
����������
�������

Citation: Huang, Y.; Yuan, L.; Gong,

W. Research on IEEE 802.11 OFDM

Packet Detection Algorithms for

Household Wireless Sensor

Communication. Appl. Sci. 2022, 12,

7232. https://doi.org/10.3390/

app12147232

Academic Editors: Davide Careglio

and Subhas Mukhopadhyay

Received: 5 June 2022

Accepted: 15 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on IEEE 802.11 OFDM Packet Detection Algorithms
for Household Wireless Sensor Communication

Yimeng Huang, Longzhi Yuan and Wei Gong *

Department of Computer Science and Technology, University of Science and Technology of China,
Hefei 230026, China; huangyimeng@mail.ustc.edu.cn (Y.H.); longzhi@mail.ustc.edu.cn (L.Y.)
* Correspondence: weigong@ustc.edu.cn

Abstract: Millions of smart home devices equipped with wireless sensors have gradually entered
people’s homes and improved the quality of life. Wireless communication with sensors is crucial for
remote automatic control of smart devices. Packet detection is one of the key technologies in wireless
communication systems and faces the challenges of detection accuracy and power consumption. In
households, WiFi devices are widely deployed. Therefore, we focus on IEEE 802.11 OFDM packet
detection algorithms for household wireless sensor communication. We first introduce four packet
detection algorithms and verify their feasibility by simulation experiments. Then, we identify two
important factors that affect detection accuracy and provide suggestions for algorithm improvement.
Further, we compare and discuss the performance of the four algorithms from three dimensions
in detail. The results show that each algorithm has its own advantages, and the auto-correlation
algorithm has the best overall performance. Finally, we point out the open challenges and future
research directions in this field.

Keywords: smart household; wireless communication; wireless sensor; packet detection; IEEE 802.11;
OFDM signal

1. Introduction

To meet people’s pursuit of high-quality life, the household industry is undergoing
unprecedented changes. The smart home, with the Internet of Things (IoT) as the core
technology, has become the pillar [1]. Taking the residence as a platform, a smart home
organically combines home appliance control, environmental monitoring, information
management, audio–visual entertainment, and other functions. Many smart appliances,
such as smart lights, smart curtains, and smart door locks, have been widely used and
provide a more portable, comfortable, and safe family living environment. To manage the
home appliances intelligently and automatically, a centralized automatic control system
is used to remotely manage these smart devices, which can be seen as IoT distributed
sensor nodes. We can use mobile devices or computers to control them conveniently
with local area network (LAN) servers [2]. Therefore, remote control is the future trend
for smart home systems [3], and communication technology is the key to building a
home automatic control system. Earlier systems are mainly based on telephone lines [4]
to achieve remote control. Refs. [5,6] introduced phone-based controllers of home and
office automation. Later, internet-based remote control solutions for home automation
were proposed. Ref. [7] introduced a wireless solution where the nodes can realize data
transmission and interaction with the central server through the wireless communication
network. In households, wireless transmission is favored for its flexibility, scalability,
and low cost. However, wireless communication systems send data randomly, and the
receivers do not know exactly when a data packet arrives. Therefore, how to effectively
capture the wireless signals is a fundamental and challenging problem for wireless systems.

Wireless devices listen for ambient signals continuously to capture data packets timely
and accurately. Packet detection determines whether a packet arrives, and is the first and
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critical step for wireless data processing, as shown in Figure 1. The remaining operations
occur only when a packet is detected. In households, the performance of packet detection
greatly affects the communication quality between various smart home devices.
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Smart Lock

Time

Detected
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Figure 1. Packet detection is a key technology for smart household wireless communication systems.

At present, wireless communication systems are mainly divided into two categories,
active transmission and passive transmission. The computational complexity afforded
by the two systems is diverse due to different system power constraints. The active
systems can perform complex operations but require more energy. To obtain enough
energy, two main power supply methods, plug-in and battery-based, are used. The former is
inconvenient in households and the latter is limited by short lifespan and poor sustainability,
and requires regular battery replacement. In recent years, passive wireless communication
systems [8–10] have become the focus of research. Such systems have an autonomous
energy-harvesting module and can achieve near-zero power consumption. They remove
the limitation of the battery and make the household wireless sensors able to be deployed
once for long-term use, but they cannot perform complex computations due to power
constraints. Both systems require packet detection, so when designing detection algorithms,
there are two main issues that need to be considered.

