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Abstract: In this work, the authors developed procedures to explain mean extra travel time (T) and
extra travel time variability (V). This was carried out for situations (through simulations) where
the fast vehicles’ travel time, whose speed tendency (sp1) is the permitted speed limit, is negatively
affected (i.e., increasing travel time) by the presence of slow vehicles, whose speed tendency (sp2)
is half the speed limit. The speed limit was set in the range of 60 km/h to 90 km/h, with seven
cases, and every case had eight simulations, each with different p1 (fast vehicles’ percentage) and
p2 = 100% − p1 (slow vehicles’ percentage) values. p2 ranged from 10% to 80% at intervals of 10%, for
a total of 56 simulations. From the simulations’ data, we calculated the fast vehicles’ extra travel time,
which is the additional time to traverse an avenue segment owing to the presence of slow vehicles.
The fast and slow vehicles recreate heterogenous traffic in terms of speed. We developed procedures
for modeling T and V with p2, and V with T. For modeling, ∼71.42% of the data from simulations
was used. We find that the models’ parameters values can be used for explaining the remaining data.
In addition, we discovered that the pattern of p2 vs. V, for p2 ranging from 50% to 80%, is different
among sp1 cases and not linear.

Keywords: extra travel time; fast vehicles; heterogeneous speed; slow vehicles; variability

1. Introduction

Bad traffic is experienced in most cities of developing countries. A current traffic
problem, which is getting worse every day, is the increase in travel times (see the congestion
levels in [1]). Thus, gaining insight into situations inducing higher travel times is of utter
importance. One of those situations is when drivers, intentionally or owing to the operating
limitations of the vehicle they drive, travel at a lesser speed than the posted speed limit.
Therefore, in the same stretch of road, the drivers’ desired speed (or speed tendency) may
vary and there is a likely chance of slow vehicles impeding fast vehicles. The traffic outcome
when fast and slow vehicles interact is difficult to establish and is related with the drivers’
desired speed and the percentage of slow vehicles, among other variables.

The aim of the present research is, firstly, to perform simulations with different per-
centages of fast and slow vehicles for proposed values for each speed tendency. The output
of these simulations is the mean extra travel time (T) and the extra travel time variability
(V) of the fast vehicles. These data (i.e., T and V) are divided into two groups: the data
for modeling and the data for validating. Later, procedures for modeling T and V are
proposed with the intention to prove if the patterns in the data (for modeling) can be
reproduced. In addition, we demonstrate that the data for validating can be explained with
the proposed models, and we present how to calculate the models’ parameter values as
part of the procedures.

In a traffic scenario with vehicles driving slower than the general traffic stream (thus
generating a speed differential), when the faster vehicles are impeded by the slower
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vehicles, the former are tempted to perform overtaking maneuvers, if possible. In [2], it
was proven that the vehicles’ travel speed (and thus also travel time) is affected, among
others, by the traffic composition in terms of speeds. In [3], a relationship between speed
variance and accidents was established, finding that an increase in average speed does not
necessarily increase accident rates, but an increase in speed variance certainly increases
them. In [4], the proposed algorithm triggers a need to overtake when the speed differential
is 8 km/h. The work in [5] focuses on establishing (via simulations) the average travel
time to complete a highway segment and the number of passenger cars’ lane changes
with different percentages of heavy trucks. The results show that both variables increase
as the percentage of heavy trucks increases, with the influence of heavy trucks on traffic
being notorious in heavy traffic. In [6], speed indicators on sites with uniform speed limits
(65 mph for passenger vehicles and trucks/buses) and with differential speed limits (70 mph
for passenger vehicles and 60 mph for trucks/buses) were investigated. The results from
the models were a mean speed of 65.3 mph for the uniform case (one) and 66.9 mph for the
differential case (two). Similarly, the 85th percentile speed results were 70.7 mph for case
one and 73.9 mph for case two. Finally, the standard deviation was 5.5 mph for case one
and 6.8 mph for case two. Through simulations, the impact on traffic of differential speed
controls was investigated in [7]. The speed control strategies were uniform posted speed
limits (USLs), differential posted car–truck speed limits (DSLs), and differential mandated
truck speed limits (MSLs). Considered positive for traffic safety, DSL and MSL reduce
average travel speed, increase head-on time-to-collision, and reduce car–car overtaking.
Considered negative, DSL and MSL increase percentage time spent following and total
number of overtakes, decrease car–car overtaking, but increase car–truck overtaking. In [8],
considering all types of vehicles, it was detected that the highest travel speed variability
occur in freeways with DSL, followed by urban freeways with USL and a speed limit of
55 mph. For passenger cars, the speed was consistent when the speed limit was 70 mph,
but at lower speed limits, more speed variation was detected.

Different factors are related to free-flow speed; one of those is differential speed.
In [9], the free-flow speed was modeled considering as an explanatory variable the trucks’
percentage in order to test if the flow heterogeneity (the traffic composition in terms of
vehicles’ type) impacted speed. The results showed that the trucks’ percentage is significant
for the four models: daytime speed for cars and trucks, and nighttime for cars and trucks.
In [10], with the aim of identifying explanatory factors for mean speed and speed dispersion
considering two-lane rural highways on tangent segments and horizontal curves, free-flow
speed models were developed.

The drivers’ travel speed is influenced by the posted speed limit. In [11], it was
found that the posted speed limit is highly correlated with the average free-flow speed
for urban streets, multilane highways, and freeways. In [12], the speed limits in Utah
rural interstates were increased from 75 to 80 mph, finding that the travel speed and the
probability to overcome the speed limit were then higher, and that by increasing the speed
limit, the speed variance was not reduced. However, as the literature review presented
in [13] suggests, the results concerning the effects of speed limit on speed variation do
not support each other. The investigation in [14] centers on the local and global impacts
of speed limits considering two groups of drivers—the compliant and the non-compliant
drivers. When choosing speed, both consider the travel time cost, the perceived crash risk,
and the perceived ticket risk.

The factors influencing the drivers’ desired speed on the road are numerous. There
are multiple interacting factors that explain drivers’ behaviors [15]. A study on drivers’
speeding behavior is presented in [16]. The drivers’ characteristics and their relation to
speed (as a risk of accidents level) are presented in [17]. In [18], the drivers’ speed choice
(when there is at least a 6 s time gap to the next vehicle) at two different sites were compared,
and at two different days for the same site. How a driver is influenced by the collective
driving behavior is discussed in [19]. Empirical evidence suggesting that the speed choice
is influenced by the pleasure of driving and other drivers’ behavior is presented in [20].
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Preliminary data for supporting the notion that a driver adjusts their speed by comparing
their own speed with that of others are introduced in [21]. A model including attitudes
and perceptions of other drivers’ behavior explains approximately 15% of the variation in
observed speed [22]. A speed choice prediction model was presented in [23]. It was found
that the number of heavy vehicles (trucks and buses) and four-wheelers (informal para-
transit) flowing in the same direction as the subject vehicle negatively influences the driver
speed choice of the higher-speed class, and the same applies for trucks and motorcycles
driving in the opposite direction. Buses, trucks, four-wheelers, and motorcycles negatively
influence the speed of the lower-speed class (same traffic direction), and the same applies
for non-motorized and buses driving in the opposite direction. The operating speed was
modeled in [24], and the dependence of the drivers’ speed choice on individual driver’
behavior and the roadway geometry was demonstrated.

The necessity of vehicle class-specific modeling has been noted. Models to establish
the free-flow speed of different types of vehicles are presented in [25]. In [26], it was found
that the level-of-service (LOS) is different for each vehicle type. Besides, removing some
vehicle types seems suitable to improve the system performance. Further, it was noticed
that, in mixed traffic, the average stream speed better represents the dominant vehicle type,
which is two-wheelers in [26]. The work in [27] uses percent speed-reduction and percent
slower vehicles to define the LOS of a two-lane highway under heterogeneous traffic. It
was concluded that it is impractical to evaluate the LOS of the entire traffic situation (with
integration of motorized and non-motorized modes) with a common scale. In [28], two new
methodologies are presented for estimating the percent time spent following (PTFS) on
two-lane highways. The probabilistic method considers the slow-moving vehicles’ average
speed and the distribution of the desired speeds to calculate the percentage of vehicles
whose desired speed is superior to the slower vehicles’ average speed. This percentage
(used to calculate the probability of a vehicle being impeded), along with the probability of
a vehicle being part of a platoon, are used to calculate the percent following (PF), which
is a surrogate measure for PTFS. In [29], it was noticed that the aggregation of faster and
slower vehicles on a single class may not capture the interactions among the vehicles of the
same class.

