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Abstract: Digital models are the foundation of digital twins, which form the basis of autonomous
off-road vehicles. Developing virtual models of off-road vehicles using dynamic reduction techniques
is one of several approaches. The article commences with a comprehensive overview of the most
widely used dynamic reduction methods and then introduces performance metrics for assessing their
efficacies in the context of digital twins. The paper additionally includes a detailed mathematical
derivation of the state-space representation for reduced-order finite element models. The state-
space representation of the reduced finite element models facilitates their export to problem-solving
environments for dynamic analysis. The state-space models are eventually solved utilizing the built-
in libraries of numerical solvers in textual and graphical programming platforms. In addition, the
article identifies the set of solvers that best suit the simulation of virtual models for off-road vehicles.
This article also includes an evaluation of the simulation results for digital models with modes
ranging from 0 to 30 Hz. In addition, the article demonstrates the lower bound of the frequency range
necessary and sufficient to be retained in off-road vehicle virtual models. Finally, the paper presents
the simulation outcomes for digital models of commercial off-road vehicles with custom-built virtual
modules of powertrain, electrical, and control systems in a problem-solving environment.

Keywords: digital twin; industry 4.0; MATLAB; ANSYS; simulation; crane; modal analysis; dynamic
substructuring; dynamic reduction; component modal synthesis

1. Introduction

The technical cornerstone of Industry 4.0 [1–19] is the Internet of Things (IoT) [20,21],
which envisions integrating electronics, software, sensors, and network connectivity into
devices to facilitate the seamless transfer of data over the internet. The introduction of
IPV6 [22,23], the availability of affordable sensors, and the enhancement of computing hard-
ware have eased data acquisition and the processing of sensory information. Consequently,
data-driven decision-making and device management in the industrial environment are
now more practically feasible than before. The decision-making and control of operating
structures can be accomplished by comparing the pooled data from the sensors installed
on them with the simulated output of their digital equivalents, a concept referred to as a
“digital twin” [24–50], which is also one of the theoretical frameworks associated with the
Industry 4.0 revolution. The use of digital twins for aviation prognostics and diagnostics
operations has yielded considerable benefits for aerospace and space organizations. In the
realm of the aerospace industry, NASA’s initial definition of a digital twin was “an inte-
grated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that uses
the best available physical models, sensor updates, fleet history, etc., to mirror the life of its
flying twin. The digital twin is ultra-realistic and may consider one or more important and
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interdependent vehicle systems” [51]. As stated in the definition, the primary objective of a
digital twin is to replicate the life of an aircraft in cyberspace using the “best” physics-based
digital model that consists of the integration of sub-components that represent the overall
structure. While the aerospace industry and space agencies, in particular, have reaped
immense benefits, the adoption of digital twins for heavy off-road vehicles is rare. There
are potential benefits of digital twin models for the latter sector, including but not limited to
enhanced operational efficiency, improved maintenance regimes that can prevent expensive
faults, optimized asset utilization, reduced operating expenses, and remote commissioning.
A virtual model that encompasses the entire set of coordinates of a full-order model for a
structure accurately and consistently represents the deformed shape, but it requires solving
large matrices. Consequently, simulation of virtual models with the entire set of princi-
pal coordinates is computationally expensive and has a prolonged runtime, preventing
real-time synchronization with the activities of their physical counterparts operating in an
industrial environment. This article proposes dynamic reduction-based virtual models as a
solution to these challenges.

Dynamic reduction techniques came into existence from 1960 onwards and are referred
to as “component modal synthesis” in the field of structural dynamics [52,53], and “sub-
structuring” in statics [54], with the original objectives of (i) minimizing the computational
cost of analysis of structures with a large number of degrees of freedom and (ii) analyzing
constituent substructures of a structure independently in such a manner that it would
be feasible to amalgamate the results. Nonetheless, dynamic model reduction schemes
have the potential to make a substantial contribution to the development of physics-based
virtual models.

Substructure coupling approaches may be primarily categorized based on the types of
modes employed for modeling the reduced finite element representation of a component as

1. Fixed-Interface methods [55–57];
2. Free-Interface methods [58–61];
3. Loaded-Interface [62];
4. Hybrid methods [63,64].

The substructure interfaces in fixed-interface schemes are entirely constrained, whereas
the substructure interfaces in free-interface methods are unrestricted. The “loaded-interface”
methods, which augment the interface loading components in the structural matrices of
the substructures, are related to the free-interface schemes. Hybrid techniques allow for
arbitrary restrictions at substructure boundaries, and in the most generalized situation,
these constraints can be a combination of the three types of outlined coupling methods.
The fundamental objective of this research is to identify the high-fidelity dynamic model
reduction approach that “best” suits the development of digital models for off-road vehicles.
In this article, Craig–Bampton and Hintz’s modal synthesis techniques for fixed-interface
and free-interface methods, respectively, are considered.

In addition to reduced structural models, digital models for off-road vehicles com-
prise virtual models of driveline systems, electrical components, and powertrain control
modules. Textual and graphical programming platforms, unlike FEA-based platforms,
use uncluttered programming syntax and are thus deemed appropriate for the design,
modeling, and simulation of specialized powertrain, electrical, and control systems. Fi-
nally, the state-space representation of reduced structural models can be incorporated into
problem-solving environments and subsequently coupled with custom-built powertrain,
electrical, and control systems to develop virtual models for off-vehicles in cyberspace.

The virtual models facilitate the yield of physics-based digital twins for off-road vehi-
cles; however, there is hardly any extant literature presenting their development methods.
This paper proposes dynamic reduction methods for developing reduced-order models that
subsequently represent the virtual models for off-road vehicles. Simulation of these digital
models with reduced degrees of freedom improves speed without impacting accuracy.
Furthermore, built-in packages of FEA-based software, predominately used for structural
modeling and analysis, incorporate these high-fidelity dynamic reduction techniques,
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thereby enabling the development of the reduced-order models on the same platforms
where designed. This article outlines the state-space representation method for these
reduced-order models. The state-space models facilitate the simulation of reduced-order
models in problem-solving environments. This paper, in addition, provides a comprehen-
sive mathematical derivation for the state-space representation of reduced-order models.
To accomplish real-time synchronization with the activities of a physical counterpart in
an industrial environment, the simulation time of virtual models must be less than or
equal to the operating time of physical equivalents. As a result, a comparative analysis
of the execution times in a problem-solving environment of digital models developed
utilizing Craig–Bampton and Hintz’s component modal synthesis is provided. It is worth
noting that these virtual models are eventually solved utilizing solvers that are available
as built-in libraries on textual and graphical programming platforms; hence, selecting the
optimal solver among the available solvers is critical. Consequently, this paper presents
a comparative assessment of the execution times of virtual models for off-road vehicles
employing these solvers.