• Detection accuracy. The detection accuracy is reflected in two aspects. First, the packet
detection algorithms should detect packets as correctly as possible, achieving a high
detection rate. Second, the start position of the incoming data packet should be found
as precisely as possible for better synchronization.

• Computational complexity. To meet the requirements of low power consumption for
passive wireless communication systems, the computational complexity of the packet
detection algorithms applied to such systems must be low. Complex computation
should be avoided.

Wireless communication protocols include WiFi, Bluetooth, LoRa, ZigBee, RFID, etc.
In households, the most commonly used protocol is WiFi, which has a high transmission
rate, long communication distance, and good penetration. Among the protocol standards
of WiFi, IEEE 802.11 is the most widely used in daily life. Orthogonal frequency division
multiplexing (OFDM) has become the key transmission technique for high-speed mobile
communication systems. Therefore, we focus on packet detection algorithms for 802.11
OFDM signals in this paper. Many packet detection algorithms have been applied to
existing systems. However, the previous researchers either introduced the algorithms
briefly, or just gave an improvement or application of an algorithm. No one, yet, has
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systematically analyzed and compared these algorithms. Packet detection is a key technical
that needs to be broken through, but no major breakthrough has been achieved so far.
Therefore, it is necessary to study these algorithms in depth. We delve into the packet
detection algorithms and the main work is as follows:

1. We describe four packet detection algorithms in detail and verify the principle of the
algorithms through simulation experiments.

2. We identify two important factors that affect the accuracy of packet detection and
propose methods for algorithm improvement.

3. We compare the performance of the four algorithms from three dimensions, analyze
the characteristics of different algorithms, and point out the applicable scenarios.

4. We summarize the open challenges and future direction of data packet detection
research and introduce several new algorithms that are being studied but have not
been widely used yet.

2. Primer Knowledge
2.1. WiFi Receiver Processing

The data processing process on the WiFi receiver is shown in Figure 2. Packet detec-
tion detects the arrival of the signals. Timing synchronization and frequency correction
correct the detected signals from the time domain and the frequency domain, respectively.
Demodulation converts the received analog signal to a digital signal. Channel estimation
evaluates the impact of the transmission channel on packets. Finally, the data are recovered
from the signals. All these operations work together to ensure that the transmitted data can
be decoded correctly. Among them, packet detection is the first and fundamental operation.

signals dataPacket 

Detection

Timing 

Synchronization

and

Frequency Correction

Demodulation
Channel 

Estimation

Data 

Recover

Figure 2. WiFi receiver processing.

2.2. IEEE 802.11 Standard

IEEE 802.11 is a standard for wireless network communication defined by the Institute
of Electrical and Electronics Engineers (IEEE). With the development of technology and
hardware equipment, IEEE has successively introduced a series of protocols. Each protocol
specifies its communication rates, applicable to different frequency bands, modulation
modes, etc. Table 1 lists several typical 802.11 protocols [11–13]. Different modulation
modes have their own advantages. Direct sequence spread spectrum (DSSS) has a strong
anti-interference ability. It uses a high-speed spread-spectrum sequence to expand the
spectrum of the signal at the transmitter, and de-expands and restores the original signal
at the receiver. Orthogonal frequency division multiplexing (OFDM) realizes the parallel
transmission of high-speed serial data through frequency division multiplexing. It can
resist multipath fading and achieve high data rate transmission in multipath channels.
Among the modulation modes, OFDM is widely used in 802.11 protocols.

Table 1. A list of several typical 802.11 versions.

802.11 Version Modulation Mode Frequency Band (GHz)

802.11a OFDM 5

802.11b DSSS 2.4

802.11g OFDM 2.4
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Table 1. Cont.

802.11 Version Modulation Mode Frequency Band (GHz)

802.11n OFDM 2.4/5

802.11ac OFDM 5

802.11ah OFDM Sub-1

2.3. OFDM Signal Preamble

For IEEE 802.11 WLAN OFDM systems, the physical layer protocol data unit (PPDU)
is designed for flexible data transmission. PPDU consists of two main parts: preamble and
data fields, which are shown in Figure 3. The preamble field contains the transmission
vector format information and the data field mainly contains the payload. Generally, OFDM
signals begin with a legacy preamble that is specifically designed for packet detection
and synchronization. The legacy preamble contains three parts, which are STF (short
training field), LTF (long training field), and SIG (signaling field). STF is used for packet
detection and coarse synchronization, LTF is used for fine synchronization and initial
channel estimation, and SIG is to determine transmission parameters [11]. STF consists
of 10 identical short symbols, which have good auto-correlation properties. This unique
structure is specifically designed by engineers for packet detection and synchronization.
STF is simplified as short preamble in the later parts.

