles. However, it is preferable to obtain distance data
from sensors such as LiDAR or radar. Therefore, the combination of camera sensors and
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LiDAR or radar data is essential. Moreover, combining LiDAR and radar data provides
quantifiable information on the distance between an obstacle and the vehicle, or the distance
from different objects in the environment [12].

Likewise, another crucial consideration in operating autonomous vehicles is the al-
gorithms that process sensor data for decision making. Levinson et al. [13] developed a
series of algorithms for a commercial vehicle. The vehicle had to perform the following
tasks: unsupervised laser calibration, mapping and localization, object recognition, and
trajectory planning. Unsupervised laser calibration required a multi-beam laser to retrieve
the optimal parameters for each beam’s orientation and distance-response function. This
method allows for the simultaneous calibration of tens or hundreds of beams, each with
specific parameters. In addition, the extrinsic position of the sensor in relation to the robot’s
coordinate frame is recovered. Importantly, no specific calibration objective is required; it is
based solely on the weak assumption that points in space tend to be on contiguous surfaces.

For mapping and location tasks, data from GPS, IMU, and LiDAR sensors can generate
a high-resolution terrain map of the vehicle’s location. The maps used in vehicles are grid-
based orthographic projections of LiDAR remittance responses on the ground plane.

Regarding object recognition, each LiDAR scan was first segmented using depth
information. The segments were inserted into a standard Kalman filter that includes
position (x, y) and velocity (x’, y’) in their variable states. The path classification was
executed by applying two separate boosting classifiers: one indicating the object’s shape
in each path frame and another using motion descriptors along the entire path. These
predictions were combined using a discrete Bayes filter. The test results were favorable
since the vehicle drove along routes autonomously for hundreds of miles under different
conditions. However, the driver must always be present for safer driving, considering that
some driving must also be performed manually upon the occasion [10].

1.3. Algorithms for Autonomous Driving

In education, the different platforms designed and tested to teach various robotics
topics include electronic platforms such as, LEGO™, Arduino, and Raspberry Pi. In par-
ticular, the LEGO™ platform has been used to teach robotics, but it has some limitations
regarding autonomous driving subjects. The LEGO™ control unit (Brick module) can
be programmed using standard LEGO™ block-based software or other open-source pro-
gramming languages. However, block-based software requires considerable programming
experience, limiting the complexity of the program and the learning ability of the algorithms.

On the other hand, vision-based control is critical for autonomous driving. For
example, the LEGO™ platform lacks a suitable camera. Furthermore, its hardware is not
powerful enough to process images in real-time. Otto et al. [14] designed a platform to teach
Robotics using the LEGO™ platform combined with Raspberry Pi, Matlab™, Simulink™,
a low-cost webcam, and an external power source. Unlike the standard LEGO™ platform,
this new design provides enough computing power to evaluate image data in real-time.
The operation starts when the Raspberry Pi emulates the UART communication protocol on
the LEGO™ platform and transmits the continuously calculated control inputs. A Pi-sensor
controller transfers control input to LEGO™ motors. Finally, Matlab™ and Simulink™
allow for the implementation of the autonomous driving algorithms on the Raspberry Pi
card and robot control. The main advantage of this system is the possibility to add several
sensors. The authors outline the limitations of their system (such as the lack of a camera)
for teaching autonomous driving.

Today, there are various navigation algorithms with distinct characteristics and func-
tions. When teaching, it is pertinent to compare the different algorithms to analyze their
behavior and performance, but it is not always possible because the scenarios and test
conditions are not the same.

Naotunna and Wongratanaphisan [15] conducted a performance analysis of three
navigation algorithms: Dynamic-Window Approach (DWA), Timed Elastic Band (TEBand),
and Elastic Band (EBand). The authors compare the performance of these three local plan-
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ners using ROS software. The experiment was conducted in a selected area, approximately
145 m2 of the first floor of the main building at the School of Engineering of Chiang Mai
University. The performance of the three algorithms was analyzed by navigating the robot
on four pre-defined trajectories. For each algorithm, the robot performed 20 tests divided
into two sections on the path. The first ten tests were conducted in an unobstructed scenario,
and the subsequent ten tests in the same scenario with obstacles. The study concluded that
the tracking accuracy values of the DWA and TEBand algorithms are higher than those
of the EBand algorithm. Likewise, considering the average time taken to complete the
journey, the results showed that the DWA algorithm took less time to complete the route
than the TEBand algorithm. Although the EBand algorithm generates the shortest route,
the maximum speed generated is less than the maximum speed set. Finally, the position
and orientation errors measured at the target location showed that the EBand algorithm has
greater precision, and the TEBand algorithm had the maximum error deviation. However,
the disadvantages of this research for teaching are that students require access to the real
robotic platform and a large open space to perform tests with the robot.