The remainder of this article is structured as follows: Section 2 presents a compre-
hensive review of the dynamic reduction techniques and the state-space representation
of the reduced finite-element model. Section 3 outlines the metrics for evaluating the
dynamic reduction methods. Section 4 presents the results, and finally, Section 5 concludes
the article.

2. Component Modal Synthesis

The superposition of principal modes, also referred to as the normal mode method [65],
is a fundamental and extensively used analytical approach for solving vibration problems.
In this method, linear transformations in terms of modal vectors, in conjunction with
the orthogonality of modal vectors, enable the transformation of a set of simultaneous
equations of motion in physical coordinates into a set of independent modal equations. For
large and complex industrial structures, an eigensolution, which is the most fundamental
part of a dynamic analysis using the normal mode method, becomes uneconomical due
to the sheer number of equations of motion. Dynamic reduction methods alleviate the
computational constraints of dealing with large matrices by obtaining the principal modes
of the overall system from parts rather than as a whole. In these methods, multiple
eigenvalue problems involving individual constituent components represented by smaller
matrices are used rather than a single eigenvalue problem representing the entire structure.
The coordinate system obtained by synthesizing the components is assembled for system
synthesis, yielding one final eigenvalue problem, typically of smaller size.

A substructure, in general, contains a set of constraints at its interfaces coupled
with neighboring substructures. General displacement within a substructure is defined
in dynamic reduction methods by superimposing displacements relative to component
boundaries, from which a set of generalized coordinates applicable to the entire structure
is synthesized. One of the subcategories of dynamic reduction methods is fixed-interface
component modal synthesis. The fixed-interface component modal synthesis by Craig–
Bampton is one of the most widely used dynamic reduction techniques, and most FEA-
based systems have built-in libraries, as outlined in the following section.

2.1. Fixed-Interface Modal Synthesis Technique

Hurty pioneered the notion of fixed-interface component modal synthesis [56], but
the method was incompatible with automation. Craig–Bampton [57] modified Hurty’s ap-
proach, removing the limitations that facilitated the implementation of the modal synthesis
process on computing platforms. Craig–Bampton’s method analyzes components by the
superimposition of constraint and fixed-constraint normal modes.

Constraint modes are the displacements of interior coordinates in a substructure
induced by sequential unit displacements of interface constraints, with the remaining
boundary constraints being constrained. The boundary constraints are usually imposed
on the coupled points between interconnected substructures. These coupled points are
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subjected to unit displacement in the direction of each degree of freedom, considered one
at a time, resulting in the deflection of the substructure. The deflected configurations of
the substructure are the constraint modes for that individual substructure. For the ith
substructure, the linear relationship between the externally applied force and stiffness for
static analysis is given by {

pB
pI

}
i
=

[
kBB kBI
kᵀBI kI I

]
i

{
uB
uI

}
i

(1)

Because there is no external force acting on the unconstrained coordinates in constraint
mode analysis, taking the bottom partition of Equation (1) yields

[kBI ]
ᵀ
i {uB}i + [kI I ]i{uI}i = {0}

{uI}i = −[kI I ]
−1
i [kBI ]

ᵀ
i {uB}i = [φc]i{uB}i

(2)

Fixed-constraint normal modes are defined by displacements of interior points in the
component relative to the interface constraints. These are the normal modes of vibration
with all interface constraints fixed, typically computed by eigenvalue analysis of the
substructure. The zero-input response and eigenanalysis of a system are analogous, and
therefore, in the absence of external excitation in the internal degrees of freedom, the
undamped equation of motion for the ith substructure can be expressed as,[

mBB mBI
mᵀ

BI mI I

]
i

{
üB
üI

}
i

+

[
kBB kBI
kᵀBI kI I

]
i

{
uB
uI

}
i
=

{
pB
0

}
i

(3)

In fixed-interface normal mode analysis, the constraints on the interface coordinates
for a substructure are constrained, resulting in

{uB} = 0

and

{üB} = 0 (4)

Substituting Equation (4) into Equation (3) and using the lower partition yields

[mI I ]i{üI}i + [kI I ]i{uI}i = {0} (5)

The free vibration solution for Equation (5) is of the form {uI}i = [φn]i{ηn}i. Therefore,
Equation (5) reduces to the eigenvalue problem

([kI I ]i − [ω2
n]i[mI I ]i){φI}i = 0

and ∣∣∣∣[kI I ]i − [ω2
n]i[mI I ]i

∣∣∣∣ = 0 (6)

where [ω2
n]i = diag(ω2

n1
, . . . , ω2

nNI
i
). The mass normalized eigenvectors form the respective

columns of [φn]i of the ith constrained substructure. The elements of [φn]i to be retained
are then collected in [φ̄n]i and thereby retain the associated interior degrees of freedom of
the substructure. The interface coordinates being entirely constrained in fixed-constraint
normal mode analysis renders the upper partition of Equation (3) redundant. It is worth
mentioning that the constraint modes represent the static characteristics of the substructure,
while the fixed constraint normal modes, as determined by vibration analysis, demonstrate
the dynamic behavior of the substructure.
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Finally, the transformation from physical coordinates to generalized coordinates for
the ith substructure is then

{u}i =

[
I 0

φc φn

]
i

{
uB
ηn

}
i

= [TCB ]i

{
uB
ηn

}
i

(7)

It is worth noting that truncating the constraint modes is not feasible since they
characterize the entire motion of the system.

The reduced mass and stiffness matrix of the ith substructure in generalized coordi-
nates is then expressed as

[m̄]i = [TCB ]
ᵀ
i [m]i[TCB ]i

[k̄]i = [TCB ]
ᵀ
i [k]i[TCB ]i

(8)

The equations of motion for the overall structure in the unconnected form are eventu-
ally obtained by grouping together the equations of motion for all τ ∈ N+ substructures. A
compatibility matrix ([β]) renders constraints on the interconnected substructures, ensuring
compatible displacements at substructure boundaries. The boundary coordinates for any
two adjoining substructures i and j are expressed in their respective local coordinate frames
of reference, {u}i and {u}j, and consequently, it is imperative to express their frame of
reference in a shared global reference frame, {ū}, prior to establishing compatible displace-
ment connections. Let the boundary coordinates for the ith and jth substructures in the
global frame of reference be {ūB}s

i and {ūB}s
j , respectively, at a common connection point s.