The dynamic of homogeneous and heterogeneous traffic is very different; in the
latter, there are different types of vehicles, thus there are interactions (such as lane change
maneuvers) between slow-moving and fast-moving vehicles. In [30], particle-hopping
models for two-lane traffic were developed considering two types of vehicles: fast and
slow vehicles, where the fast vehicles’ maximum allowed speed is considerable higher than
that of the slow vehicles. The proposed models are different from each other because of
the lane-changing rules, thus producing different results about the movement of the fast
and slow vehicles. In [31], the heterogeneous traffic behavior in developing countries was
reproduced with a discrete cellular automata (CA) model, modeling five types of vehicles:
car, bus, truck, two-wheeler, and three-wheeler. In [32], a CA model was used to simulate
traffic in a two-lane system; it was demonstrated that even small densities of slow vehicles
induced the formation of platoons. Moreover, modifications were incorporated into the
basic model, e.g., for allowing drivers to anticipate the speed of their predecessor, leading
to diminishing the effect of slow vehicles. The multi-class traffic flow model presented
in [33] incorporates heterogeneous drivers, i.e., drivers selecting a different speed to drive,
thus there are faster vehicles trying to overtake slower vehicles. In addition, the model
explains traffic flow theory phenomena: two-capacity regimes in the fundamental diagram,
hysteresis, and platoon dispersion. In [34], a vehicle class was defined considering the
desired speed in free-flow conditions, and a multiclass first-order simulation model was
proposed that can replicate non-linear phenomena, including the dispersion of traffic
platoons when a distribution of desired speeds exists. In [35], data were collected in several
two-lane roads in India, and it was observed that the capacity decreases as the proportion
of three-wheeler, tractor, or heavy vehicle increases, and that the capacity increases as the
proportion of two-wheeler increases. In [36], through agent-based modeling, simulations
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representative of the traffic in the USA (with cars and trucks) and of the traffic in India
(with different types of vehicles) were performed. It was found that the heterogeneity of
vehicle types causes a high number of lane changes.

In this investigation, we simulate and analyze traffic, where the speed differential
affects travel speed, thus affecting travel time. We were interested in finding a relation
between the percentage of slow vehicles and two variables related with the fast vehicles: the
mean extra travel time (T) and the extra travel time variability (V). We propose procedures
for modeling two metrics of importance in traffic studies: T and V, which were calculated
with the fast vehicles’ travel times from simulations. Our research is different from the
current literature as we perform traffic simulations considering a wide range of fast and
slow vehicles’ percentage values for a wide range of fast and slow vehicles’ speed tendency
values, thus adding insight for this kind of traffic situation. Our proposed procedures have
the advantage of including a method for calculating the parameters’ values of the models
that describe the data (T and V) that were not used to calibrate the models. In this research,
we have two general objectives:

(1) For each fast vehicles’ speed tendency (sp1) value, to run a simulation for each slow
vehicles’ percentage (p2) value, in order to acquire traffic information (the fast vehi-
cles’ travel times) and calculate the mean extra travel time and the extra travel time
variability. The data, i.e., T and V are divided in two groups: 1. the data for modeling
and 2. the data for validating.

(2) Establish procedures for modeling the first group of data and for explaining the second
group of data. Calculate the models’ error and identify the procedures reporting the
lower mean error, i.e., the suitable proposals to describe the T and V patterns.

2. Materials and Methods
2.1. Simulation Settings

As previously stated, in a simulation, we have fast and slow vehicles. The fast vehicles
are represented by the p1 percentage and their speed tendency is sp1. The slow vehicles
are represented by the p2 percentage and their speed tendency is sp2. The speed tendency
(or desired speed) is the speed that a driver aims to reach and tries to maintain, without
exceeding it. Moreover, the fast drivers’ desired speed is assumed to be the legal speed
limit (or posted speed), and is selected in the range of 60 to 90 km/h. The slow drivers’
desired speed is the half of their counterpart (fast drivers), and is selected in the range of 30
to 45 km/h. The desired speed values are selected in a range that will provide meaningful
results for different traffic scenarios.

The simulation scenario is a two-lane one-direction avenue segment of d = 500 m
length, with constant flow and no entry points, and (looking for general results) without
considering specific road geometry or environmental issues. The input of a simulation
are fast and slow speed tendency, sp1 and sp2, respectively, and fast and slow vehicles’
percentage, p1 and p2, respectively. The output of a simulation are the fast vehicles’
travel times. This outcome depends on the percentage of fast and slow vehicles and their
speed tendencies.

For simulating we use the simulator tool presented in [2], which integrates the mi-
crosimulation model for accelerating (decelerating) in free driving and following another
vehicle, as well as for overtaking. Thus, the fast vehicles’ percentage and speed tendency
can take a value from the sets {90%, 80%, . . . , 20%} and {60 km/h, 65 km/h, 70 km/h,
. . . ,90 km/h}, respectively. p2 can take a value from the set {10%, 20%, . . . , 80%}, while
sp2 can take a value from the set {30 km/h, 32.5 km/h, 35 km/h, . . . ,45 km/h}. Recalling
that p1 = 100% − p2 and sp2 = sp1/2, a p2 value fixes p1, and a sp1 value fixes sp2. In a
simulation, the fast vehicles’ travel time to complete the 500 m distance is being measured,
which is influenced by the slow vehicles, because these force the fast vehicles to perform
overtaking maneuvers. We have eight simulations (the possible values of p2) for each of the
seven sp1 cases, thus 56 simulations were performed. We use the output data of 40 simula-
tions (hereafter, data for modeling) for modeling, in these simulations sp1 is a value from
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{60,65,75,85,90}. We use the output data of 16 simulations (hereafter, data for validating)
for validating, in these simulations sp1 is a value from {70, 80}. The data for modeling and
validating conform the total observed data. The simulation time of a single simulation is
600 s, thus the total simulation time was 33600 s, or 9.3333 h. For all simulations, we set the
time lapse (f ) between vehicles’ arrival per lane to be f = 6 s, i.e., one vehicle arrives per
lane each 6 s. Table 1 shows the parameters’ values for setting a simulation. As the flow is
constant, the time of day and day of week, which are variables related with demand, were
out of the scope of this study. Instead, variables p2 and sp1 (and their counterparts, p1 and
sp2, respectively) shape the traffic outcome (travel times).

Table 1. Simulation settings.

Fast Vehicles’
Desired Speed

(km/h)

Slow Vehicles’
Desired Speed

(km/h)

Fast Vehicles’
Percentage (%)

Slow Vehicles’
Percentage (%)

Time Lapse
between Vehicles

per Lane (s)

A value of the set
{60,65, . . . ,85,90}

A value of the set
{30,32.5, . . . ,42.5,45}

A value of the set
{90,80, . . . ,30,20}

A value of the set
{10,20, . . . ,70,80} 6 s

When a vehicle is generated in a simulation, we need to establish if it will be a fast or a
slow one. In any simulation, for each 10 vehicles generated (a group), it is guaranteed that
the percentages of fast and slow vehicles of that group are equal to the percentages’ values
(p1 and p2, respectively) of the simulation settings. This generation process seeks to avoid
patterns between groups in the order by which the fast and slow vehicles are generated, but
there is also randomness involved. For completeness, we repeated simulations for various
selections of sp1 and p2 values, as the order of the generated vehicles will be different from
one simulation to another and thus the outcome will be different too. We compare the T
of simulations with same sp1 and p2 values and were not statistically different. The same
applies for V.

2.2. Traffic Data

The travel time of the i-th vehicle (of those that count for p1) is ti = tout
i − tin

i , where
tout
i is the timestamp (in seconds, the time starts as the simulation does) when the i-th

vehicle leaves the avenue, and tin
i is the timestamp when the i-th vehicle enters the avenue.

The expected travel time (tsp) is calculated using Equation (1). As sp1 is assumed to be the
legal speed limit, it is also the maximum speed to travel along the distance d. Therefore, tsp

is the minimum time (without any delay) to traverse d.

tsp = d/sp1 (1)

The mean extra travel time (T) is calculated with Equation (2).