Pimentel and Aquino [16] compared four different local route planning algorithms:
Base Local Planner, DWA, TEBand, and EBand. The experiments were carried out using a
front laser sensor and a rear laser sensor. A 3D-depth camera was added for the evaluations.
Two scenarios were used in these tests: the first, a simulated scenario that evaluated
navigation in a static environment without obstacles; and the second, a simulated scenario
that evaluated navigation with static 3D objects outside the range of the sensors. After
performing the corresponding tests, the authors noted that the DWA and Base Planner
algorithms presented the worst results, despite being the most used in the ROS environment.
At the end of this study, the authors demonstrate that ROS can be used to compare the
performance of different autonomous algorithms without requiring a physical mobile robot
or the space to perform the tests. In this way, ROS could be used as a learning tool in the
classroom to put theoretical knowledge into practice.

However, many of these platforms must be implemented by students during class,
which distracts them from assignments that do not meet the learning objectives. Addi-
tionally, the absence of platforms in class limits learning because students cannot carry
out autonomous driving practice activities; thus, they cannot compare the performance
of different algorithms. Another important consideration is that many of the platforms
are physical. Although universities acquire them, sometimes students cannot access large
spaces to perform different tests. As a consequence, there is a challenge to develop a
learning tool to run simulations in different environments and evaluate different navigation
algorithms in real time.

Therefore, this study proposes the use of ROS as a tool that students can utilize in
class to perform different practices and reinforce learning robot implementation in virtual
scenarios. The advantage of using classroom simulations is that students can compare the
performance of different navigation algorithms under the same conditions.

2. Materials and Methods
2.1. Using ROS to Teach Robotics

There are multiple platforms currently used to teach robotics at different educational
levels. Such platforms are used for teaching mobile robotics [8,17], STEAM concepts [18],
control engineering robotics [19], manipulators [20,21], programming skills [22,23], smart
sensors [24], robot vision [25], and survival and behavior analysis [26], among others.
There is a wide range of hardware platforms that support robotics courses and laboratory
practices. As for the different programming environments, Matlab™ [7] and C [27] are the
prevailing options in classrooms. In recent years, free open-source packages have emerged,
which allow for the implementation of virtual scenarios for the simulation of mobile robots.
Such is the case of Robot Operating System (ROS) [28].

Figure 1 shows the basic operation of ROS. The Robot Operating System (ROS) is an
open-source working environment initially developed to be installed on a Linux operating
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system. It is used for programming and robot simulations. ROS is organized by execution
units (called nodes), which communicate by publishing/subscribing messages, offering
services, and/or executing actions. ROS includes connectivity with physical and real
hardware (for example sensors or actuators) and algorithm implementation of various
control types, navigation, map creations, etc. [29]. Its Gazebo module (simulation) and
RVIZ (ROS-VIsualiZer) complete a flexible framework that allows teaching with simulated
elements and minimal effort to transfer and test developments on real hardware.
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Figure 1. ROS is an open-source working environment, which includes connectivity with physical
and real hardware (actuators and sensors). Gazebo (run 3D robot simulations) and RVIZ (allows a 3D
visualization) modules complete a flexible framework that allows simulations and visualization in
combination with ROS.

Gazebo is a 3D environment for running robot simulations in combination with ROS.
In this way, users can test algorithms, design and test mobile robots, and train an AI
(Artificial Intelligence) system using virtual representations of realistic scenarios. This
offers the ability to simulate robot movements accurately and efficiently in complex indoor
and outdoor environments [30]. The Gazebo graphical user interface (GUI) can be observed
in Figure 2.
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ROS Visualization (RVIZ) is a 3D visualization tool for ROS applications; its main
screen is shown in Figure 3. RVIZ displays the mobile robot model, captures robot sensor
data, and reproduces the captured data. It can display data from cameras, lasers, and 3D
and 2D devices as images and point clouds [28].

It is more beneficial to use ROS to teach robotics because it has functions for hardware
abstraction, different device drivers, communication among multiple machine processes,
and testing and visualization tools. However, the primary feature of ROS lies in how
the software runs and communicates, allowing for the design and implementation of the
algorithms without knowing how the hardware operates in detail [31]. This section reviews
some of the systems in which the ROS platform has been used in robotics teaching.



Appl. Sci. 2022, 12, 7277 7 of 19Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19 
 

 

Figure 3. RVIZ main screen. This tool allows a 3D visualization for ROS applications. 

It is more beneficial to use ROS to teach robotics because it has functions for hardware 

abstraction, different device drivers, communication among multiple machine processes, 

and testing and visualization tools. However, the primary feature of ROS lies in how the 

software runs and communicates, allowing for the design and implementation of the al-

gorithms without knowing how the hardware operates in detail [31]. This section reviews 

some of the systems in which the ROS platform has been used in robotics teaching. 