Then, the following necessary and sufficient conditions must be satisfied at the boundary
to ensure that a substructure’s displacements on its boundary correspond to those of its
adjoining substructures in the global frame of reference:

{ūB}s
i = {ūB}s

j (9)

For the sake of brevity, superscript (s) in Equation (9) will be omitted. In terms of
interconnected substructures, there are no compatibility constraints for the modal coor-
dinates. Furthermore, any arbitrary substructure i with multiple couplings to adjoining
substructures may be expressed using a matrix notation [β]i. Finally, the general form of
the transformation of coordinates to represent the overall structure is as follows:



uB1

ηn1
...

uBτ

ηnτ


=

β1
...

βτ





ūB1
...

ūBτc
ūB
ηn1

...
ηnτ


= [β]{µ}

(10)

The uncoupled set of boundary coordinates mentioned in Equation (10) is where
external excitations are applied. Finally, the equation of motion for free vibration of the
complete structure may be expressed as

[Mµ]{µ̈}+ [Kµ]{µ} = 0 (11)
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where [Mµ] = [β]ᵀ[M̄µ][β] and [Kµ] = [β]ᵀ[K̄µ][β], and where

M̄µ =

[m̄]1
. . .

[m̄]τ

, K̄µ =

[k̄]1 . . .
[k̄]τ


The Craig–Bampton modal synthesis technique has a high degree of accuracy, and

built-in libraries are usually available in most FEA-based software products [66–68].

2.2. Free-Interface Modal Synthesis Techniques

The presence of rigid body motion is one of the characteristics of free–free or un-
constrained systems. For such systems, the stiffness matrix is singular, and hence no
flexibility matrix exists, jeopardizing static analysis. In his modal synthesis approach, Hintz
eliminated the rigid body modes using the inertia relief matrix, facilitating the analysis
of the elastic behavior of such unconstrained systems. The free-interface modal synthesis
scheme proposed by Hintz [61] for free–free systems constitutes attachment modes for
unconstrained systems or inertia relief modes, constraint modes, and free-interface normal
modes of substructures.

For the ith substructure, the free-interface normal modes are obtained by setting
Equation (3) for {pB} = 0. By substituting {pB} = 0, Equation (3) reduces to[

mBB mBI
mᵀ

BI mI I

]
i

{
üB
üI

}
i

+

[
kBB kBI
kᵀBI kI I

]
i

{
uB
uI

}
i
=

{
0
0

}
i

(12)

Thus,

([k]i − [ω2
f n]i[m]i)

{
φB
φI

}
i
= {0}

and ∣∣∣∣[k]i − [ω2
f n]i[m]i

∣∣∣∣ = 0 (13)

where [ω2
f n]i = diag(ω2

f n1
, . . . , ω2

f nNi
). If the ith substructure is unrestrained, then rigid

body modes are included in [ω2
f n]i. The mass normalized eigenvectors corresponding to

the free-interface normal modes belonging to the interior and boundary degrees of freedom
for the ith substructure to be retained are gathered in [φIn]i and [φBn]i, respectively, thereby
retaining the corresponding coordinates. Furthermore, truncation of the free-normal modes
renders elimination of the associated degrees of freedom.

Let Wi be the set of physical coordinates for the ith substructure, where Wi ⊂ Ni \Oi,
and where Oi is the statically determinate constraint set sufficient to provide restraint
against rigid body motion. Furthermore, let us define a set such that Li ⊂Wi. The static de-
flection as a consequence of an applied unit force on wi

j ∈Wi, where j ∈ {1, . . . , |W|} while
the remaining of the degrees of freedom in the set Wi are devoid of force, is characterized
as the attachment mode.

Separating the displacement vector for the ith substructure into pure rigid body
displacement {uo} and elastic deformation vector {ue} yields

{u}i = {uo}i + {ue}i (14)
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The displacements in physical coordinates can be expressed in modal coordinates in
the following way

{u}i =
[

φo φe
]

i

{
ηo
ηe

}
i

(15)

Using the non-homogeneous undamped equation of motion and knowing that [k]i[φo]i =
0, the modal coordinates associated with rigid body motions can be explicitly represented
as follows

[m]i[φo]i{η̈o}i = {p}i (16)

Premultiplying Equation (16) by [φo]
ᵀ
i yields

{η̈o}i = [φo]
ᵀ
i {p}i (17)

where [φo]
ᵀ
i [m]i[φo]i = [I].

Suppose {po}i is the D’Alembert interia forces that are in equilibrium with the inertia
loads, and therefore

{po}i + [m]i{üo}i = 0 (18)

Equation (18) can be modified further using Equation (17), which yields

{po}i = −[m]i{üo}i

= −[m]i[φo]i{η̈o}i

= −[m]i[φo]i[φo]
ᵀ
i {p}i

(19)

The equilibrated load system {pe}i for the ith component can be represented as

{pe}i = {p}i + {po}i

= {p}i − [m]i[φo]i[φo]
ᵀ
i {p}i

= [Ψ]i{p}i

(20)

where [Ψ]i = [I]− [m]i[φo]i[φo]
ᵀ
i is the inertia-relief matrix.

The attachment modes ([φa]i) for the ith unrestrained component relative to the O
constraints can be expressed as kww kwl kwo

klw kll klo
kow kol koo


i

 φa
w

φa
l

0


i

= [Ψ]i

 I
0
0


i

(21)

Finally, the attachment modes are deduced from Equation (21) using the top-left
partition of the stiffness matrix.

The constraint modes are assessed in the same manner as described in the preceding
section. It is important to note that both attachment and constraint modes are instances
of static response modes that manifest from constant external load and displacements,
respectively. For the ith substructure, Hintz’s transformation matrix for dynamic analysis
is represented by

[TH ]i =

[
I 0 φBn

φc φa φIn

]
i

(22)
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The reduced mass and stiffness matrix for the ith substructure can now be expressed as

[m̄]i = [TH ]
ᵀ
i [m]i[TH ]i

[k̄]i = [TH ]
ᵀ
i [k]i[TH ]i

(23)

The constraints of interconnected substructures are implemented using a transforma-
tion matrix [β]. The final reduced structural mass and stiffness matrix can be represented as

[Mµ] = [β]ᵀ[M̄µ][β]

[Kµ] = [β]ᵀ[M̄µ][β] (24)

where

[M̄µ] =

m̄1
. . .

m̄τ

, [K̄µ] =

k̄1
. . .

k̄τ


Hintz’s method for assessing free–free systems such as launch vehicles, aircraft, and

spacecraft is very efficient and is prevalently used by aerospace and space organizations.