T =
N

∑
i=1

(ti − tsp)/N (2)

where i = 1 . . . N is the vehicle index, and N is the total number of fast vehicles dur-
ing the simulation. Table 2 shows the T of the simulations with modeling purposes, so
Tp2

sp1 = T10
60 = 0.232 × 10−3 s is the mean extra travel time from a simulation with p2 = 10%

and sp1 = 60 km/h.
Extra travel time variability is calculated with Equation (3), similar as in the study

presented in [37].

V =
1
N

N

∑
i=1
|te

i − T| (3)
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In Equation (3), V is the extra travel time variability and te
i = ti − tsp is the extra travel

time of the i-th vehicle. The calculated V values in Table 3, where Vp2
sp1 = V80

90 = 1.105068 s,
correspond to a simulation with p2 = 80% and sp1 = 90 km/h.

Table 2. Mean extra travel time data.

p2 T60 T65 T75 T85 T90

10% T10
60 = 0.232 × 10−3 s T10

65 = 0.011688 T10
75 = 0.066858 T10

85 = 0.09583 T10
90 = 0.052981

20% T20
60 = 0.255986 0.335886 0.321614 0.393612 0.315841

30% T30
60 = 0.915285 0.813281 0.75368 0.823075 0.784827

40% T40
60 = 1.944888 1.609535 1.718255 1.379915 1.400379

50% T50
60 = 3.237528 2.881251 2.453064 2.20284 2.190038

60% T60
60 = 4.812069 4.316362 3.70371 3.239808 3.135533

70% T70
60 = 6.774603 6.005609 4.949776 4.394159 4.239621

80% T80
60 = 9.029137 7.842978 6.649683 5.68031 5.467405

Table 3. Extra travel time variability data.

p2 V60 V65 V75 V85 V90

10% V10
60 = 5.28× 10−5 s V10

65 = 0.011465 V10
75 = 0.082488 V10

85 = 0.119821 V10
90 = 0.072548

20% V20
60 = 0.375195 0.452188 0.347738 0.409435 0.341801

30% V30
60 = 0.89158 0.681472 0.605966 0.583584 0.530159

40% V40
60 = 1.194243 0.888504 0.891808 0.768092 0.788808

50% V50
60 = 1.666407 1.207142 1.279672 1.250472 1.477645

60% V60
60 = 1.350847 1.152442 1.290058 1.167536 1.054867

70% V70
60 = 1.612525 1.612141 1.413731 1.062381 1.236766

80% V80
60 = 1.31128 1.257396 0.996451 1.23536 1.105068

2.3. Modeling T
2.3.1. Procedure 1

T values corresponding to sp1 = 60 km/h and p2 selections (second data column
in Table 2 above) are stored in vector A60 =

[
0.23× 10−3 0.25 . . . 6.77 9.02

]
. The same

procedure can be used to construct a vector for each sp1 case. A vector content is accessed
by position with index j = 1 . . . 8, for example A65(1) = 0.0116. We construct vector Bsp1

with Asp1 in such a way that, for j ≥ 2, Bsp1(j− 1) = Asp1(j)− Asp1(j− 1), because the
values of vectors Bsp1 might follow a linear pattern. Table 4 presents the values of vectors
Bsp1 . In the first column, we have the content of vector B60; in the second, the content of
B65; and so on.

The Pearson’s linear correlation coefficient (r) between vector Bsp1 and vector
J = [1 2 . . . 6 7] (the vector containing the j = 1 . . . 7 index values) is expressed as corr

(
Bsp1 , J

)
.

As corr
(

Bsp1 , J
)
≥ 0.95 for sp1 values {60,65,75,85,90}, each Bsp1 vector is modeled with a

linear equation (Equation (4)). The equations presented in this section, and in the following
ones, were solved with the least-squares technique.

B̌sp1(j) = (a · j) + b (4)

With Equation (4) (with index j being the independent term), we calculate parameters
a (slope) and b (y-intercept) for modeling vectors in Table 4, resulting in vectors B̌sp1 . Table 5
presents parameters a and b to obtain each vector B̌sp1 . In the first column, the parameters’
values for obtaining B̌sp1=60 can be found; in the second, those for B̌65; and so on. Parameter
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a values are in vector Pa, so Pa = [0.32 0.27 0.22 0.17 0.16]; while parameter b values are in
vector Pb, so Pb = [−0.01 0.03 0.04 0.09 0.13].

Table 4. Vectors Bsp1 values.

Bsp1=60 Bsp1=65 Bsp1=75 Bsp1=85 Bsp1=90

B60(1) = 0.255754 s B65(1) = 0.324197 B75(1) = 0.254756 B85(1) = 0.297783 B90(1) = 0.26286

B60(2) = 0.659299 0.477396 0.432067 0.429463 0.468985

B60(3) = 1.029603 0.796253 0.964575 0.55684 0.615552

B60(4) = 1.29264 1.271716 0.734809 0.822926 0.789659

B60(5) = 1.574541 1.435111 1.250645 1.036968 0.945494

B60(6) = 1.962534 1.689247 1.246066 1.154351 1.104088

B60(7) = 2.254534 1.837369 1.699908 1.286151 1.227784

Table 5. Vector B̌sp1 parameters’ values (procedure 1).

Parameter ˇ
Bsp1=60

ˇ
Bsp1=65

ˇ
Bsp1=75

ˇ
Bsp1=85

ˇ
Bsp1=90

a 0.3267 0.2715 0.2231 0.1748 0.1605

b −0.0169 0.0327 0.0476 0.0984 0.1313

Consider now parameter a values in Pa with position values X1 = [1 2 4 6 7], which
are the positions corresponding to the sp1 values {60,65,75,85,90}. Position 1 corresponds
to a parameter for describing B60, and position 2 for B65, thus missing positions 3 and
5, which correspond with B70 and B80, respectively. X1 and Pa are negatively correlated
(r = −0.9849), while X1 and Pb are positively correlated (r = 0.9772). Then, by solving a
linear equation relating X1 and Pa, we calculate parameter ã values for X2 = [3 5], which are
the positions corresponding to the sp1 cases {70, 80}. The same path is taken for calculating
parameter b̃ values through a linear equation, now relating X1 and Pb. The models and
their statistics are presented in Table 6. Thus, with the models in Table 6 and x = 3, we
obtain ã and b̃ parameters’ values for estimating vector B̂70, and with x = 5, we obtain the
parameters’ values to estimate vector B̂80. Table 7 presents ã and b̃ parameters’ values, used
in B̂sp1 (j) = (ã · j) + b̃.

Table 6. Parameters’ models and statistics (procedure 1).

Model Root Mean
Squared Error R-Squared Adjusted

R-Squared p-Value

ã = −0.0266 x + 0.3378 0.0138 0.97 0.96 0.00223

b̃ = 0.0222 x− 0.0300 0.0142 0.955 0.94 0.00412

Table 7. Vector B̂sp1 parameters’ values (procedure 1).

Parameter ^
Bsp1=70

^
Bsp1=80

ã 0.2579 0.2047

b̃ 0.0364 0.0808

A vector B̂sp1 is transformed to Âsp1 in such a way that Â70(1) and Â80(1) are
inferred through linear regression using values [A65(1) A75(1) A85(1)]; for k ≥ 2,
Âsp1(k) = Âsp1(1) + ∑

j=k−1
j=1 B̂sp1(j). A vector B̌sp1 is transformed to Ǎsp1 such tat

Ǎsp1(1) = Asp1(1); for k ≥ 2, Ǎsp1 (k) = Ǎsp1 (1) + ∑
j=k−1
j=1 B̌sp1(j).
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2.3.2. Procedure 2

Now, vectors Asp1 for sp1 values {60,65,75,85,90} are modeled with the exponential
function presented in Equation (5), with p2 (the slow vehicles’ percentage value) being
the independent term, c and d being the model’s parameters, and index k = 1 . . . 8. The
exponential function’s parameters’ values to obtain vectors Ǎsp1 are presented in Table 8.

Ǎsp1(k) = c · exp(d · p2) (5)

Table 8. Vectors Ǎsp1 parameters’ values (procedure 2).