Niu et al. [32] developed a toolkit for teaching mobile robotics through the Matlab™ 

and Simulink™ package add-on using ROS and the Gazebo simulator to improve learning 

efficiency in physical robotic simulation environments. Access to virtual sensors and ac-

tuators has been included in this toolkit, and communication details are hidden to allow 

students to focus on programming and debugging their autonomous driving algorithms. 

The basic architecture of the platform consists of three main software blocks: Matlab™ 

and Simulink™, Robot Operating System (ROS), and Gazebo. The algorithms developed 

in Matlab™ and Simulink™ interact with ROS, which connects Matlab™ and the Gazebo 

simulator. 

An activity was assigned to a group of robotics students to evaluate the platform. In 

this activity, students used LiDAR sensor data and the robot’s odometry data to avoid it 

colliding with different obstacles independently and to make it arrive at a pre-determined 

final position. This activity was evaluated by measuring the time taken to complete a tra-

jectory between the initial and final positions. The time obtained by each student was 

compared to find the best time [32]. 

The EUROPA platform (Educational ROS Robot Platform) continues the tendency to 

apply ROS in education. This platform consists of a low-cost, two-wheeled robot with 

differential traction for which its central controller is a Raspberry Pi 3 B+ card. It is per-

fectly scalable and adapts to different educational levels and curricula. Its design allows 

programming with tools according to the educational levels and course curricula. EU-

ROPA uses the ROS platform as its primary communication and control software. Rasp-

berry Pi controls the hardware (e.g., motors and other actuators) and collects data from 

the odometry sensors and camera. All the controllers responsible for controlling the two 

direct current motors, the servomotors, the ultrasonic sensor, and the LIDAR are installed 

on Raspberry Pi. Finally, Raspberry Pi also hosts several Python scripts that act as nodes. 

This platform is currently being evaluated in secondary schools in Central Macedonia 

(Greece), where a pilot program is being run [5]. 

Cañas et al. [31] developed another educational kit for teaching robotics called Ro-

botics-Academy Design. This kit includes a set of independent exercises that propose spe-

cific problems regarding Autonomous Robotics. The student must develop the algorithms 

and program the robot to solve the problem correctly. Its main components are the Python 

programming language, ROS Middleware, the Gazebo simulator, and a one-code tem-

plate per exercise (Python ROS node and Jupyter Notebooks). This kit was used and val-

idated in several undergraduate engineering courses at Rey Juan Carlos University in 

Figure 3. RVIZ main screen. This tool allows a 3D visualization for ROS applications.

Niu et al. [32] developed a toolkit for teaching mobile robotics through the Mat-
lab™ and Simulink™ package add-on using ROS and the Gazebo simulator to improve
learning efficiency in physical robotic simulation environments. Access to virtual sensors
and actuators has been included in this toolkit, and communication details are hidden
to allow students to focus on programming and debugging their autonomous driving
algorithms. The basic architecture of the platform consists of three main software blocks:
Matlab™ and Simulink™, Robot Operating System (ROS), and Gazebo. The algorithms
developed in Matlab™ and Simulink™ interact with ROS, which connects Matlab™ and
the Gazebo simulator.

An activity was assigned to a group of robotics students to evaluate the platform. In
this activity, students used LiDAR sensor data and the robot’s odometry data to avoid it
colliding with different obstacles independently and to make it arrive at a pre-determined
final position. This activity was evaluated by measuring the time taken to complete a
trajectory between the initial and final positions. The time obtained by each student was
compared to find the best time [32].

The EUROPA platform (Educational ROS Robot Platform) continues the tendency to
apply ROS in education. This platform consists of a low-cost, two-wheeled robot with
differential traction for which its central controller is a Raspberry Pi 3 B+ card. It is
perfectly scalable and adapts to different educational levels and curricula. Its design allows
programming with tools according to the educational levels and course curricula. EUROPA
uses the ROS platform as its primary communication and control software. Raspberry
Pi controls the hardware (e.g., motors and other actuators) and collects data from the
odometry sensors and camera. All the controllers responsible for controlling the two direct
current motors, the servomotors, the ultrasonic sensor, and the LIDAR are installed on
Raspberry Pi. Finally, Raspberry Pi also hosts several Python scripts that act as nodes. This
platform is currently being evaluated in secondary schools in Central Macedonia (Greece),
where a pilot program is being run [5].