2.3. State-Space Representation of Reduced-Order Model

The reduced structural matrices are stated in generalized coordinates in both the
free-interface and fixed-interface component modal synthesis, as shown by Equations (11)
and (24). Mode superposition and mode acceleration [69] both facilitate the transformation
of modal displacements to physical displacements for a structure. In practice, during the
solution phase of the modal synthesis procedures, the FEA-based software writes and
stores the assembled reduced structural matrices and associated degrees of freedom in
files. For instance, Ansys [66] stores this structural information in a binary file labeled
“full.” PyAnsys [70] is a free and open-source Python interface for Ansys that enables the
retrieval and import of Ansys structural data into Python. It is desirable to express the
reduced structural matrices obtained from FEA-based software in a platform-independent
format. The present research considers state-space representation [71–73]. Expressing
physical systems in a state-space representation is a well-established approach in control
engineering; thus, most software platforms for modeling and simulating multi-domain
dynamical systems include state-space blocks. The remainder of this section aims to
establish a generalized state-space representation for the digital model of a reduced finite
element model, and this approach applies to any arbitrary off-road vehicle.

For a reduced system, the undamped equation of motion can be expressed as

[Mr]{ür}+ [Kr]{ur} = {pr} (25)

Although the reduced mass and stiffness matrices are symmetric, the non-zero off-
diagonal elements render Equation (25) a system of coupled differential equations, which
is computationally expensive to solve. In order to solve a system of coupled differential
equations, the inertial and elastic decoupling of Equation (25) is essential, which is accom-
plished using the normal mode method. The equation of motion for the free vibration of
the undamped reduced system is expressed as

[Mr]{ür}+ [Kr]{ur} = {0} (26)

which is homogeneous. The solution of Equation (26) is of the form

{ur} = [φ]{ηr} (27)
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The modal matrix [φ] has the following orthogonality features in relation to the mass
and stiffness matrices:

[φ]ᵀ[Mr][φ] = [I]

[φ]ᵀ[Kr][φ] = [ω2
∗] (28)

where [ω2
∗] = diag(ω2

∗1, . . . , ω2
∗R). The retained set of modes in the reduced-order model is

a subset of the natural frequencies of the full-order finite element model. Mathematically,
the relationship can be expressed as

{ω∗} ⊂ {ω} (29)

where

ω∗ i ≈ ωj : i ∈ {1, . . . , R}, j ∈ {1, . . . , N}

Thus, the coupled equations of motion in Equation (25) can be expressed as uncoupled
equations of motion in modal coordinates using the orthogonality relations of the modal
matrix, as

{η̈r}+ [ω2
∗][{ηr} = [φ]ᵀ{pr} (30)

Let us define η1, η̇1, . . . , ηR, η̇R as the state variables, and for convenience, let us rename
the state variables as x1, x2, . . . x2R, where

x1 = η1

x2 = η̇1

...

x2R−1 = ηR

x2R = η̇R

(31)

Equation (31) can be expressed in the following manner

ẋ1 = x2

ẋ2 = ẍ2

...

ẋ2R−1 = x2R

ẋ2R = ẍ2R

(32)

Using Equations (30)–(32), the equation of motion in principal coordinates can be
expressed in terms of the state variables as

ẋ1
ẋ2
...

ẋ2R−1
ẋ2R


=


0 1 . . . 0 0
−ω2

∗1 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1
0 0 . . . −ω2

∗R 0





x1
x2
...

x2R−1
x2R



+ [φ]ᵀ



0
p1
...
0

pR


(33)

The modal displacements and velocities are obtained by solving Equation (33). For
example, x1, x2 represent the modal displacement and velocity of the first retained degree
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of freedom. Let D be the number of degrees of freedom where the structure’s displacement
and velocity are to be monitored. Then, suppose (SD

i |i ∈ {1, . . . , D}) and (Sj|j ∈ {1, . . . , R})
are the sequence of the set of degrees of freedom where the kinematics to be observed and
the sequence of the set of retained degrees of freedom in the reduced structure, respectively.
Let us now define a matrix [C̄]2D×2R in the following way:

C̄2i−1,2j+1 = 1 : SD
i = Sj, ∀i ∈ {1, . . . , D}, ∀j ∈ {1, . . . , R}

C̄2i,2j+2 = 1 : SD
i = Sj, ∀i ∈ {1, . . . , D}, ∀j ∈ {1, . . . , R}

C̄i,j = 0 : otherwise

(34)

Let us define Λss and Bss as follows:

Λss = {λss ∈ N+|λss is even and λss ≤ 2R}
and

Bss = {βss ∈ N+|βss is even and βss ≤ 2R}

The original modal matrix [φ] of the reduced structure can then be modified as follows:

φss
i,j =

{
φ i

2 , j
2

: ∀i = λss ∈ Λss, ∀j = βss ∈ Bss

0 : otherwise
(35)

where [φss] is the reduced structure’s modified modal matrix. The necessity for the afore-
mentioned modification of the modal matrix is to accommodate the additional states related
to the system velocity. The kinematic vector at selected degrees of freedom in physical
coordinates can be derived using Equations (27), (34), and (35), yielding

{y} = [C]{x} (36)

where [C] = [C̄][φss], and {x} is the system kinematics vector in modal coordinates.
Furthermore, only a subset of the retained degrees of freedom in a reduced finite

element model of a structure is subjected to external excitation. Suppose rin is the number
of excitations applied at distinct degrees of freedom of the structure, where rin ≤ R. Let us
further assume (Srin

i |i ∈ {1, . . . , rin}) is the sequence of the set of degrees of freedom where
the external excitations are applied. As a result, Equation (33) can be rewritten as

ẋ1
ẋ2
...