Parameter ˇ
Asp1=60

ˇ
Asp1=65

ˇ
Asp1=75

ˇ
Asp1=85

ˇ
Asp1=90

c c = 0.4167 0.3817 0.3612 0.3440 0.3379

d d = 0.0389 0.0384 0.0368 0.0356 0.0353

Parameter c values in vector Pc = [0.4167 . . . 0.3379], and parameter d values in vector
Pd = [0.0389 . . . 0.0353]. The correlation coefficient between X1 and Pc is r = −0.9567,
and that between X1 and Pd is r = −0.9943. Thus, by means of a linear equation with
independent values being X1 and dependent values being Pc, we calculate parameter c̃
at X2 values. The same method is used for calculating parameter d̃ at X2 values with the
derived linear model of X1 versus Pd. Models and statistics for c̃ and d̃ are presented in
Table 9. The parameters’ values displayed in Table 10 are used in Âsp1(k) = c̃ · exp

(
d̃ · p2

)
.

Table 9. Parameters’ models and statistics (procedure 2).

Model Root Mean
Squared Error R-Squared Adjusted

R-Squared p-Value

c̃ = −0.0120 x + 0.4163 0.0107 0.915 0.887 0.0107

d̃ = −0.0006 x + 0.0396 0.000199 0.989 0.985 0.000515

Table 10. Vectors Âsp1 parameters’ values (procedure 2).

Parameter ^
Asp1=70

^
Asp1=80

c̃ 0.3803 0.3563

d̃ 0.0376 0.0364

2.3.3. Procedure 3

Now, vectors Asp1 for sp1 cases {60, 65, 75, 85, 90} are modeled with a polynomial
equation, with p2 being the independent term; see Equation (6).

Ǎsp1(k) = a1 p2
n + a2 p2

n−1 + . . . + an p2 + an+1 (6)

We choose n = 2 (three parameters) for the polynomial order because the mean error
E = mean([E60 E65 E75 E85 E90 ]) = 0.0356 s is acceptable, where Esp1 is the error of compar-
ing Asp1 and Ǎsp1 . Choosing n = 3 results in E = 0.0295 s, which is not a significant improve-
ment (a lower error). The parameters’ values of Ǎsp1(k) = a1 p2

2 + a2 p2
1 + a3 are presented

in Table 11. The a1 parameter values in Pa1 = [0.0016 . . . 0.0008], a2 parameter values in
Pa2 = [−0.0159 . . . 0.0055], and a3 parameter values in Pa3 = [−0.0328 . . .− 0.0991].
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Table 11. Vectors Ǎsp1 parameters’ values (procedure 3).

Parameter ˇ
Asp1=60

ˇ
Asp1=65

ˇ
Asp1=75

ˇ
Asp1=85

ˇ
Asp1=90

a1 0.0016 0.0013 0.0010 0.0009 0.0008

a2 −0.0159 −0.0127 −0.0029 −0.0010 0.0055

a3 −0.0328 −0.0129 −0.0322 0.0278 −0.0991

The linear correlation coefficient between Pa1 and X1 is r = −0.9860, that for Pa2 and
X1 is r = 0.9788, and that for Pa3 and X1 is r = −0.2513. Considering r values, the ã1 and ã2
parameters were calculated using a linear equation, from Pa1 versus X1 and Pa2 versus X1,
respectively. The ã3 parameter was calculated using a polynomial equation of order n = 4,
from Pa3 versus X1. The parameters’ models and statistics are presented in Table 12, with
these models we obtain ã1, ã2 and ã3 for each value in X2. The parameters’ values are used
in Âsp1(k) = ã1 p2

2 + ã2 p2 + ã3 and presented in Table 13.

Table 12. Parameters’ models and statistics (procedure 3).

Model Root Mean
Squared Error R-Squared p-Value

ã1 = −0.0001 x + 0.0016 6.58 × 10−5 0.972 0.00199
ã2 = 0.0033 x− 0.0189 0.00208 0.958 0.0037

ã3 = −0.0027 x4 + 0.0395 x3 − 0.1907 x2

+0.3565 x− 0.2353
0 1 —

Table 13. Vectors Âsp1 parameters’ values (procedure 3).

Explained Vector Parameter
~
a1 Parameter

~
a2 Parameter

~
a3

Âsp1=70 0.00129 −0.0087 −0.0370

Âsp1=80 0.0010 −0.0020 0.0087

2.4. Modeling V
2.4.1. Procedure 4

Mean extra travel time might explain extra travel time variability. The Pearson’s linear
correlation coefficient (r) between T values (in vector Asp1 , corresponding to p2 = 10%
to 80%) and V values (in vector Csp1) is expressed as corr(Asp1 , Csp1). For the differ-
ent sp1 cases, corr(A60, C60) = 0.7054, corr(A65, C65) = 0.8334, corr(A75, C75) = 0.7361,
corr(A85, C85) = 0.8268, and corr(A90, C90) = 0.7543. There is a positive correlation between
Asp1 and Csp1 for any sp1 case, thus if T increases, so does V. Now, we use a polynomial
equation to explain V with T, i.e., the independent values in Asp1 and the dependent values
in Csp1 . We propose that the choice of the polynomial equation degree should satisfy
two conditions: the mean error E = mean([E60 E65 E75 E85 E90 ]) < 0.1, where Esp1 is the
error between Csp1 and Čsp1 , and the correlation coefficient |r| > 0.60 for each vector’s
parameter values and X1. A polynomial equation of order n = 3 satisfies both condi-
tions. Then, Čsp1(k) = b1 Asp1(k)

3 + b2 Asp1(k)
2 + b3 Asp1(k) + b4; the parameters’ values

are shown in Table 14. Vector Pb1 = [0.0077 . . . 0.0168] contains the b1 parameter values
for sp1 cases {60,65,75,85,90}, Pb2 = [−0.1473 . . . −0.2285], Pb3 = [0.8393 . . . 0.9467], and
Pb4 = [0.1177 . . . 0.0084].
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Table 14. Vectors Čsp1 parameters’ values (procedure 4).

Parameter ˇ
Csp1=60

ˇ
C65

ˇ
C75

ˇ
C85

ˇ
C90

b1 0.0077 0.0031 0.0022 0.0221 0.0168

b2 −0.1473 −0.0763 −0.0943 −0.2551 −0.2285

b3 0.8393 0.5507 0.6649 0.9454 0.9467

b4 0.1177 0.1706 0.0992 0.0200 0.0084

Thus, we obtain vectors Čsp1 with parameters in Table 14. For modeling b̃1, b̃2, b̃3, and
b̃4 we use a polynomial equation of order n = 3. For b̃1, we have Pb1 (dependent values) and
X1 (independent values), and so on for b̃2, b̃3, and b̃4 considering Pb2 , Pb3 , and Pb4 , respec-
tively. The parameters’ models and statistics are presented in Table 15, where the models
explain well (R-squared in the range ∼87% to ∼99%) the dependent variable (a parameter).
The parameters’ values for estimating Ĉsp1(k) = b̃1 Asp1(k)

3 + b̃2 Asp1(k)
2 + b̃3 Asp1(k) + b̃4

are presented in Table 16.

Table 15. Parameters’ models and statistics (procedure 4).

Model Root Mean
Squared Error R-Squared p-Value

b̃1 = −0.0006 x3 + 0.0086 x2 − 0.0305 x + 0.0317 0.00624 0.873 0.445

b̃2 = 0.0062 x3 − 0.0839 x2 + 0.303 x− 0.3799 0.0313 0.961 0.249

b̃3 = −0.0161 x3 + 0.2199 x2 − 0.8209 x + 1.452 0.0192 0.997 0.0692

b̃4 = 0.0038 x3 − 0.0511 x2 + 0.1695 x− 0.0015 0.0128 0.991 0.119

Table 16. Vectors Ĉsp1 parameters’ values (procedure 4).