Cañas et al. [31] developed another educational kit for teaching robotics called Robotics-
Academy Design. This kit includes a set of independent exercises that propose specific
problems regarding Autonomous Robotics. The student must develop the algorithms and
program the robot to solve the problem correctly. Its main components are the Python pro-
gramming language, ROS Middleware, the Gazebo simulator, and a one-code template per
exercise (Python ROS node and Jupyter Notebooks). This kit was used and validated in sev-
eral undergraduate engineering courses at Rey Juan Carlos University in Spain. More than
150 students participated in this study, and more than 95% of them positively evaluated its
use in surveys. It was also validated in a study involving 221 pre-university students in
which the quantitative analysis performed shows that the Robotics-Academy tool had a
positive impact on the learning outcomes of students compared to the control group.

Previous studies have reported favorable results for ROS as an educational tool [7,31].
This explains its use among professors who design and implement tools such as virtual
laboratories for learning robotics courses, solving the limitations of some educational
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institutions, and solving the problem that some students do not have access to a platform
or physical spaces.

Nevertheless, to the authors’ knowledge, most of these platforms are focused on
general topics of robotics and users cannot run simulations under the same conditions.
Moreover, these previous platforms have not been used to teach autonomous driving
algorithms or evaluated to study their impact on the students’ academic performance.

2.2. Development of a Free Platform for Teaching Autonomous Driving Algorithms

The platform in the present work uses the ROS and Gazebo simulator, together with
the mapping algorithms and global and local route planning libraries. This free platform
allows students to perform simulations practically without designing or implementing a
robot or scenarios from scratch. Consequently, the student can focus on the learning of
autonomous driving theory and put it into practice.

The proposed platform has an interface for exchanging messages. Therefore, the ROS
and Gazebo programs can communicate with each other during the ongoing process. For
example, the data processed by the LiDAR sensors are sent to the ROS server for further
processing and to move the motors of the virtual mobile robot. During the simulations,
Gazebo and RVIZ in this teaching platform provided students with realistic representations
of the environments used and the movements of the mobile robot (see Figure 4). The
proposed free platform incorporates three different scenarios and a mobile robot model.
Students can evaluate the performance of different local route planning algorithms. These
algorithms can be native to ROS and is user generated. To change algorithms in simulations,
students only have to select the name of the algorithm they want to use. Similarly, to modify
the scenario, students must only select the name of the scenario they want to use.

 

Figure 4. The proposed platform running a simulation: Gazebo render map (A), RVIZ planning map
(B), data of robot measurements in real time (C), and user GUI (D).

All steps for platform installation and instructions for using the available scenarios
and algorithms are in a GitHub repository at the following link: http://github.com/
marcochunab/skid_steer_bot (accessed on 17 July 2022).

2.3. Design of the Real Closed Scenarios

As mentioned in previous sections, this work focuses on the ROS platform for teaching
autonomous driving algorithms in robotics courses. One of the main advantages of using
this tool in the classroom is that students can test and compare different algorithms under
the same conditions: for example, the same scenario. The proposed platform could be a
teaching support tool (virtual laboratory) for teachers and students to perform autonomous
driving practices in robotics courses without accessing physical platforms or test spaces.

As an initial proposal, this work considers three virtual workspaces with different
conditions and characteristics for testing and comparing autonomous driving algorithms.
These free scenarios are available to the academic and scientific community for teaching or
research applications.

http://github.com/marcochunab/skid_steer_bot
http://github.com/marcochunab/skid_steer_bot
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Reports collected by the International Federation of Robotics (IFR) indicate that, be-
tween 2016 and 2019, there was an increase in the use and demand for service robots in
medicine, agriculture, logistics, and defense compared to previous years. Based on these
data, health, logistics (supply chain), and industry were chosen for the creation of the
three virtual scenarios on the ROS platform [33]. Figure 5 summarizes the procedure for
implementing the platform and scenarios.
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Figure 5. The methodology used for the development and implementation of the platform and
virtual scenarios.

The Gazebo tool was used for the scenario design. The first proposed scenario is
a hospital healthcare floor. In this scenario, a mobile robot can help carry out activities
where direct human contact must be avoided, for example, during the current COVID-19
pandemic. In this scenario, the following spaces were considered: a reception area, nine
medical care rooms, and a corridor connecting the rooms with the reception area (there
are nine entrances to medical care rooms). In each room, there are different obstacles
with enough space for the robot to circulate between them. In Figure 6, one observes the
reception area (A), the rooms (B), and the corridor (C). The total area is 15 m wide and 45 m
long (675 m2). To simulate a realistic hospital in Gazebo, we used models with pre-existing
people placed throughout the scenario. Movements were not counted independently.
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Figure 6. Map of the scenario #1—hospital: reception (A), room (B), and corridor (C).