STF LTF SIG Optional SERVICE PSDU Tail Pad

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

PPDU

DataPreamble

Legacy Preamble

Figure 3. PPDU of OFDM signals. The STF consists of 10 identical short symbols.

3. Packet Detection Algorithms

Generally, packet detection can be described as a binary classification problem [14,15].
We regard the detected results as two hypotheses, H0 and H1. H0 means that the packet is
absent and there is only noise. H1 means that the packet is present.

H0: Packet is absent.
H1: Packet is present.
For most detection algorithms, there are two main values, the decision variable mn

and the threshold Th. When mn is equal to or greater than Th, it is considered that a data
packet has been detected, and vice versa. Thus, H0 and H1 can also be expressed as follows.

H0: mn < Th⇒ Packet is absent.
H1: mn ≥ Th⇒ Packet is present.
In this section, four packet detection algorithms are introduced, as shown in Figure 4.

They are divided into two categories according to the signal characteristics used: energy-
based and preamble-based. The energy-based algorithms use the change of signal energy.
The preamble-based ones take advantage of the preamble structure. Simulation experiments
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were carried out on MATLAB to verify each algorithm’s principle. The experiments were
conducted on IEEE 802.11ah with a 10 dB signal-to-noise ratio (SNR). The sampling rate is
20 MHz and the length of one symbol is 16 samples.

Packet Detection 

Algorithms

Energy-based 

Preamble-based 

Received Signal Energy Detection

Double Sliding Window Packet Detection

Auto-correlation Algorithm

Cross-correlation Algorithm

Figure 4. The classification of packet detection algorithms for 802.11 OFDM signals.

3.1. Energy-Based Algorithms

Energy-based algorithms measure the received signal energy and do not require
additional knowledge. When there is no packet, the received signal rn only consists of
noise. When the packet starts, the received energy increases due to the signal component.
Therefore, there will be an obvious energy change when a signal arrives, and that change
can be used for packet detection. The following are two energy-based detection algorithms:
received signal energy detection and double sliding window packet detection.

3.1.1. Received Signal Energy Detection

The received signal energy detection algorithm detects packets by directly identifying
the change in the received signal energy level [14], but using only one sample for energy
detection is easily affected by single strong noise. A calculation window containing multiple
samples is used. The decision variable mn is set as the received signal energy accumulated
over the window of length L as Equation (1). A sliding window can be used to simplify
the computation, as shown in Figure 5. At every time instant n, one new value enters the
window and one old value is discarded, so mn is calculated by a moving sum of received
signal energy by Equation (2). Therefore, the number of complex multiplications per mn is
reduced to one received sample.

mn =
L−1

∑
k=0

rn−kr∗n−k (1)

mn+1 = mn + |rn+1|2 − |rn−L+1|2 (2)

Data in

mn

mn+1

r0r1rL−1rL ⋯⋯

Figure 5. The structure of sliding window.

Simulation. The response of the simulation experiment is shown in Figure 6. The real
start location of the packet is at the index of 101. The sliding window length for accumu-
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lation is set as 16 (L = 16). There is an obvious jump around the index of 101, which is
consistent with the real situation. This algorithm is sensitive to noise and is difficult for
threshold setting since it directly depends on the received signal energy. The next algorithm
reduces reliance on energy power.

0 200 400 600
Sample index n

0

5

10

15

20

25
m

n

Figure 6. The response of received signal energy detection algorithm.