ẋ2R−1
ẋ2R


=


0 1 . . . 0 0
−ω2

∗1 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1
0 0 . . . −ω2

∗R 0





x1
x2
...

x2R−1
x2R


+ [φss]2R×2R[β

p]2R×rin


|p1|

...
|prin |


rin×1

(37)

where |pj| ∀j ∈ {1, . . . , rin} is the magnitude of jth externally applied excitation in physical
coordinates, and [βp] is a Boolean matrix defined as follows

β
p
2i,j = 1 : Srin

j = Si, ∀i ∈ {1, . . . , R}, ∀j ∈ {1, . . . , rin}

β
p
i,j = 0 : otherwise

(38)



Appl. Sci. 2022, 12, 7154 11 of 27

Finally, the state-space representation of a reduced finite element model can be ex-
pressed using Equation (37) as

{ẋ} = [A]{x}+ [B]{z}
{y} = [C]{x}+ [D]{z}

(39)

where the matrices are represented as

[A] =


0 1 . . . 0 0
−ω2

∗1 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1
0 0 . . . −ω2

∗R 0


[B] = [φss][βp] (40)

[C] = [C̄][φss]

and

[D] = [0]

The physical displacements and velocities at the coordinates where the encoders are
attached to a structure are represented by the output vector {y}.

3. Evaluation Criteria

It is essential to validate the accuracy of the dynamic reduction approaches outlined
in the preceding section in the context of off-road vehicles. In general, the quality of the
reduced finite element models obtained by these dynamic reduction approaches charac-
terizes their accuracy. The frequencies and mode shapes of a reduced model are typically
compared to those of the full-order finite element model or reference model to determine
its accuracy. An important metric for evaluating the precision of dynamic reduction tech-
niques is the deviation of the natural frequencies from the full-order model for the reduced
structure. To represent the frequency deviations between the reduced-order model and the
full-order model in mathematical terms, we can use

εi =

∣∣∣∣ω∗ i −ωi
ωi

∣∣∣∣× 100% (41)

where εi represents the percentage error between the ith reduced-order and full-order
mode, i ∈ {Q}, and where {Q} = {1, . . . , R} ∩ {1, . . . , N}. For the most part, the client
defines the maximum frequency deviations permitted.

The cross-orthogonality check, also known as the modal vector orthogonality check, is
often used to assess the quality of reduced-order finite element models in conjunction with
the frequency deviation check. In the cross-orthogonality check [74], the mass normalized
modal matrix ([φ]) obtained by the modal analysis is primarily employed in combination
with the mass matrix ([Mr]) of the reduced-order model to assess the orthogonality of
the modal vectors. Because reduced-order models have linearly independent degrees of
freedom, each modal vector in the modal matrix should be orthogonal to the other vectors.
As a result, the orthogonality relations may be expressed as

{φi}ᵀ[Mr]{φj} =
{

0 : i 6= j
1 : otherwise

(42)

Dynamic reduction techniques are based on the notion of transforming a substruc-
ture’s physical coordinates into a set of generalized coordinates and then truncating modal
coordinates to obtain a reduced set of equations for the system. As a consequence, exact
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system solutions with reduced computational load are obtained over a limited frequency
range. Modal truncation was essential in the past for structural finite element model anal-
ysis when the number of degrees of freedom exceeded the computing capability. In the
last two decades, the exponential increase in processor performance, the introduction of
general-purpose graphics processing units, and the availability of efficient and accurate nu-
merical algorithms have essentially mitigated the computational constraints in the design
and analysis processes of earlier times. Nonetheless, in the context of Industry 4.0, dynamic
reduction methods are significant for the development of physics-based digital models for
off-road vehicles. In essence, virtual models consist of the modal characteristics of physical
off-road vehicles. In addition, digital twins are intended to emulate the simultaneous
activities of their physical counterparts operating in an industrial environment. Conse-
quently, solving the equation of motion in real-time that encompasses the complete set of
modes constituting the virtual system is impractical. As a result, dynamic reduction-based
reduced-order models are appropriate for accomplishing the requirements.

In practice, for well-formulated structural analysis problems, the lower order modes
derived by dynamic reduction methods are extremely accurate, but substantial inaccuracies
may occur in the higher frequency range. Furthermore, the general principle for dynamic
reduction is to incorporate subcomponent modes up to 1.5–2.0 times the frequency range
of interest [75], which is a value that the client specifies. However, certain subcompo-
nents for off-road vehicles may have all the modal components exceeding the frequency
range of interest. In such circumstances, the number of coordinates to be retained for
each subcomponent is specified without explicitly defining the frequency range in the
analysis. Subsequently, during the final system synthesis, the coordinate system obtained
by synthesizing individual substructures is truncated to the desired frequency range for
the overall structure.

Vibration analysis of off-road vehicles tends to focus on the lower frequency bands and
the equations of motion comprised of these modes, which eventually represent their virtual
models. As the number of modes incorporated into the digital model increases, so does
the computational cost, which eventually deters the simulation from being synchronized
with the real-time activity of its physical counterpart. Furthermore, the simulation result of
digital models composed of fewer modal components may deviate from the actual behavior
of the physical structure. In this research, virtual models with frequencies ranging from
0 to 30 Hz in 5 Hz steps are used to analyze the trade-off between simulation accuracy
and duration.

Most textual and graphical programming platforms have built-in state-of-the-art
libraries of solvers to determine the states of the explicit continuous-time state-space
models given by Equation (39). It is common for these models to be simulated using
variable-step solvers or fixed-step solvers, respectively. Instead of solving a model at
regular intervals, the former solvers alter the step size during simulation, whereas the latter
do it consistently. The adoption of fixed-step solvers for the simulation of digital models
is appropriate since data are acquired from sensors connected to the physical device at
fixed intervals.

During simulation, all fixed-step solvers but ode14x compute the succeeding state as

x(t + 1) = x(t) + hẋ(t) (43)

Ode14x uses a combination of Newton’s method and extrapolation from the current
state to compute the succeeding state of the model, which yields

x(t + 1) = x(t) + hẋ(t + 1) (44)

The method used to evaluate ẋ in Equations (43) and (44) is algorithm-specific and also
reliant on the algorithm’s order. In this research, to evaluate their efficacy, the digital
models obtained by the dynamic reduction methods are solved using the following fixed-
step solvers:
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1. ode4 (fourth-order Runge–Kutta formula) [76];
2. ode5 (fifth-order Dormand–Prince formula) [77];
3. ode8 (eighth-order Dormand–Prince formula) [78];
4. ode14x [76].