Vector
~
b1

~
b2

~
b3

~
b4

Ĉsp1=70 0.0078 −0.1372 0.7466 0.1074

Ĉ80 0.0129 −0.1834 0.8322 0.0590

2.4.2. Procedure 5

The linear correlation between p = [10 20 . . . 70 80] (p2 values) and Csp1 (V values) for
sp1 cases {60,65,75,85,90} is always positive and in the range of ∼ 0.85 to ∼ 0.93. As the
percentage of slow vehicles increases, extra travel time variability increases. Now, with a
polynomial equation, the dependent variable V is explained by the independent variable p2.
For the polynomial degree (starting with n = 1), we seek to meet two conditions (the same as in
procedure 4): (1) E <0.1 and (2) |r| > 0.60 for each Pb vector. E = mean([E60 E65 E75 E85 E90 ]),
where Esp1 is the error between Csp1 and Čsp1 , and r = corr(Pb, X1) is the linear correlation
coefficient between Pb (a vector containing the b parameter values corresponding with the
sp1 cases) and X1. With n = 5, both conditions are met. The parameters’ values for mod-
eling Čsp1(k) = b1p2

5 + b2p2
4 + b3p2

3 + b4p2
2 + b5p2 + b6 are presented in Table 17. The b1

parameter values are in vector Pb1 , the b2 parameter values are in vector Pb2 , and so on.
Each vector Pb was modeled with a linear equation, with X1 as the independent values

and Pb as the dependent values. The models and statistical results are shown in Table 18.
With the models in Table 18, we calculate each parameter for X2 values (corresponding

to sp1 cases {70, 80}). The parameters’ values for describing Ĉsp1(k) = b̃1 p2
5 + b̃2 p2

4 +

b̃3 p2
3 + b̃4 p2

2 + b̃5 p2 + b̃6 are presented in Table 19.
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Table 17. Vectors Čsp1 parameters’ values (procedure 5).

Vector b1 b2 b3 b4 b5 b6

Čsp1=60 −1.4070 × 10−8 3.3891 × 10−6 −0.3069 × 10−3 0.0122 −0.1633 0.6934

Č65 −1.6574 × 10−8 3.2941 × 10−6 −0.2344 × 10−3 0.0069 −0.0506 0.0313

Č75 −2.1557 × 10−9 3.4381 × 10−7 −2.7155 × 10−5 0.0012 0.0028 −0.0381

Č85 3.1903 × 10−8 −6.8689 × 10−6 0.5373 × 10−3 −0.0188 0.3114 −1.5865

Č90 1.8897 × 10−8 −3.9332 × 10−6 0.2878 × 10−3 −0.0090 0.1463 −0.7256

Table 18. Models and statistics (procedure 5).

Model Root Mean Squared Error R-Squared p-Value

b̃1 = 7.5331× 10−9 x− 2.6532× 10−8 1.02 × 10−8 0.825 0.0328

b̃2 = −1.6267× 10−6 x + 5.7517× 10−6 2.12 × 10−6 0.836 0.0296

b̃3 = 0.000128 x− 0.00046068 0.000166 0.838 0.0292

b̃4 = −0.0044404 x + 0.016265 0.0061 0.821 0.0341

b̃5 = 0.063598 x− 0.20505 0.101 0.776 0.0485

b̃6 = −0.2882 x + 0.82771 0.529 0.72 0.627

Table 19. Vectors Ĉsp1 parameters’ values (procedure 5).

Vector
~
b1

~
b2

~
b3

~
b4

~
b5

~
b6

Ĉsp1=70 −3.9331 × 10−9 8.7164 × 10−7 −7.6672 × 10−5 0.0029 −0.0142 −0.0368

Ĉsp1=80 1.1133 × 10−8 −2.3817 × 10−6 0.1793 × 10−3 −0.0059 0.1129 −0.6132

2.4.3. Procedure 6

The linear correlation coefficient between P1 = [10 20 30 40] (p2 values from 10% to
40%) and Csp1(1 : 4) is corr

(
P1, Csp1(1 : 4)

)
≥ 0.98 for all sp1 cases {60,65,75,85,90}. Be-

tween P2 = [50 60 70 80] (p2 values from 50% to 80%) and Csp1(5 : 8) are the following:
corr(P2, C60(5 : 8)) =−0.5759, corr(P2, C65(5 : 8)) =0.3794, corr(P2, C75(5 : 8)) =−0.5309,
corr(P2, C85(5 : 8)) =−0.2267, and corr(P2, C90(5 : 8)) =−0.6393. In Csp1(1 : 4), the first
four values, and in Csp1(5 : 8), the last four values of Csp1 . There is a strong positive correla-
tion between P1 and Csp1(1 : 4) for all sp1 cases. The correlations between P2 and Csp1(5 : 8)
cases are not that strong. Thus, we modeled (independent variable p2 and dependent vari-
able V) a vector Csp1 in two parts: the first four points with a linear equation and the last four
points with a polynomial equation. When modeling vectors Csp1(1 : 4), we obtained pa-
rameter b1 (in vector Pb1 ) and b2 (in vector Pb2 ) values. The r between X1 and Pb1 is −0.8604,
and that between X1 and Pb2 is 0.8160. E = 0.0141 s, with Esp1 expressing the error between
Csp1(1 : 4) and Čsp1(1 : 4). By modeling Csp1(5 : 8), we obtained the c1, c2, and c3 parame-
ter’s values (in vectors Pc1 , Pc2 , and Pc3 , respectively). We selected for modeling Csp1(5 : 8) a
polynomial of degree n = 2, as E = 0.0434 < 0.1, and neither n = 2 nor n = 3 satisfy |r| < 0.60
for all correlations. Nevertheless, with n = 2, corr(Pc1 , X1) =0.58, corr(Pc2 , X1) =−0.59 and
corr(Pc3 , X1) =0.57 are good approximations. Henceforth, using parameters b1 and b2, we
modeled a vector Čsp1(k1) = b1 p2 + b2, with k1 = 1 . . . 4 and p2 = 10 . . . 40 (see Table 20).
With parameters c1, c2, and c3, we modeled a vector Čsp1(k2) = c1 p2

2 + c2 p2 + c3, with
k2 = 5 . . . 8 and p2 = 50 . . . 80 (see Table 21). Vector Pb1 = [0.0409 . . . 0.0233] contains
b1 parameter values, and vector Pb2 = [−0.4094 . . .− 0.1509] contains b2 parameter val-
ues. Vectors Pc1 = [3.5789 × 10−5 . . . 0.7276 × 10−3], Pc2 = [-0.0126 . . . −0.1039], and
Pc3 = [2.1544 . . . 4.8104].
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Table 20. Vectors Čsp1 (1 : 4) parameters’ values (procedure 6).

Parameter ˇ
C60(1:4)

ˇ
C65(1:4)

ˇ
C75(1:4)

ˇ
C85(1:4)

ˇ
C90(1:4)

b1 0.0409 0.0286 0.0268 0.0211 0.0233

b2 −0.4094 −0.2066 −0.1895 −0.0595 −0.1509

Table 21. Vectors Čsp1 (5 : 8) parameters’ values (procedure 6).

Parameter ˇ
Csp1=60(5:8)

ˇ
C65(5:8)

ˇ
C75(5:8)

ˇ
C85(5:8)

ˇ
C90(5:8)

c1 3.5789 × 10−5 −0.7501 × 10−3 −0.0010 0.6397 × 10−3 0.7276 × 10−3

c2 −0.0126 0.1036 0.1317 −0.0846 −0.1039

c3 2.1544 −2.1649 −2.6667 3.8998 4.8104

The derived linear models of X1 vs. Pb1 and X1 vs. Pb2 are presented in
Table 22. The parameters’ values (obtained with models in Table 22 at X2 values) used in
Ĉsp1(k1) = b̃1 p2 + b̃2 for sp1 cases {70, 80} are displayed in Table 23.

Table 22. Models (for parameters b̃1 and b̃2 ) and statistics (procedure 6).

Model Root Mean Squared
Error R-Squared p-Value

b̃1 = −0.0026032 x +
0.038616

0.00454 0.74 0.0613

b̃2 =
0.041151 x− 0.36784

0.0858 0.666 0.0921

Table 23. Vectors Ĉsp1 (1 : 4) parameters’ values (procedure 6).

Parameter ^
C70(1:4)

^
C80(1:4)

b̃1 0.0308 0.0256

b̃2 −0.2443 −0.1620

The parameter values in Pc1 , Pc2 , and Pc3 were modeled with a polynomial equa-
tion of order n = 4 (for modeling five points). The models and statistics are shown in
Table 24. The calculated parameters’ values (with models in Table 24 at X2 values) used
in Ĉsp1(k2) = c̃1 p2

2 + c̃2 p2 + c̃3 for sp1 cases {70, 80} are shown in Table 25.

Table 24. Models (for parameters c̃1, c̃2, and c̃3 ) and statistics (procedure 6).