The second proposed scenario is a loading and unloading warehouse. Here, a mobile
robot can be helpful for carrying out logistics activities that require the transport of items
between different areas. This scenario had an unloading area and a loading area, as well
as a series of blocks aligned in two rows in the central part of the scenario, simulating
the existing products in the warehouse. People were also scattered in different places to
simulate the flow of personnel. Figure 7 shows the loading area (A), the unloading area (B),
and the storage area (C). The total area is 20 m wide and 25 m long (500 m2).
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Figure 7. Map of the scenario #2—warehouse unloading (A), loading (B), and storage areas (C).

Unlike the hospital scenario, the warehouse has more open spaces and wider corridors
around the blocks. However, there are also reduced or narrow corridors between each
block. The aisles are wide enough for the robot to navigate in all cases. On the other hand,
this scenario does not have entrances to different rooms that the robot must enter.

The final proposed scenario is an industrial manufacturing laboratory. The laboratory
has a central area with several machines in the surrounding area and a warehouse. Figure 8
shows the machine zones (A), (B), (C), (D), and a warehouse space (E). The area in total is
20 m long and 25 m wide (500 m2).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19 
 

between different areas. This scenario had an unloading area and a loading area, as well 

as a series of blocks aligned in two rows in the central part of the scenario, simulating the 

existing products in the warehouse. People were also scattered in different places to sim-

ulate the flow of personnel. Figure 7 shows the loading area (A), the unloading area (B), 

and the storage area (C). The total area is 20 m wide and 25 m long (500 m2). 

 

Figure 7. Map of the scenario #2—warehouse unloading (A), loading (B), and storage areas (C). 

Unlike the hospital scenario, the warehouse has more open spaces and wider corri-

dors around the blocks. However, there are also reduced or narrow corridors between 

each block. The aisles are wide enough for the robot to navigate in all cases. On the other 

hand, this scenario does not have entrances to different rooms that the robot must enter. 

The final proposed scenario is an industrial manufacturing laboratory. The labora-

tory has a central area with several machines in the surrounding area and a warehouse. 

Figure 8 shows the machine zones (A), (B), (C), (D), and a warehouse space (E). The area 

in total is 20 m long and 25 m wide (500 m2). 

 

Figure 8. Map of the scenario #3—Industrial manufacturing area: machine zone 1 (A), machine zone 

2 (B), machine zone 3 (C), machine zone 4 (D), and warehouse (E). 

Table 1 summarizes the differences that exist. among the proposed scenarios. Addi-

tionally, two different paths or trajectories were established in each scenario to be evalu-

ated; one trajectory called “simple path” and another called “complex path”. On the sim-

ple path, there are less than 15.0 m between the initial position and the target point. Fur-

thermore, there are not obstacles interfering with the movements of the mobile robot. On 

the complex path, there are more than 15.0 m between the initial and final position. The 

complex path includes various obstacles that the mobile robot must evade autonomously 

to reach the target point. 

  

Figure 8. Map of the scenario #3—Industrial manufacturing area: machine zone 1 (A), machine zone
2 (B), machine zone 3 (C), machine zone 4 (D), and warehouse (E).

Table 1 summarizes the differences that exist. among the proposed scenarios. Addi-
tionally, two different paths or trajectories were established in each scenario to be evaluated;
one trajectory called “simple path” and another called “complex path”. On the simple path,
there are less than 15.0 m between the initial position and the target point. Furthermore,
there are not obstacles interfering with the movements of the mobile robot. On the complex
path, there are more than 15.0 m between the initial and final position. The complex path
includes various obstacles that the mobile robot must evade autonomously to reach the
target point.

Table 1. Differences among the three scenarios.

Scenario Wide Hallways Narrow Hallways Entrances/Exits Open Areas

Hospital X
√ √

X
Warehouse

√ √
X

√

Laboratory
√

X X
√
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A virtual mobile robot with four wheels, front steering, and dimensions of 65 cm long
and 46 cm wide was implemented for testing, as shown in Figure 9. It has two sensors for
mapping; the first is the LiDAR sensor, which determines the distance from an object using
a laser emitter. The second sensor is a stereoscopic camera that is not used for autonomous
navigation or environmental mapping; instead, its purpose is for the user to visualize the
virtual environment in the current robot position.
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Figure 9. A virtual mobile robot with four wheels used in the simulations with the following
components: LiDAR sensor (A), stereoscopic camera (B), and encoders (C).

Finally, the odometry data are generated from the encoders and the Gazebo platform,
which provide the position of X and Y coordinates locating the robot in the virtual scenario.
Figure 10 shows a flowchart of the steps to perform a simulation.
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target point must be set. Finally, the users have to configure the algorithm to run.