The complexity of the algorithms rises as the order n in oden increases. However,
as the computational complexity grows, so does the accuracy of the result. In addition, a
smaller step size enhances accuracy, but at the same time, it increases the time complexity.
It is important to note that large time steps render the numerical solutions of certain
models numerically unstable. With all of these factors in mind, it is essential to identify the
optimal solver that achieves the trade-off between acceptable accuracy and the duration
of simulation of the virtual model so that it does not exceed the operational time of its
physical counterpart. To summarize, the quality of the reduced-order models obtained
from model order reduction methods will be assessed using frequency deviation checks
and cross-orthogonality checks. Additionally, the solutions of the digital models for several
frequency ranges utilizing the stated solvers will be assessed in terms of accuracy and
simulation runtime.

4. Results

This section presents a comprehensive assessment of the efficacy of dynamic model
reduction approaches based on the evaluation methodology outlined in Section 3. The
structure utilized to compare the dynamic reduction approaches is an existing commercial
off-road vehicle. The structure was designed, modeled, and analyzed using the Ansys
2020R2 platform. Due to confidentiality considerations, the structure shown in Figure 1 is
only a partial line diagram. The overall mass of the structure is 359 tonnes, and translational
movement is restricted along the X- and Z-axis, while travel along the Y-axis is unrestricted.
The built-in libraries of the dynamic reduction methods outlined in Section 2 are available
in Ansys 2020R2, and [79,80] provides a detailed description of the procedure to develop
reduced-order models from full-order finite element models using these libraries.

Figure 1. Line Diagram with Boundary Conditions and Couplings for the Structure.



Appl. Sci. 2022, 12, 7154 14 of 27

Table 1 shows a comparison of the modes up to 30 Hz between full-order and reduced-
order models obtained by dynamic reduction techniques.

Table 1. Full-Order and Reduced-Order Modes.

Mode No.
FULL-ORDER FREE-INTERFACE

CMS
FIXED-INTERFACE

CMS

Freq (Hz) Freq (Hz) Freq (Hz)

1 0.0000 0.0000 0.0000

2 0.1857 0.1857 0.1857

3 0.4302 0.4302 0.4302

4 1.0493 1.0492 1.0492

5 1.1142 1.1142 1.1142

6 1.8422 1.8414 1.8414

7 2.0013 2.0011 2.0011

8 2.2746 2.2712 2.2712

9 2.4619 2.4612 2.4612

10 2.9458 2.9453 2.9453

11 3.8005 3.7995 3.7995

12 4.0081 4.0072 4.0072

13 4.2623 4.2613 4.2613

14 4.4271 4.4151 4.4150

15 4.8720 4.8518 4.8517

16 5.0604 5.0485 5.0485

17 5.1830 5.1753 5.1753

18 5.6314 5.5985 5.5986

19 5.7793 5.7758 5.7758

20 5.9551 5.9517 5.9518

21 6.1300 6.1293 6.1292

22 6.2820 6.2816 6.2816

23 6.5562 6.5531 6.5531

24 6.9902 6.9806 6.9806

25 7.2392 7.2325 7.2325

26 7.4208 7.4186 7.4186

27 7.5028 7.5020 7.5020

28 7.6217 7.6175 7.6175

29 7.7598 7.7588 7.7588

30 7.9304 7.9310 7.9310

31 7.9935 7.9813 7.9813

32 8.0515 8.0427 8.0427

33 8.3542 8.3501 8.3502

34 8.4016 8.3975 8.3977

35 8.5372 8.5362 8.5363
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Table 1. Cont.

Mode No.
FULL-ORDER FREE-INTERFACE

CMS
FIXED-INTERFACE

CMS

Freq (Hz) Freq (Hz) Freq (Hz)

36 8.5915 8.5831 8.5831

37 8.6763 8.6649 8.6649

38 8.8309 8.8182 8.8182

39 9.0159 9.0136 9.0137

40 9.0726 9.0656 9.0655

41 9.1020 9.1078 9.1078

42 9.3330 9.3323 9.3324

43 9.7096 9.7072 9.7074

44 9.7463 9.7372 9.7374

45 10.0290 10.0262 10.0263

46 10.1870 10.1680 10.1681

47 10.4320 10.4292 10.4296

48 11.0240 11.0229 11.0231

49 11.9730 11.9713 11.9714

50 11.9930 11.9919 11.9920

51 12.0290 12.0277 12.0277

52 12.1350 12.1325 12.1326

53 12.4540 12.4287 12.4288

54 13.2190 13.2155 13.2162

55 13.5810 13.5752 13.5756

56 13.8690 13.8652 13.8666

57 14.2990 14.2898 14.2900

58 14.7240 14.6956 14.6957

59 14.8700 14.8130 14.8132

60 15.2040 15.1943 15.1942

61 15.3810 15.3788 15.3792

62 16.6140 16.6105 16.6110

63 16.6540 16.6420 16.6415

64 16.7850 16.7810 16.7815

65 17.0350 17.0039 17.0039

66 17.1120 17.1068 17.1078

67 17.2230 17.2216 17.2212

68 17.8190 17.8141 17.8161

69 18.3840 18.3698 18.3721

70 18.7200 18.7067 18.7073

71 18.8380 18.8216 18.8219

72 18.9780 18.9641 18.9645

73 19.4900 19.4869 19.4882
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Table 1. Cont.

Mode No.
FULL-ORDER FREE-INTERFACE

CMS
FIXED-INTERFACE

CMS

Freq (Hz) Freq (Hz) Freq (Hz)

74 19.5310 19.5261 19.5267

75 19.7960 19.7869 19.7893

76 19.9100 19.8781 19.8793

77 20.3080 20.3112 20.3124

78 20.7510 20.7381 20.7436

79 21.1300 21.1500 21.1504

80 21.3580 21.3469 21.3482

81 21.5700 21.5492 21.5493

82 21.7170 21.6348 21.6353

83 21.8040 21.8018 21.8019

84 22.0530 22.0131 22.0144

85 22.3150 22.3055 22.3086

86 22.4830 22.4724 22.4725

87 22.7500 22.6872 22.6877

88 23.2110 23.1199 23.1202

89 23.3010 23.2927 23.2955

90 23.3880 23.3803 23.3822

91 24.0510 23.9223 23.9285

92 24.2010 24.1674 24.1707

93 24.2800 24.2165 24.2187

94 24.3390 24.3309 24.3325

95 24.7000 24.5120 24.5120

96 25.0620 25.0344 25.0341

97 25.1270 25.0614 25.0636

98 25.3970 25.3898 25.3908

99 25.4890 25.5556 25.5579

100 25.7190 25.7176 25.7208

101 25.7810 25.7567 25.7612

102 26.2300 26.1940 26.1973

103 26.4390 26.4237 26.4268

104 26.4940 26.4457 26.4505

105 26.8210 26.8180 26.8201

106 26.9660 26.9501 26.9515

107 27.0410 27.0264 27.0275

108 27.1310 27.1217 27.1219

109 27.2620 27.2582 27.2630

110 27.4920 27.5396 27.5461

111 27.8520 27.8642 27.8690
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Table 1. Cont.