Model Root Mean
Squared Error R-Squared p-Value

c̃1 = −1.8458× 10−5 x4 + 0.00024889 x3

−0.00088743 x2 + 0.00041101 x + 0.00028177
0 1 —

c̃2 = 0.0018896 x4 − 0.02386 x3 + 0.066804 x2

+0.054576 x− 0.1121
0 1 —

c̃3 = −0.04006 x4 + 0.42626 x3 − 0.22552 x2

−6.0257 x + 8.0195
0 1 —
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Table 25. Vectors Ĉsp1 (5 : 8) parameters’ values (procedure 6).

Vector ~
c1

~
c2

~
c3

Ĉ70(5 : 8) −0.0012 0.1616 −3.8233

Ĉ80(5 : 8) −0.2735 × 10−3 0.0293 0.4973

3. Results
3.1. Procedure 1 Results

With Equation (7), we establish the error between vectors Asp1 and Âsp1 , or be-
tween vectors Asp1 and Ǎsp1 , where q = 8 is the number of elements in Asp1 . The er-
ror between vectors Asp1 and Âsp1 is expressed as Esp1(Asp1 , Âsp1), and that between
vectors Asp1 and Ǎsp1 as Esp1(Asp1 , Ǎsp1). The errors between Asp1 and Ǎsp1 (a vec-
tor directly modeled with the data for modeling) for sp1 values {60,65,75,85,90} are as
follows: E60(A60, Ǎ60) = 0.0222 s, E65(A65, Ǎ65) = 0.0519 s, E75(A75, Ǎ75) = 0.0550 s,
E85(A85, Ǎ85) = 0.0238 s, and E90(A90, Ǎ90) = 0.0128 s. The errors between Asp1 and Âsp1

(a vector indirectly modeled with the data for modeling, without the data for validating) for
sp1 values {70, 80} are as follows: E70(A70, Â70) = 0.1817 s and E80(A80, Â80) = 0.2505 s.

Esp1 =
∑

k=q
k=1

∣∣Asp1(k)− Âsp1(k)
∣∣

q
(7)

The mean error of the Asp1 vs. Ǎsp1 cases is E = mean([E60 E65 E75 E85 E90 ]) = 0.0332 s,
a lesser value than the mean error between the Asp1 vs. Âsp1 cases, which is
E = mean([E70 E80 ]) = 0.2162 s. This is an expected result as vectors Ǎsp1 were modeled
directly with the data for modeling, i.e., with Asp1 for sp1 values {60,65,75,85,90}, while
vectors Âsp1 were indirectly modeled with the data for modeling, but without the data
for validating, i.e., without Asp1 for sp1 values {70, 80}. Figure 1 shows the graphs of the
compared vectors in this section.

3.2. Procedure 2 Results

Vectors Âsp1 for sp1 values {70, 80} were obtained with the parameters’ values in
Table 10 and Equation (5), and vectors Ǎsp1 for sp1 values {60, 65, 75, 85, 90} were ob-
tained with the parameters’ values in Table 8 and Equation (5). The errors between the
Asp1

and Ǎsp1 cases are as follows: E60(A60, Ǎ60) = 0.4151 s, E65(A65, Ǎ65) = 0.3944 s,
E75(A75, Ǎ75) = 0.2957 s, E85(A85, Ǎ85) = 0.2390 s, and E90(A90, Ǎ90) = 0.2497 s. The
errors between the Asp1 and Âsp1 cases are as follows: E70(A70, Â70) = 0.3582 s and
E80(A80, Â80) = 0.4095 s. The error of the directly modeled vectors Ǎsp1 is comparable to
the error of the indirectly modeled vectors Âsp1 . Figure 2 shows the graphs of the compared
vectors in this section.

3.3. Procedure 3 Results

The errors between vectors Ǎsp1 and Asp1 (directly estimated T vs. data for modeling)
cases are as follows: E60(A60, Ǎ60) = 0.0226 s, E65(A65, Ǎ65) = 0.0552 s,
E75(A75, Ǎ75) = 0.0617 s, E85(A85, Ǎ85) = 0.0264 s, and E90(A90, Ǎ90) = 0.0116 s. The
errors between vectors Âsp1 and Asp1 (indirectly estimated T vs. data for validating) are as
follows: E70(A70, Â70) = 0.1892 s and E80(A80, Â80) = 0.2371 s. Figure 3 shows the graphs
of the compared vectors in this section.
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Figure 1. p2 vs. T (procedure 1).
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Figure 2. p2 vs. T (procedure 2).
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Figure 3. p2 vs. T (procedure 3).

3.4. Procedure 4 Results

The errors between Csp1 and Čsp1 for sp1 values {60,65,75,85,90} are: E60(A60, Ǎ60) =

0.1165 s, E65(A65, Ǎ65) = 0.1117 s, E75(A75, Ǎ75) = 0.0620 s, E85(A85, Ǎ85) = 0.0616 s, and
E90(A90, Ǎ90) = 0.1065 s. The errors between Csp1 and Ĉsp1 for sp1 values {70, 80} are:
E70(A70, Â70) = 0.1569 s and E80(A80, Â80) = 0.1070 s. Figure 4 shows the graphs of the
compared vectors in this section.

3.5. Procedure 5 Results

With the parameters’ values from Table 17, we modeled vectors Čsp1 , and with the pa-
rameters values from Table 19, we estimated vectors Ĉsp1 . The errors between the Csp1 and
Čsp1 cases are: E60(A60, Ǎ60) = 0.0753 s, E65(A65, Ǎ65) = 0.0637 s, E75(A75, Ǎ75) = 0.0362 s,
E85(A85, Ǎ85) = 0.0376 s, and E90(A90, Ǎ90) = 0.1004 s. The errors between the Csp1 and
Ĉsp1 cases are: E70(A70, Â70) = 0.1150 s and E80(A80, Â80) = 0.1223 s. Figure 5 shows the
graphs of the compared vectors in this section.

3.6. Procedure 6 Results

With parameters b̃1 and b̃2 (for a linear equation), we construct vectors Ĉsp1(1 : 4).
With parameters c̃1, c̃2, and c̃3 (for an order 2 polynomial equation), we construct vec-
tors Ĉsp1(5 : 8). The errors between Csp1 and Čsp1 for sp1 cases {60, 65, 75, 85, 90} are:
E60(A60, Ǎ60) = 0.0748 s, E65(A65, Ǎ65) = 0.0956 s, E75(A75, Ǎ75) = 0.0352 s,
E85(A85, Ǎ85) = 0.0281 s, and E90(A90, Ǎ90) = 0.0534 s. The errors between Csp1 and Ĉsp1

for sp1 cases {70, 80} are: E70(A70, Â70) = 0.1051 s and E80(A80, Â80) = 0.1285 s. Figure 6
shows the graphs of the compared vectors in this section.
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Figure 4. T vs. V (procedure 4).
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Figure 5. p2 vs. V (procedure 5).



Appl. Sci. 2022, 12, 7176 17 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 23 
 

 
Figure 6. 𝑠𝑠2 vs. V (procedure 6). 

4. Discussion 
4.1. Discussion for Explaining T 

Table 26 presents the error (obtained in procedure 1, 2, and 3) between a vector with 
data for modeling (𝐴𝐴𝑠𝑠𝑠𝑠1) and the directly modeled vector (�̌�𝐴𝑠𝑠𝑠𝑠1). It also shows the mean of 
the errors 𝐸𝐸𝑠𝑠𝑠𝑠1(𝐴𝐴𝑠𝑠𝑠𝑠1 , �̌�𝐴𝑠𝑠𝑠𝑠1)  for 𝑠𝑠𝑠𝑠1  cases {60,65,75,85,90}, i.e., 𝐸𝐸�  =
 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚([𝐸𝐸60 𝐸𝐸65 𝐸𝐸75 𝐸𝐸85 𝐸𝐸90 ]). The lower mean error is presented by procedure 1, followed 
closely by procedure 3. 

Table 26. Error between 𝐴𝐴𝑠𝑠𝑠𝑠1 and �̌�𝐴𝑠𝑠𝑠𝑠1  (procedures 1, 2, and 3). 