3. Results

The objective of this case study is to describe the use of the platform in the classroom
setting to perform the analysis and comparison of different autonomous driving algorithms.
In addition, two evaluations were performed: quantitative and qualitative. For this study,
two local route planning algorithms, the Time Elastic Band (TEBand) and the Elastic Band
(EBand), were chosen as case studies because previous research by other authors obtained
the best performance results by using these two algorithms [15]. These algorithms were
implemented on the proposed platform to run a set of simulations using three scenar-
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ios (hospital, warehouse, and industrial manufacturing area) with simple and complex
trajectories. The following experimental groups were tested:

• SP-TEBand→ Simple path using the TEBand algorithm;
• SP-EBand→ Simple path using the EBand algorithm;
• CP-TEBand→ Complex path using the TEBand algorithm;
• CP-EBand→ Complex path using the EBand algorithm.

This study was conducted during two undergraduate robotics courses (spring semester
2022). The study was divided into two phases, and both courses followed the same protocol.
The first phase consisted of an explanation of the theoretical concepts about autonomous
driving algorithms. In this phase, the professor used a traditional teaching method with
oral presentations in combination with PowerPoint slides. This part included a written
test in which students had to answer a set of questions about the theoretical concepts
of robotics.

The second phase of this study continued with a demonstration of how the proposed
platform works. In a classroom setting, the professor ran a set of simulations to show
students the performance parameters of each algorithm in each scenario under the same
conditions. Thirty tests were performed with each algorithm for each of the two paths
in each scenario. In each test, the robot traveled along the route autonomously from the
initial position to the target point. The obstacles were always static in each scenario. This
educational approach allowed students to learn and compare the performance of different
autonomous driving algorithms in order to reinforce theoretical knowledge. This part also
included a written test in which students had to answer questions about the theoretical
concepts. The simulations were performed on a personal computer with an Intel™ Core™
i7 processor, 8 GB of RAM, and an NVIDIA™ GeForce™ GTX 1050 graphics card.

Three performance indicators were measured during this study:

1. Total distance: This refers to the total distance that the robot travels from the initial
position until it stops at the target point. This indicator was measured in meters. The
real-time location of the robot during the simulation to calculate the total distance
was used with the data calculated by the virtual odometry system (see Figure 11).

2. Time: This is the value in seconds that the robot requires to proceed from the initial
position to the target point of the planned route. Time stops when the robot reaches
the final position (see Figure 12).

3. Mean error: This value is measured in meters. It represents the measured error with
respect to the final position of the robot and the target point (in other words, how
close the mobile robot is to the endpoint). This indicator is presented in meters. The
odometry information was used to know the coordinates of the robot at the end of
the trajectory. The distance between the location of the robot and the target point was

calculated using the following formula: d =
√
(X2 − X1)

2 + (Y2 −Y1)
2, where X2

and Y2 are the endpoint coordinates and X1 and Y1 are the coordinates of the initial
position of the robot (see Figure 13).
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Students were asked to perform the set of simulations in each scenario during the class
session. At the beginning of the activity, they were given the datasheet shown in Table 2 for
recording and further comparison of their simulation results.

Table 2. Example of sheet report for results obtained.

Scenario:____________________________________________________________________________
Path: Path 1:____________________________ Path 2:____________________________

Parameters: Distance Time Error Distance Time Error
Algorithm 1 _______ _______ _______ _______ _______ _______
Algorithm 2 _______ _______ _______ _______ _______ _______

The teacher and students can perform a detailed analysis and data comparison in each
scenario of the autonomous driven algorithms. For this analysis, t-tests, a statistical study
comparing two means of two independent groups of data, are recommended. This test
determines if there is a statistically significant difference between the two means of both
groups when the p-value is equal to or less than 0.05.

Table 3 summarizes the data obtained after the simulations were run in each scenario
on both paths. These results depend on the initial and final position from the trajectory;
in this case, these positions were the same for all the tests. It illustrates the average speed,
calculated using the time and distance traveled, the time it takes the vehicle to finish the
route, and the error with respect to the target point.

Figure 14 shows the comparison between the results of the written exams of phase 1
(traditional method) and phase 2 (ROS and simulations). These results show that students
obtained a higher grade in phase 2 when the professor used the proposed platform and the
simulations in class.
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Table 3. Summary of simulation data obtained.