Mode No.
FULL-ORDER FREE-INTERFACE

CMS
FIXED-INTERFACE

CMS

Freq (Hz) Freq (Hz) Freq (Hz)

112 28.2750 28.2502 28.2612

113 28.4250 28.4160 28.4172

114 28.7100 28.7304 28.7353

115 28.9110 28.9312 28.9342

116 29.0080 29.0032 29.0053

117 29.3980 29.4209 29.4278

118 29.6380 29.6299 29.6304

119 29.6620 29.6699 29.6710

120 29.9190 29.8785 29.8789

Figure 2 depicts that the frequency deviation of the reduced-order model from the
full-order finite element model for both free-interface and fixed-interface modal synthesis
is less than 0.8% over a frequency range of 0–30 Hz.

Figure 2. Percentage deviations of modes.

Figure 3 shows the modal vector orthogonality verification of the component modal
synthesis-based reduced-order model for modes up to 30 Hz. The diagonal terms are unity,
but all off-diagonal terms are near to zero for the reduced-order models obtained from
both fixed-interface and free-interface component modal synthesis, as shown in the figure,
which is consistent with the orthogonality relations specified in Equation (42).
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Figure 3. Modal Vector Orthogonality Checks of the Reduced-Order Models.

Figure 4 illustrates the digital model of the structure created utilizing either of the
modal synthesis methods and integrating the corresponding driveline, electrical, and
powertrain control modules in the MATLAB Simulink environment.

Figure 4. Simulation Model for the Structure in MATLAB.

The structure has twelve rigid wheels with a 710 mm diameter, three of which are
attached to each of its four corners. Additionally, the structure is driven by six electrical
machines, three on each side, which means that three wheels on each side are driven by
electrical machines while the other three are undriven. The rated power of each electrical
machine is 165 kW, the rated speed is 1413 rpm, and the rated frequency is 60 Hz. An
encoder is attached to one of the driving wheels on either side. The driveline system also
includes gears with a gear ratio of 26.28. The powertrain control module is composed of a
proportional-integral controller (PI controller) with gain parameters (kP and kI) that are a
linear, monotonically decreasing function of the wheel’s instantaneous angular velocity in
the acceleration regime and a constant in the steady-state regime, and a linear, monotoni-
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cally increasing function of the wheel’s instantaneous angular velocity in the deceleration
regime. As coded in the control module, the piecewise reference trapezoidal trajectory is
as follows:

Ω(ti, Ωr, v, s) =



Θatas
i : ti = tas

i , si < sd, vi < vm,
Ω(tas

i ) < Ωr

Ωr : ti = tas
i , si < sd, vi < vm,

Ω(tas
i ) = Ωr

Ωtas
i−1

: ti = tas
i , si < sd, vi = vm

Θdtd
i : ti = td

i , si ≥ sd

(45)

The simulation scenario is described as follows: the structure is allowed to travel a
distance of 30 m along the Y-axis; subsequently, the braking regime is initiated, where
the electrical machines reverse the direction of rotation; and ultimately, the simulation
terminates as soon as the wheels come to a standstill. The structure is permitted to attain a
maximum velocity of 2 m/s at any instant in time. The control modules, as illustrated in
Figure 4, monitor both displacement and velocity at the output ports of the reduced-order
model’s state-space model representation through a feedback loop. In practice, the control
module monitors the encoder signals for displacement and velocity.

Initially, a fixed-interface cms-based reduced-order model with modes up to 30 Hz
is used to explain the dynamics of the structure, followed by a comparison of the simula-
tion results of the reduced-order models obtained from both dynamic reduction methods.
Figure 5 illustrates the simulation outcomes for the wheel’s angular velocity and displace-
ment for both the structure’s narrow and wide sides. As evident from Figure 5, the braking
regime commences as soon as the structure traverses 30 m, and eventually the wheels come
to a complete halt at 25.5 s.

Figure 5. Wheel Angular Velocity and Displacement for the Structure.

In Figure 6, the simulation results for the motor angular velocities and translational
velocities at the narrow and wide sides are depicted. Additionally, Figure 6 depicts the
acceleration phase, which lasts until the structure reaches its maximum velocity of 2 m/s,
at which point it maintains a constant velocity until the braking process begins.

Figure 7 depicts the torque at the gear output side for both narrow and wide sides,
the angular velocities of the electrical machines on the narrow and wide sides, and the
reference trajectory of the angular velocity that the structure is expected to track. In
addition, Figure 7 shows the torque necessary to keep the angular velocities consistent with
the reference ramp.
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Figure 6. Electrical Machine Angular Velocity and Linear Velocity of the Structure.

Figure 7. Electrical Machine Angular Velocity and Torque at the Gear Output Side.

The minimum and maximum coordinates spanned by the structure along the X, Y,
and Z-axes are (−19.4, 63.5), (−10.14, 10.14), and (0, 35.88), respectively, whereas the center
of mass (X, Y, Z) is at (28.317,−0.417, 21.269), where the units are in the SI system. The
minimum and maximum span of the coordinates along the X-axis are on the narrow and
wide sides, respectively. As a result, the structure’s mass is asymmetrically distributed
towards the wide sides along the X-axis, the horizontal axis orthogonal to the direction of
travel. As a direct consequence of the skewed mass distribution along the X-axis, there is a
greater demand for torque from the wide side motors than from the narrow side motors. The
simulation result shown in Figure 7 corroborates the justification. Furthermore, owing to
asymmetrical mass distribution, the instantaneous velocities of the narrow and wide sides
often differ during travel, as shown by the simulation result in Figure 5. Figure 8 illustrates
the geometric deformation of the structure as a consequence of the mass imbalance and
application specifics. In other words, if sN(t) and sW(t) are the displacements at the narrow
and wide sides, respectively, at any simulation epoch t, then the difference in displacement
at that instance is given by (sN(t)− sW(t)), and (sN(t)− sW(t)) 6= 0 indicates geometric
distortion in the structure.
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Figure 8. Dissimilar Displacements at Narrow and Wide Sides.