3.1.2. Double Sliding Window Packet Detection

The double sliding window packet detection algorithm is also based on received
energy, but it uses the ratio of signal power in two consecutive sliding windows to detect
packets [14], as shown in Figure 7. Two sliding windows, A and B, are used to calculate the
energy inside them by Equations (3) and (4). The lengths of two sliding windows are M and
L, respectively. mn is set as a ratio of the values calculated in two windows by Equation (5).
Thus, when the packet is absent, the response is flat since the two windows contain almost
the same amount of noise energy. When the packet comes into window A, the energy
level in A keeps increasing until A is totally covered by the packet. Later, window B starts
to collect signal, so mn decreases and comes back to flat when B is covered completely.
Therefore, mn is large only when the packet is just coming. The sample index n of the peak
point in the triangle-shaped response marks the beginning of the packet. The lengths of two
windows can be different but can often be set the same for the convenience of threshold
setting, which will be discussed in Section 4.1.1.

an =
M−1

∑
k=0

rn−kr∗n−k (3)

bn =
L

∑
k=1

rn+kr∗n+k (4)

mn = an/bn (5)

A B

Threshold

mn

Packet

Start of the packet

M L

Figure 7. Double sliding window algorithm.

Simulation. Figure 8 depicts the simulated response of this algorithm. The lengths
of both windows (M,L) are set to 16. There is an obvious triangular peak around the
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index of 101, which is the real start position of the packet. The other points are very low,
which shows that mn does not depend on the received power. This algorithm is more
noise-resistant than the first one, but has twice the amount of computation. Both the above
algorithms need no additional knowledge of packets; however, if the receivers know the
packet structure, the following algorithms can be considered.

0 200 400 600
Sample index n

0

5

10

15
m

n

Figure 8. The response of double sliding window packet detection algorithm.

3.2. Preamble-Based Algorithms

A general communication system engineering principle is that the receiver should use
all the available information to its advantage. If the structure of the preamble is known,
it should be incorporated into the packet detection algorithms to achieve better detection
performance. The following two algorithms, auto-correlation and cross-correlation, use the
correlation of the preamble to obtain the decision variable mn.

3.2.1. Auto-Correlation Algorithm

The auto-correlation algorithm uses the structure of the short preamble and takes
advantage of its periodicity [14,16–21]. The 10 repetitive short symbols in the short pream-
ble have good auto-correlation, which are not available in noise and other signals. The
algorithm framework is shown in Figure 9. Although this method also uses two sliding
windows, instead of energy calculation, window C is used to calculate the correlation be-
tween the received signal and a delayed version by Equation (6). When there is only noise,
the correlation of noise samples is almost zero since noise does not have auto-correlation
characteristics. When the packet is present, the correlation of the identical short preamble
is high. The delay z−D is equal to the period of one symbol length. For IEEE 802.11ah,
D = 16, which is the period of a short training symbol. Window P is used to calculate the
signal energy during the correlation window to normalize mn by Equation (7). The lengths
of both windows are L. Further, both cn and pn are squared to ensure that mn is positive, as
shown in Equation (8).

cn =
L−1

∑
k=0

rn+kr∗n+k+D (6)

pn =
L−1

∑
k=0

rn+k+Dr∗n+k+D (7)

mn =
|cn|2
(pn)2 (8)
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Figure 9. Auto-correlation algorithm.

Simulation. The simulation result is shown in Figure 10. The window size L is 16. mn
is high during the whole STF period from index 101 to 260 and remains low before the start
of the packet since there is only noise. The difference in response from the double sliding
window is caused by the cn value. When the packet is present, the correlation result cn of the
identical short preamble is high, so mn jumps to its maximum value. the auto-correlation
algorithm only uses the periodicity of the preamble, and there is no need to know the
specific content. However, if the structure of the preamble is available, the following
method is another good choice.

0 200 400 600
Sample index n

0

0.2

0.4

0.6

0.8

1

m
n

Figure 10. The response of auto-correlation algorithm.

3.2.2. Cross-Correlation Algorithm

The cross-correlation algorithm also uses correlation calculation of the preamble.
The difference from the former one is that it uses a template instead of the received signal
itself [15,17,22,23]. Therefore, completely knowing the preamble structure is the premise of
using this algorithm. The flowchart is shown in Figure 11. In this approach, one symbol
from the short preamble is used as a template, Tn. The cross-correlation is performed
between the received signal rn and the stored template Tn. Window C is used to calculate
the correlation between the two signals by Equation (9). Only when the two parts match
is the calculated result large, and the rest of the results small. There will be 10 peaks in
the results since STF contains 10 repeated symbols. These peak points are very easy to
identify. The correlation result is also normalized by the template signal power calculated
in window P by Equation (10). mn is the same as Equation (8).

cn =
16

∑
k=0

rn+kT∗k (9)

pn =
L−1

∑
k=0

Tn+kT∗n+k (10)
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Figure 11. Cross-correlation algorithm.