Scenarios Hospital Warehouse Laboratory

Parameters Speed (m/s) Time (s) Error (m) Speed (m/s) Time (s) Error (m) Speed (m/s) Time (s) Error (m)

Simple path
TEBand 0.08 305.00 0.18 0.08 179.80 0.09 0.07 245.80 0.23

Simple path EBand 0.08 267.00 0.16 0.06 340.00 0.13 0.06 465.00 0.15

Complex path
TEBand 0.10 648.00 1.03 N/A N/A N/A 0.10 238.00 0.22

Complex path
EBand 0.13 436.00 1.19 0.15 143.68 0.89 0.07 377.00 0.12
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In addition, at the end of both stages of this study, participants had to evaluate a set
of affirmations in order to assess the usability of the platform using a 5-point Likert Scale.
The affirmations are listed below:

A1. I think there is a difference in my learning when using ROS’s simulations in class.
A2. The use of simulations helped me to better understand the theoretical concepts.
A3. The use of simulations helped me understand the advantages and disadvantages of

each algorithm.
A4. The use of simulations motivated me to pay attention in class.
A5. The use of simulations made the class session more interesting.
A6. I think that the platform used to run the simulations is simple and easy to use.
A7. I feel more confident now that I have learned by using the simulations in class.
A8. I think that the simulations should always be used as a support tool in class.

Table 4 summarizes the results of the usability evaluation. In this case, a value of 1
means “totally agree”, while a value of 5 means “totally disagree”.

Table 4. Summary of the results of the usability evaluation.

5-Point Likert Scale A1 A2 A3 A4 A5 A6 A7 A8

1 62% 77% 79% 63% 67% 23% 68% 73%
2 21% 7% 10% 15% 22% 21% 14% 15%
3 0% 11% 0% 11% 0% 35% 16% 0%
4 17% 5% 11% 11% 11% 3% 2% 12%
5 0% 0% 0% 0% 0% 18% 0% 0%
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4. Discussion

Figure 15 shows the results from virtual scenario #1—the hospital floor in which the
mobile robot using algorithm TEBand required longer periods of time to complete the
trajectories, 14.23% and 48.62% slower than when using the EBand algorithm. In terms
of accuracy, the EBand algorithm was 11.40% more accurate than the TEBand algorithm
on the short path. However, the TEBand algorithm was 15.46% more accurate than the
EBand algorithm on the long path. The statistical analysis demonstrates that, in the case of
the simple path, there is no statistically significant difference between TEBand and EBand
groups in terms of the time taken to complete the trajectory and their accuracy but not in
the case of the complex path (p < 0.05).
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Figure 15. Comparison of time to finish and error among experimental groups using the hospital
scenario (* p < 0.05).

Figure 16 shows the results from virtual scenario #2—the warehouse, where the robot
using the EBand algorithm required longer times to cover the short route, 89.09% slower
than the TEBand algorithm. In terms of accuracy, the TEBand algorithm was 36.56%
more accurate than the EBand algorithm on the simple path. On the other hand, on the
complex path, the TEBand algorithm could not complete the trajectories in this scenario.
The statistical analysis demonstrates that in the case of the simple path there is a statistically
significant difference (p < 0.05) between TEBand and EBand groups in terms of the time
taken to complete the trajectory and their accuracy.
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scenario (* p < 0.05).

Figure 17 shows the results from virtual scenario #3—the industrial manufacturing
area. The EBand algorithm took the longest times in both the short and long paths, 82.50%
and 58.40% slower than the TEBand algorithm, respectively. In terms of accuracy, the
EBand algorithm was 56.85% more accurate than the TEBand algorithm on the short path.
Similarly, the Eband algorithm was 97.69% more accurate than the TEBand algorithm on
the long path. The statistical analysis demonstrates that there is a statistically significant
difference between all study groups (p < 0.05) in terms of the time taken to complete the
trajectory and their accuracy.
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Figure 17. Comparison of time taken to finish and error among experimental groups in the industrial
manufacturing scenario (* p < 0.05).

Regarding the performance of the students, Figure 14 shows that there is a difference in
the results of the written exams. Moreover, the t-test demonstrates that there is a statistically
significant difference (p < 0.05) between phase 1 and phase 2. In other words, in the case
of phase 2 (when professor uses the simulations in class), this educational approach helps
improve the performance of students in comparison to when professor uses a traditional
teaching method. This fact demonstrates that the main objective of this work has been met,
the proposed platform helps students in improving their academic performance.

Figure 18 shows that, in general, the use of simulations helps better understand the
theoretical concepts, the advantages and disadvantages of each algorithm, makes the class
session more interesting, motivates students to pay attention, and makes students feel more
confident. More than 85% of the students suggest that this educational approach should
always be used in class in order to improve their learning process. Nevertheless, some
students think that the use of the platform is not simple and easy. This fact suggests that
it is necessary to consider an initial session in which the teacher familiarizes the students
with the use of the platform and its functions so that the tool is not distracting or does not
impair the learning process.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 19 
 

 

Figure 17. Comparison of time taken to finish and error among experimental groups in the indus-

trial manufacturing scenario (* p < 0.05). 