Procedure 𝑬𝑬𝟔𝟔𝟔𝟔(𝑨𝑨𝟔𝟔𝟔𝟔,𝑨𝑨�𝟔𝟔𝟔𝟔) 𝑬𝑬𝟔𝟔𝟔𝟔(𝑨𝑨𝟔𝟔𝟔𝟔,𝑨𝑨�𝟔𝟔𝟔𝟔) 𝑬𝑬𝟕𝟕𝟔𝟔(𝑨𝑨𝟕𝟕𝟔𝟔,𝑨𝑨�𝟕𝟕𝟔𝟔) 𝑬𝑬𝟖𝟖𝟔𝟔(𝑨𝑨𝟖𝟖𝟔𝟔,𝑨𝑨�𝟖𝟖𝟔𝟔) 𝑬𝑬𝟗𝟗𝟔𝟔(𝑨𝑨𝟗𝟗𝟔𝟔,𝑨𝑨�𝟗𝟗𝟔𝟔) 𝑬𝑬� 
Procedure 1 0.0222 s 0.0519 0.0550 0.0238 0.0128 0.0332 
Procedure 2 0.4151 0.3944 0.2957 0.2390 0.2497 0.3188 
Procedure 3 0.0226 0.0552 0.0617 0.0264 0.0116 0.0355 

Similarly, Table 27 presents the error between a vector with data for validating (𝐴𝐴𝑠𝑠𝑠𝑠1) 
and the indirectly modeled vector ( �̂�𝐴𝑠𝑠𝑠𝑠1 ). It also shows the mean of the errors 
𝐸𝐸𝑠𝑠𝑠𝑠1(𝐴𝐴𝑠𝑠𝑠𝑠1 , �̂�𝐴𝑠𝑠𝑠𝑠1) for 𝑠𝑠𝑠𝑠1 cases {70,80}. The lower 𝐸𝐸� is presented by procedure 3, followed 
closely by procedure 1. Thus, the techniques presented in procedures 3 and 1 are the most 
suitable for modeling and explaining T. 

Table 27. Error between 𝐴𝐴𝑠𝑠𝑠𝑠1 and �̂�𝐴𝑠𝑠𝑠𝑠1  (procedures 1, 2, and 3). 

Procedure # 𝑬𝑬𝟕𝟕𝟔𝟔(𝑨𝑨𝟕𝟕𝟔𝟔,𝑨𝑨�𝟕𝟕𝟔𝟔) 𝑬𝑬𝟖𝟖𝟔𝟔(𝑨𝑨𝟖𝟖𝟔𝟔,𝑨𝑨�𝟖𝟖𝟔𝟔) 𝑬𝑬�  =  𝒎𝒎𝒎𝒎𝒂𝒂𝒎𝒎([𝑬𝑬𝟕𝟕𝟔𝟔 𝑬𝑬𝟖𝟖𝟔𝟔]) 
Procedure 1 0.1817 s 0.2505 0.2162 
Procedure 2 0.3582 0.4095 0.3839 

10 20 30 40 50 60 70 80

 p
2  (%)

0

0.5

1

1.5

2

 V
 (s

)

10 20 30 40 50 60 70 80

 p
2  (%)

0

0.5

1

1.5

2

 V
 (s

)

10 20 30 40 50 60 70 80

 p
2  (%)

0

0.5

1

1.5

2

 V
 (s

)

10 20 30 40 50 60 70 80

 p
2  (%)

0

0.5

1

1.5

2

 V
 (s

)

10 20 30 40 50 60 70 80

 p
2  (%)

0

0.5

1

1.5

2

 V
 (s

)

10 20 30 40 50 60 70 80

 p
2  (%)

0

0.5

1

1.5

2

 V
 (s

)

10 20 30 40 50 60 70 80

 p
2  (%)

0

0.5

1

1.5

2

 V
 (s

)

Figure 6. p2 vs. V (procedure 6).

4. Discussion
4.1. Discussion for Explaining T

Table 26 presents the error (obtained in procedure 1, 2, and 3) between a vector with
data for modeling (Asp1 ) and the directly modeled vector (Ǎsp1 ). It also shows the mean of
the errors Esp1(Asp1 , Ǎsp1) for sp1 cases {60,65,75,85,90}, i.e., E = mean([E60 E65 E75 E85 E90 ]).
The lower mean error is presented by procedure 1, followed closely by procedure 3.

Table 26. Error between Asp1 and Ǎsp1 (procedures 1, 2, and 3).

Procedure E60(A60,
ˇ
A60) E65(A65,

ˇ
A65) E75(A75,

ˇ
A75) E85(A85,

ˇ
A85) E90(A90,

ˇ
A90)

¯
E

Procedure 1 0.0222 s 0.0519 0.0550 0.0238 0.0128 0.0332

Procedure 2 0.4151 0.3944 0.2957 0.2390 0.2497 0.3188

Procedure 3 0.0226 0.0552 0.0617 0.0264 0.0116 0.0355

Similarly, Table 27 presents the error between a vector with data for validating
(Asp1) and the indirectly modeled vector (Âsp1). It also shows the mean of the errors
Esp1(Asp1 , Âsp1) for sp1 cases {70,80}. The lower E is presented by procedure 3, followed
closely by procedure 1. Thus, the techniques presented in procedures 3 and 1 are the most
suitable for modeling and explaining T.

We notice that, for procedures 1, 2, and 3, E80 > E70, meaning that Â70 is easier
to explain than Â80. Moreover, for procedures 1 and 3, E65 and E75 are higher than E60,
E85, and E90. It follows that Ǎ60, Ǎ85, and Ǎ90 are easier to model than Ǎ65 and Ǎ75. In
procedures 1 and 3, E90 presents the lowest error and E75 presents the highest, thus Ǎ90 is
the most easily modeled vector and Ǎ75 is the hardest to model.
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Table 27. Error between Asp1 and Âsp1 (procedures 1, 2, and 3).

Procedure # E70(A70,
^
A70) E80(A80,

^
A80)

¯
E=mean([E70 E80])

Procedure 1 0.1817 s 0.2505 0.2162

Procedure 2 0.3582 0.4095 0.3839

Procedure 3 0.1892 0.2371 0.2132

In Figure 3, we observe that, for the sp1 {70, 80} cases, the last two points of vec-
tors Âsp1 are clearly distant from the corresponding points of vectors Asp1 (in contrast
with the other six points). The last two points are the T when the percentage of slow
vehicles is 70% and 80%. Hereafter, Ex,y is the mean error of the x {1,2, . . . ,5,6} pro-
cedure and the y {1,2} comparison, where y = 1 indicates a comparison between the
directly modeled and observed data (Table 26 or Table 28), and y = 2 indicates a com-
parison between the not directly modeled and observed data (Table 27 or Table 29). Then,
E3,2

= mean
([

E70(A70, Â70
)

E80(A80, Â80)]
)
= 0.2132 s is the mean error of procedure 3

and sp1 {70, 80} cases.

Table 28. Error between Csp1 and Čsp1 (procedures 4, 5, and 6).

Procedure # E60(C60,
ˇ
C60) E65(C65,

ˇ
C65) E75(C75,

ˇ
C75) E85(C85,

ˇ
C85) E90(C90,

ˇ
C90)

¯
E

Procedure 4 0.1165 s 0.1117 0.0620 0.0616 0.1065 0.0917

Procedure 5 0.0753 0.0637 0.0362 0.0376 0.1004 0.0626

Procedure 6 0.0748 0.0956 0.0352 0.0281 0.0534 0.0574

Table 29. Error between Csp1 and Ĉsp1 (procedures 4, 5, and 6).

Procedure # E70(C70,
^
C70) E80(C80,

^
C80)

¯
E=mean([E70 E80])

Procedure 4 0.1569 s 0.1070 0.1320

Procedure 5 0.1150 0.1223 0.1187

Procedure 6 0.1051 0.1285 0.1168

With procedure 1, the mean error between the directly modeled and observed data,
i.e., E1,1

= 0.0332 s, is lesser that the mean error between the not directly modeled and
observed data, i.e., E1,2

= 0.2162 s. This holds for the three procedures. Figure 1 shows that,
for Asp1 vs. Âsp1 , the first six points of Â70 and Â80 are visible close to the corresponding
points of A70 and A80, respectively. The last two points of Â70 are above those of A70, and
the last two points of Â80 are below those of A80.