Simulation. The experiment result is depicted in Figure 12. There are 10 peak points
during the index from 101 to 260, which are much higher than others. Especially when
there is only ambient noise at the beginning, the matching values are very small. Because
the template in this algorithm is fixed, the received signal can only match the template in
the specific positions, but for the auto-correlation algorithm, it can be considered that its
template is moving along the signal, so mn is high during the entire STF period.

0 200 400 600
Sample index n

0

0.5

1

m
n

Figure 12. The response of cross-correlation algorithm.

4. Analysis and Comparison

In this section, we first give three indicators to judge a detection algorithm, and then an-
alyze how to further improve the detection accuracy. Further, we compare the performance
of the above algorithms from three dimensions.

4.1. Measure Metrics

The performance of the packet detection algorithm can be measured by three indicators:
the probability of detection Pd, the probability of false alarm Pf , and the probability of
misdetection Pm [24]. False alarm is less severe than misdetection, since missing packets
result in data loss. A good algorithm should achieve a high Pd, which is related to Pf and
Pm. The algorithm designers must balance them properly. There are two main factors that
affect these three indicators: threshold setting and decision rule. The detailed discussions
are as follows.

4.1.1. Threshold Setting

When the threshold is too high, most decision variables mn are lower than it, so
Pm will be high, and Pf and Pd will be low. In contrast, if the threshold is too low, Pd
will also be low since the results may be affected by some larger noise points, which
will lead to a high Pf . The changes of Pf and Pm with threshold changing are shown in
Figures 13 and 14 [25,26]. The threshold is set from 0 to 1. The simulation experiment uses
the auto-correlation algorithm and the SNR is set to −2, 0, and 2, respectively. Overall,
as the threshold increases, Pf decreases and Pm increases. Due to uncertain environmental
factors, it is hard to set a definite threshold, but the setting range of the threshold can be
determined. Here are two examples of how to find the range of threshold settings.
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Figure 13. False alarm rate for different thresholds.

0 0.2 0.4 0.6 0.8 1
Threshold

0

0.2

0.4

0.6

0.8

1

M
is

s 
de

te
ct

io
n 

ra
te SNR = 0

SNR = 2

Figure 14. Misdetection rate for different thresholds.

Double sliding window. For this algorithm, when the lengths of two windows are
the same, the peak point of mn can be used as a reference for threshold setting. At mpeak,
the value of apeak contains the sum of signal S and noise N, and the bpeak only contains
noise N, thus mpeak can be estimated by the received SNR as Equation (11). When knowing
the SNR in the environment, the threshold setting has a reference range, which is smaller
than SNR+1.

mpeak =
apeak

bpeak
=

S + N
N

= SNR + 1 (11)

Auto-correlation. Similarly, the results of the auto-correlation algorithm can also be
denoted by SNR. When the noise signal is additive white Gaussian noise (AWGN), the auto-
correlation result of Gaussian noise signal is 0. Thus, there is only the signal power in the
numerator after auto-correlation calculation, and the relationship between mpeak and SNR
is shown as Equation (12).

mpeak = E[(
cpeak

ppeak
)2] = (

S
S + N

)2 = (
SNR

1 + SNR
)2 (12)

Then, a moderate value in this range is chosen or a fixed scale factor is set, such as
0.75, multiplied by mpeak as the threshold. The thresholds for experiments in this paper
were chosen properly to balance Pf and Pm, and each algorithm achieves a high Pd.

4.1.2. Decision Rule

Another way to improve Pd is to set up a proper decision rule. The simple method is
to compare mn and Th. A complex one can be designed based on the characteristics of the
response of each algorithm. Here are two examples of decision rule design.

Auto-correlation. According to Figure 10, mn is large throughout the short preamble
period. Instead of using only a single point, multiple points can be used together for packet
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detection. The engineers modified the simple method by setting two judgment conditions
in MATLAB sample code. The schematic diagram is shown in Figure 15. First, it quantifies
the mn by the threshold. mn is set to 1 when it exceeds Th; otherwise, it is 0. Then, it is
determined whether the number of 1 in the window is greater than 1.5 times the length of a
symbol in STF to judge if there are enough points greater than Th. Second, it is determined
whether the distance between the first point and the other points is less than 3 times the
length of a symbol in STF. The packet is considered detected only when both conditions are
met. The comparison between the simple decision rule and the complex one is shown in
Figure 16. The complex decision rule achieves a higher detection rate because it reduces Pf
well, and the set conditions can be mostly satisfied when the packet arrives, so it will not
cause Pm to increase too much .