Regarding the performance of the students, Figure 14 shows that there is a difference 

in the results of the written exams. Moreover, the t-test demonstrates that there is a statis-

tically significant difference (p < 0.05) between phase 1 and phase 2. In other words, in the 

case of phase 2 (when professor uses the simulations in class), this educational approach 

helps improve the performance of students in comparison to when professor uses a tradi-

tional teaching method. This fact demonstrates that the main objective of this work has 

been met, the proposed platform helps students in improving their academic perfor-

mance. 

Figure 18 shows that, in general, the use of simulations helps better understand the 

theoretical concepts, the advantages and disadvantages of each algorithm, makes the class 

session more interesting, motivates students to pay attention, and makes students feel 

more confident. More than 85% of the students suggest that this educational approach 

should always be used in class in order to improve their learning process. Nevertheless, 

some students think that the use of the platform is not simple and easy. This fact suggests 

that it is necessary to consider an initial session in which the teacher familiarizes the stu-

dents with the use of the platform and its functions so that the tool is not distracting or 

does not impair the learning process. 

 

Figure 18. Comparison of the results of the usability test. In general, the use of simulations helps the 

learning process, but the professor should make sure that the students understand how to use the 

platform. 

From the point of view of the professor and the students, this platform is a valuable 

tool for those who teach subjects related to the design and implementation of autonomous 

vehicles. In addition, freed from the responsibility of implementing the tools, the students 

can focus on the learning algorithms and autonomous driving techniques in order to an-

alyze different variables that affect their operation. 

An advantage of this project is that by using the ROS environment, students can per-

form different tests and analyze the performance of the algorithms to compare the data. 

Using the proposed platform, students can evaluate and compare the performance of dif-

ferent algorithms in different scenarios and different trajectories. The students have to set 

the trajectory (start point and target point), and at the end of the simulation, the platform 

Figure 18. Comparison of the results of the usability test. In general, the use of simulations helps
the learning process, but the professor should make sure that the students understand how to use
the platform.

From the point of view of the professor and the students, this platform is a valuable
tool for those who teach subjects related to the design and implementation of autonomous
vehicles. In addition, freed from the responsibility of implementing the tools, the students
can focus on the learning algorithms and autonomous driving techniques in order to
analyze different variables that affect their operation.

An advantage of this project is that by using the ROS environment, students can
perform different tests and analyze the performance of the algorithms to compare the
data. Using the proposed platform, students can evaluate and compare the performance
of different algorithms in different scenarios and different trajectories. The students have
to set the trajectory (start point and target point), and at the end of the simulation, the
platform provides the performance results of the algorithm (distance, time, and error). By
comparing the performance values, students can identify the advantages and limitations of
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each algorithm in each scenario and, thus, select the one with the best performance to solve
the given problem.

Similarly, students can implement different scenarios since it is only necessary to
create them in Gazebo and perform the mapping using ROS libraries. In addition, different
autonomous navigation algorithms can be used, which may be native to ROS, created by
third parties, or user created. The main limitation of this study is that the platform was
tested in two undergraduate robotic courses. More experiments would be recommended in
order to identify limitations and improve the platform. Moreover, it is necessary to analyze
how the proposed platform allows for the adaptation of different teaching methodologies
and curricula. In addition, the platform should be improved to provide more realistic robot
models, more measurements, and include more local route planning algorithms.

5. Conclusions

STEAM education is essential in engineering education for the development of com-
petencies in undergraduate students. In the case of robotics, the research community has
proposed different platforms for teaching; nevertheless, these platforms present challenges
in terms of accessibility, cost, and flexibility for its use in the classroom. One complication
of teaching autonomous driving is that students require access to the real robotic platform
and free space to perform tests with the robot. This study describes a free platform to teach
autonomous driving algorithms based on ROS software.

In order to exemplify the benefits that the proposed platform can provide in teaching,
the authors conducted a case study using this platform with three different virtual scenarios
in which two local route planning algorithms were evaluated and compared. In class, this
platform was used to run simulations and to put theory into practice. Each algorithm
was analyzed by using different variables such as total distance, time trajectory, and mean
error. The students’ quantitative and qualitative evaluations of the proposed platform show
that this educational approach helps the students’ learning process, reinforces theoretical
knowledge, and motivates students in class. In addition, these results are a first step to
demonstrating that the limitations of other platforms can be solved using the proposed
platform in which students can compare the performance of different navigation algorithms
under the same conditions.

Overall, the results claim that the use of ROS software allows students to perform
autonomous driving simulations in a practical manner, without designing or implementing
a physical robot. In addition, the platform facilitates the implementation of simulations
and could help students focus on learning concepts and theory related to autonomous
driving. The authors propose the continuation of this project as future work and suggest
the design and implementation of a physical platform that students can build easily to
verify simulation results in a real environment.
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