In procedure 2, Esp1(Asp1 , Ǎsp1) varies between 0.2390 and 0.4151 s, and E2,1
= 0.3188 s

is not distant from E2,2
= mean([E70 E80]) = 0.3839 s, so the error of the directly modeled

data Esp1(Asp1 , Ǎsp1) is similar to the error of the not directly modeled data Esp1(Asp1 , Âsp1).
Figure 2 shows that, for the directly modeled data (Ǎsp1), the first three points are above
the observed data (Asp1), point four is close (from above or below), points five to seven
are below, and point eight is above. Comparing the indirectly modeled with the observed
data, we notice that points 1, 2, and 3 of Âsp1 are slightly above the corresponding points
of Asp1 (for sp1 cases {70, 80}). For Â70, the estimated points 4 and 7 are visibly accurate,
the estimated points 5 and 6 are below the observed value, and the estimated point 8 is
above the observed value. For Â80, the estimated points 4 and 5 are visibly accurate, and
the estimated points 6, 7, and 8 are below the observed value.

With these results, we found procedures 1 and 3 to be suitable to model the data for
modeling and to explain the data for validating.
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4.2. Discussion for Explaining V

Table 28 presents the error between the directly modeled data and data for modeling,
with E = mean([E60 E65 E75 E85 E90 ]). Table 29 presents the error between the indirectly
modeled data and data for validating, with E = mean([E70 E80]).

For modeling V, procedure 6 is the best option. Here, we have that E6,1
< E5,1

< E4,1

and that E6,2
< E5,2

< E4,2. Figure 6 shows that, in vectors Čsp1 for the sp1 {60,65,75,90}
cases, points 6 and 7 are the least accurate (i.e., dissimilar with the observed), with Č85
being the most accurate (E85 = 0.0281 s) and Č65 being the least accurate (E65 = 0.0956 s).
In vector Ĉ80, points 7 and 8 are the least accurate; therefore, when sp1 = 80 km/h and for
p2 = 70% and p2 = 80%, it was difficult to explain V.

In Figure 5, and regarding the directly modeled data, points 5 and 6 of vectors Čsp1 for
the sp1 {60, 65, 90} cases are visibly inaccurate, and points 4 to 7 of vector Č90 are also rather
imprecise. Additionally, Č90 has the highest error (E90 = 0.1004 s) among Čsp1 vectors
of procedure 5, while Č75 along with Č85 present the lowest errors E75 ∼= E85 ∼= 0.03 s.
Regarding the indirectly modeled data, in vector Ĉ70, points 5 to 7 are the least accurate,
while in Ĉ80, the least precise are points 5, 7, and 8. Hence, there are imprecisions when
p2 = 50% and p2 = 70% for both of the sp1 {70, 80} cases.

Procedure 4 presents the higher E, as can be seen in Tables 28 and 29. Table 28 shows
that vectors Čsp1 for the sp1 cases {60,65,90} display Esp1> 0.1. Table 29 shows that vector
Ĉ80 is more accurate than Ĉ70, because E80 < E70 (0.1070 s < 0.1569 s).

With the results presented above, we consider procedures 5 and 6 as the best options
for modeling and explaining the observed data. Besides, one important finding is that
the pattern of V values, in the range p2 = 50% to p2 = 80%, is not the same among sp1
cases. It appears that a presence of about 50% of slow vehicles is the lowest threshold from
where, and up to 80% in this study, the fast vehicles’ extra travel time variability follows a
nonlinear pattern.

4.3. Contributions

The contributions of this study are as follows:
A better understanding of the traffic situations recreated through simulations, i.e., sit-

uations where vehicles traveling at different speeds interact with each other.
The developed procedures (and models within) for modeling and explaining the ob-

served data from simulations. The best procedures in terms of a lower error were identified.
The patterns of T and V for each sp1 case and p2 range were identified. T exhibited an

identifiable pattern for all sp1 cases and p2 ranges. For all sp1 cases and the range p2 = 10%
to 40%, V shows a linear pattern. For sp1 {60,65,75,80,90} cases and the range p2 = 50% to
80%, V shows an unidentifiable pattern. For sp1 {70} case and the range p2 = 50% to 80%,
V shows an inverted U-shaped pattern. For sp1 {85} case and the range p2 = 50% to 80%,
V shows a U-shaped pattern.

The findings of this work help to better understand heterogeneous traffic scenarios.
The procedures can be used to describe the traffic of real locations and, with this information,
authorities may decide which actions are required to alleviate traffic issues. Moreover, the
traffic outcome of possible future scenarios can help to better plan public infrastructure
that avoids congestions, low speeds, high noise levels, pollutions, and other problems that
arise as a result of traffic problems.

4.4. Practical Application

A two-lane, one-direction avenue is a common infrastructure in street networks of
heterogeneous traffic, i.e., where different types of vehicles circulate and where the vehicles’
desired speed may not be the same. Examples of this infrastructure are the avenues’
segments described in Table 30.
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Table 30. Avenues’ features.

Segment’ Name Segment’
Location

Start GPS
Coordinate

End GPS
Coordinate

Segment’
Length

Estación Central (north) Durango,
México

24.036787,
−104.666690

24.037343,
−104.660777 ∼ 600 m

Estación Central (south) Durango,
México

24.036681,
−104.666694

24.037276,
−104.660766 ∼ 600 m

The two segments described in Table 30 are separated by a sidewalk and the posted
speed limit for both is 60 km/h, despite that it is common that vehicles traveling at a lower
speed than the speed limit slow down the traffic. The procedures introduced in the present
study were developed with the intention of analyzing the traffic of segments with similar
features to those presented in Table 30. After calibration, the models describe the average
extra travel time and the extra travel time variability of the fast vehicles according to the
percentage of slow vehicles circulating and the desired speeds. With this information, the
corresponding authorities can adjust (or create) policies for restricting or penalizing the
slow vehicles in order to keep a desired level of service, or to simply inform users of the
current level of service.

5. Conclusions

Procedures 1, 2, and 3 model and explain the mean extra travel time (dependent
variable) through the percentage of slow vehicles (independent variable). Procedures 1
and 3 accurately modeled the data for modeling, with procedure 2 being the least accurate.
Moreover, procedures 1 and 3 are accurate for explaining the data for validating, both
for p2 = 10% to 60%, but less accurate for p2 = 70% and 80%, concluding that, when
the percentage of slow vehicles is 70% or more, it became difficult to explain the data
for validating.

Procedures 4, 5, and 6 model and explain the extra travel time variability (dependent
variable). In procedure 4, the independent variable is the mean extra travel time, and in
procedures 5 and 6, it is the percentage of slow vehicles. Procedure 4 is the least accurate
to model the data for modeling and to explain the data for validating, therefore p2 is a
better choice of independent variable than T. Procedures 5 and 6 modeled the data for
modeling at approximately equal accuracy. Procedure 5 presents the higher error for Č90,
being least precise in the range p2 = 40% to 70%. Procedure 6 presents the higher error for
Č65, being least precise at p2 = 60% and 70%. Moreover, procedures 5 and 6 explain with
approximately the same accuracy the data for validating. For procedures 5 and 6, we can
say that, in Ĉ70 and Ĉ80, in the range p2 = 10% to 40%, the V values (the corresponding
observed values present a linear pattern) in general are better explained than in the range
p2 = 50% to 80%, although in the last range with sp1 = 70 km/h, the observed V values
likely present an inverted U-shaped form, and with sp1 = 85 km/h, a U-shaped form.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/app12147176/s1. The name of a folder corresponds with the sp1 value, a
file is named x_y, where x is the p1 value and y is the p2 value. For any file, each 8 rows represent
the full data of a single vehicle. For any row, we write data each time that a vehicle has traveled a
distance ≥ x, with x taking values from the set {20,40,60 . . . 500}, so we have 25 columns for row.
Then, for each 8 rows, we have that the first row is the current time, second is the difference between
the current and previous vehicle position, third is the difference between the current and previous
time, fourth is the time that a vehicle spend in the left lane between the current and previous time,
fifth is the time that a vehicle spend in the right lane between the current and previous time, sixth set
to 1 if at the current time the vehicle is in the left lane and set to 0 if it is in the right lane, seventh set
to 1 if at the current time the vehicle is in a different lane that at the previous time and set to 0 if it is
in the same lane, and eighth the vehicles’ speed tendency (sp1 or sp2).

https://www.mdpi.com/article/10.3390/app12147176/s1
https://www.mdpi.com/article/10.3390/app12147176/s1
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