Threshold

1

0

The number of 1 > 𝟏. 𝟓 𝑳𝑺𝑻𝑭_𝑺𝒀𝑴𝑩𝑶𝑳

Distance between 

𝟏𝒔𝒕 peak and subsequent peaks 

≤ 𝟑 𝑳𝑺𝑻𝑭_𝑺𝒀𝑴𝑩𝑶𝑳

Figure 15. Complex decision rule for auto-correlation.

0 2 4 6 8 10
SNR

0

0.5

1

1.5

D
et

ec
tio

n 
ra

te

Auto-correlation (simple)
Auto-correlation (complex)

Figure 16. Detection rate comparison of different decision rules for auto-correlation.

Cross-correlation. According to Figure 12, there are 10 peak points in the response of
the cross-correlation algorithm. Moreover, the distances between these points are equal,
which is the length of one short symbol. According to [15], the authors choose to check
all the 10 peaks for detection, as shown in Figure 17. When the first point exceeds the
threshold, they record the index of this point. Then, when the next point is detected, they
judge whether the distance between this point and the previous point is exactly the length
of a symbol. If checked, they continue to do so until all 10 points are detected. Otherwise,
it is considered as no packet. Figure 18 shows the comparison result, which shows that the
simple rule can achieve a better detection rate. It seems to conflict with the previous result.
The reason is that the complex approach is too restrictive and results in a high Pm. Thus,
in this case, the simple rule is more suitable than a complex one. Appropriate relaxation of
restrictions can have a better performance, which will be studied further in the future work.
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Threshold

One symbol length

Figure 17. Complex decision rule for cross-correlation.
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Cross-correlation (simple)
Cross-correlation (complex)

Figure 18. Detection rate comparison of different decision rules for cross-correlation.

Merely comparing the mn and the Th is the simplest rule, which may increase Pf
because of the large singularity. However, that does not mean that a more complex decision
rule is necessarily good, since it will lead to an increase in Pm. Thus, a suitable decision
rule is necessary to achieve high Pd.

4.2. Comparison of Algorithms

In this section, we mainly focus on three dimensions for packet detection algorithms:
the detection rate, the synchronization accuracy, and computational complexity. To make
the comparison reasonable, we use the uniform simple decision rule. The IEEE 802.11ah
protocol is used for the simulation experiments. The added noise signal is AGWN and the
SNR changes from 0 to 10. To obtain a reliable result, each value is averaged by 10,000 times
simulation experiments.

4.2.1. Detection Rate

The most direct criterion for judging the quality of a detection algorithm is the detec-
tion rate. To minimize the Pf , the detected decision is made when the detected position is a
half symbol (eight samples for 802.11ah in this paper) around the real position, which is the
index of 101 in our experiments. The result is shown in Figure 19. Overall, the detection
rate increases with the increase of SNR. When the SNR is large, the gap between several
algorithms is not large, but when the SNR is small, the gap is obvious. Cross-correlation
algorithm provides a very high detection rate, which is close to 1. The detection rate of
signal energy detection is relatively high. Auto-correlation is centered and the double
sliding window detection algorithm is the lowest. The detection rates of the latter two
algorithms are below 50% when SNR = 0.
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Figure 19. Detection rate for four algorithms.

4.2.2. Synchronization Accuracy

After detecting the data packet, it is necessary to find the starting position of the
packet, so synchronization accuracy is also important. We use the synchronization error
time to measure the accuracy. In the experiments, the real starting position of the packet
is at the index of 101. We calculate the average value of the error time between the initial
position in the experiment and the real position. The result shown in Figure 20 indicates
that the synchronization error decreases with the increase in SNR. Signal energy detection
has the largest error, which is close to 150 ns, and the improvement is not noticeable as SNR
increases. Cross-correlation performs much better than others, and has an almost exact
detection position. The synchronization errors of the other two algorithms are close and
decrease from 150 ns to 50 ns as SNR increases from 0 to 10.
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Figure 20. Synchronization error time for four algorithms.

4.2.3. Computational Complexity

Computation complexity is very important when applied to a practical application,
especially for low-power hardware. In the experiments, we use the program running
time of 10,000 times operations to represent the power consumption. The results are
shown in Table 2. The absolute value is not that important because it depends on the
hardware device. We pay more attention to their multiple relationships. The computation
complexity of signal energy detection is the lowest. The cross-correlation consumes the
most computing resources, which is 3.5× more than the first method. Double sliding
window and auto-correlation are about two times larger than the first one.
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Table 2. Running time for four algorithms.

Packet Detection Algorithms Running Time (s)

Signal Energy Detection 0.95

Double Sliding Window 2.32

Auto-correlation 1.97

Cross-correlation 3.56

5. Discussion

Table 3 gives a detailed comparison of the four algorithms. For preamble-based
methods, complex decision-rule methods are also included here. The values in the table
represent the ranking of algorithms on that dimension.

Table 3. Comparison of the four algorithms in three dimensions. For the two preamble-based
algorithms, comparisons are also made with different decision rules. The values in the table represent
the ranking of algorithms on that dimension.

Algorithms Rank

Dimensions Detection
Rate

Synchronization
Error

Computational
Complexity

Signal Energy
Detection 3 6 1

Double Sliding
Window 6 4 3

Auto-correlation
(simple) 5 5 2

Auto-correlation
(complex) 2 3 4

Cross-correlation
(simple) 1 2 5

Cross-correlation
(complex) 4 1 6

Signal energy detection is the simplest algorithm, requiring no additional information,
and can work on all systems. It has the lowest computational power because it only
calculates the energy within a single window. It has a decent detection rate when the
threshold is set properly, but it is sensitive to noise and cannot set a fixed threshold since mn
directly depends on the received signal energy. Moreover, the synchronization performance
is poor. The reason is that energy accumulation is a continuous process. When the packet
arrives, there will be a rising edge for a period of time, and it is difficult to determine the
exact start position of the signals.

Double sliding window detection uses the ratio of two windows for detection, so mn
does not depend on the signal energy level and computational complexity is twice that
of the former one. Moreover, SNR can be regarded as a reference for threshold setting.
In this algorithm, there is an obvious marker point to indicate the starting position of
the data packet, so the synchronization error is smaller than the previous one. In theory,
the detection rate of this algorithm should be close to or better than the first method, but in
experiments, we find that its performance is not as good as expected. Compared with the
first one, this method has a certain improvement in synchronization, but it costs twice the
power consumption, so it has not been widely used in real systems.

Auto-correlation takes advantage of the 10 repetitive short symbols in the preamble, so
it can only be applied to OFDM signals with STF structure. By auto-correlation calculation,
the value of mn is high throughout the STF period. When using a simple decision rule, its
performance is similar to energy detection because the above structure is not fully utilized.
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When the complex rule is used, the performances of detection rate and synchronization are
better, but it will bring some increase in computational complexity. Overall, this algorithm
has a good trade-off between the three dimensions and is used as an example algorithm for
packet detection on MATLAB.

Cross-correlation takes the known short preamble as a template and calculates the
correlation between the template and the received signals. mn will be high only when they
are matched exactly. Therefore, a more accurate matching position can be obtained and it
can achieve a better synchronization performance. In this case, the decision rules need to be
set properly. If the rules are too strict, the detection rate will decrease. The biggest problem
with this algorithm is the high computational complexity, especially when the decision
rules are complicated. Compared with the previous method, there is no requirement for
the structure of the preamble, but the specific content of the signal needs to be known.

All in all, each of these algorithms have their own advantages and are suitable for
different scenarios. The auto-correlation has the best overall performance.

6. Open Challenges and Related Work

In this section, we first point out three challenges in package detection and introduce
some targeted research work. Then, we introduce the application of the above packet
detection algorithms in the actual systems.

6.1. Open Challenges

In a smart home, the above four algorithms can meet the data transmission require-
ments of active wireless sensors. However, such sensors require battery power and have
a limited life. Passive low-power transmission can greatly extend the life of the house-
hold wireless sensors but is limited by power consumption. Therefore, the research on
packet detection algorithms is still an important subject. At present, there are still three
main challenges.

6.1.1. Robust to the Interference

In households, wireless signal transmission faces two problems. First, the room
structure is complex, so the signal energy is weakened by many obstructions, such as
walls. Moreover, there are many wireless devices, so interference from other devices
will affect transmission quality. Some work has been carried out to address this prob-
lem. To reduce the SNR of synchronization signals, thereby improving inter-connectivity,
Aguilar-Torrentera [27] uses matched filtering in the form of passive implementation along
with cumulant-based processing, which makes this algorithm more insensitive to additive
noise. However, this method is only for additive noise. The noise in the actual environment
is more complex, so further research is needed.

6.1.2. High Detection Accuracy

The accuracy of data packet detection directly affects whether the household wireless
sensors can receive data correctly. The above four are traditional algorithms, they are either
simple in calculation but poor in accuracy, or high in accuracy but high in power consump-
tion. Some work modifies these methods to improve accuracy. Yu [28] improves the energy
detection method by two-stage judgment. The first stage roughly detects the valid data.
The second stage detects where it has the largest energy near the detection position of the
first stage. This method can reduce the false positive rate, thereby increasing the detection
accuracy. Others import new technologies to achieve good performance. Ninkovic [29]
introduces a deep learning (DL)-based packet detection algorithm in preamble-based IEEE
802.11 systems. Under some conditions, the performance of the DL-based methods sur-
passes the conventional methods. However, this method still requires much computing
resources. Therefore, how to build a deep learning framework that meets the requirements
of low-power wireless sensors is a topic worth exploring in the future.
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6.1.3. Low Power Consumption

Low-power transmission technology is the key to extending the life of household
wireless sensors. The packet detection algorithms used on such sensors need to reduce
the power consumption as much as possible while ensuring the detection rate. She [30]
proposed an adaptive threshold algorithm combining shifting window difference (SWDT)
and forward–backward (FBDT) difference in real-time R-wave detection. It can solve the
problem of heavily loaded computation caused by the complicated algorithm of the tra-
ditional theory. Gong [31] optimized the cross-correlation algorithm by quantizing the
sampled data before performing correlation calculation. Because the raw data are analog
signals, which are stored as floating-point numbers, it requires a lot of multiplication to
perform correlation calculations. In hardware, multiplication is much more computation-
ally intensive than addition since it requires more D-flip-flops. By contrast, the correlation
calculation for quantified data can be achieved by addition. Therefore, they simplify the
multiplication operations into addition and reduce system power consumption effectively.
However, this method loses some data information and reduces detection accuracy. There-
fore, high-accuracy algorithms for low-power systems are worth continuing to explore.

It is difficult to achieve good performance in the above three aspects at the same time.
Therefore, for future household wireless sensors, it is very important to take a trade-off on
the above characteristics when designing the packet detection algorithms.

6.2. Related Work

The above packet detection algorithms have been widely used in practical systems. In
active wireless transmission systems, preamble-based algorithms have better performance.
Maier [18] used the auto-correlation algorithm for wireless access in vehicular environments
(WAVE). Adrián-Martínez [32] used the cross-correlation algorithm for acoustic transient
signals in noisy and reverberant environments. That method provides a high SNR, good sig-
nal discernment from close echoes, and accurate detection of signal arrival time. Jiang [33]
improved synchronization accuracy and reduced latency through cross-correlation to meet
critical industrial control industry needs. In passive wireless communication systems,
restricted by power consumption, it is difficult to implement correlation calculation based
on preamble. Most backscatter systems, such as [8–10,34–36], use an energy detection
algorithm, which can meet the basic packet detection requirements, but has poor synchro-
nization accuracy. Gong [31] used a modified cross-correlation algorithm. It achieved a high
detection rate and synchronization accuracy, but the performance can be further improved.

7. Conclusions

A household automation system monitors and controls smart home devices remotely
using a wireless sensor network (WSN). A WSN consists of a set of sensor technology,
computer technology, communication technology, etc. In this paper, we focus on the
packet detection, which is a significant step for wireless network communication. We first
introduce four packet detection algorithms, which are based on energy power and preamble
structure. Then, we analyze the factors that affect the accuracy of the algorithm and provide
suggestions for improvement. Further, we conduct a detailed comparison and provide
an in-depth discussion of these algorithms from three dimensions. Finally, we analyze
the current challenges and future directions in this field. By comparison, we find that the
above four algorithms have their own advantages and usage scenarios, among which the
auto-correlation algorithm has the best overall performance and is the most commonly
used method in existing OFDM systems. Although these algorithms have been widely
used in today’s active systems, they have not yet achieved good performance in passive
wireless transmission systems. More new algorithms need to be explored and designed to
improve the efficiency of packet detection to improve the communication performance of
household wireless sensors, and further improve the service quality of the smart home.
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