Fixed-interface component modal synthesis-based reduced-order models constituting
modes up to 30 Hz have been used in the simulations thus far. Figure 9 exhibits the
simulation results of the angular velocity for the electrical machine at the wide side for
reduced-order models with modes up to 5 Hz, 10 Hz, and 30 Hz. The simulation result
for the ROM with modes up to 5 Hz differs from the results of the other two ROMs, while
there is no substantial variance between the simulation results of the ROMs with frequency
ranges of 10 Hz and 30 Hz.

Figure 9. Wide Side Electrical Machine Angular Velocity for Fixed-Interface ROMs with Vary-
ing Modes.

Reduced-order models based on free-interface component modal synthesis yielded the
same simulation results. Both fixed-interface component modal synthesis and free-interface
component modal synthesis-based ROMs with modes ranging from 10 Hz to 30 Hz had
almost indistinguishable simulation outcomes. Furthermore, there is no significant differ-
ence in simulation outcomes between ROMs based on fixed-interface and free-interface
component modal synthesis methods. It is conceivable that the similarities in simulation
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outcomes are attributable to the fact that the reduced-order models developed using both
approaches have almost identical modes.

To this point, comprehensive findings of the outcomes for various simulation scenarios
for reduced-order models based on dynamic reduction techniques have been provided.
The remainder of this section concentrates on the elapsed time for the solvers to execute
the simulation models, which is one of the performance metrics to identify the appropriate
dynamic reduction method. A computer with an Intel Core i7− 8700 CPU and 16 GB of
RAM was utilized to perform all numerical simulations.

Given that the primary objective of the reduced-order model-based virtual model
is to emulate the physical counterpart, a solver with a runtime longer than the physical
counterpart’s real-time activity is inappropriate. Figure 10 shows the time it takes to execute
various numerical solvers to simulate digital models with varying frequency ranges. To be
precise, the elapsed periods shown in Figure 10 are the averages of the elapsed times for
25 recurring instances. The time step used for all the fixed-step solvers is 1 ×10−4.

Figure 10. Elapsed time for various frequency ranges of digital models.

The elapsed time to numerically solve the digital models is a monotonically increasing
function of the frequency ranges, as seen in Figure 10. As depicted in Figure 10 , ode8, ode5,
and ode14x have runtimes that exceed 25.5 s, the upper bound for admissible simulation
time, and so are inadequate to satisfy the metrics. Ode4 outperforms ode8, ode5, and
ode14x in terms of execution time. However, ode3, which employs the Bogacki-Shampine
formula, is the most economical approach for numerically solving digital models of off-road
vehicles in terms of elapsed time. Figure 10 further illustrates that in most frequency ranges,
digital models represented by free-interface component modal synthesis require less time
to execute than digital models based on fixed-interface component modal synthesis for
most solvers. Although there is no substantial difference in accuracy between fixed and
free-interface component modal synthesis-based digital models, free-interface component
modal synthesis-based digital models for off-road vehicles are deemed appropriate in a
computing-resource-constrained setting.

5. Conclusions

The development of digital twins for off-road vehicles is at an emerging stage. There
are several impediments to developing and executing virtual models for off-road vehicles.
Firstly, the manual generation of off-road vehicle virtual models is inconvenient due to the
sheer number and diversity of existing and operational off-road vehicles. Furthermore, de-
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signing custom electrical, powertrain, and control components on an FEA-based platform is
complicated. Improvements to the modeling and simulation capabilities of FEA-based soft-
ware are certainly plausible, but such procedures for upgrade are challenging. Although the
uncluttered syntax renders modeling the control and powertrain systems straightforward,
structural design and analysis are complicated in problem-solving environments. This
article proposes a method for developing digital models by using reduced-order models of
existing structures on the same design platform rather than re-modeling them on a different
platform, resulting in no significant additional effort. The development of reduced-order
models from full-order structural finite-element models and subsequently representing
the reduced-order models in state-space representation can be automated, enabling the
development of structural virtual models with minimal additional effort and time.
The main contributions of the article are:

• A comprehensive review of the dynamic reduction methods, the libraries of which are
available as built-in packages on most FEA-based platforms. The dynamic reduction
methods eventually facilitate the development of the reduced-order models of the
existing and operating structures.

• A mathematical derivation of the state-space representation of the reduced-order
models.

• Establishing the performance metrics for evaluating dynamic reduction methods.
• Identifying the most appropriate dynamic reduction approach for developing digital

models for off-road vehicles.
• A comparison of the numerical solvers in the problem-solving platforms.
• Selection of the optimal numerical solver to simulate the digital models for off-road

vehicles.
• Identifying the lower bound of the frequency range is necessary and sufficient for

developing reduced-order models for off-road vehicles.

The following are the rationale for state-space representation of the reduced-order
models:

• Most commercial textual and graphical programming platforms have built-in blocks
to represent the state-space models.

• It facilitates the modeling of virtual models based on ROMs incorporating structural
damping.

• While performing industrial operations, the configuration of specific components
within a structure varies, modifying the full-order finite element model, which subse-
quently alters the modal characteristics of the overall structure. As a consequence, the
reduced-order model changes as well. In these scenarios, the time-varying state-space
model can be used on textual and graphical programming platforms to simulate
digital models based on changing ROMs.

The simulation results demonstrate that the outputs of digital models based on free-
interface and fixed-interface component modal synthesis are not substantially different.
However, owing to the reduced computational overload, virtual models based on free-
interface component modal synthesis are more appropriate in resource-constrained settings.
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List of Symbols

[φ̄n] Matrix of retained fixed-constraint normal modeshapes
[φ̄Bn] Matrix of retained free-interface modeshapes corresponding to boundary degrees of freedom
[φ̄In] Matrix of retained free-interface modeshapes corresponding to interior degrees of freedom
[C̄] Boolean matrix
[k̄] Stiffness matrix in generalized coordinates
[m̄] Mass matrix in generalized coordinates
[β] Compatibility matrix
[βp] Boolean matrix
[φ] Matrix of modeshapes for the reduced-order model
[φss] Modified modeshape matrix of reduced system
[φa] Matrix of retained attachment modeshapes
[φc] Matrix of constraint modeshapes
[φe] Matrix of elastic modeshapes
[φn] Matrix of fixed-constraint normal modeshapes
[φo] Matrix of rigid body modeshapes
[Ψ] Inertia-relief matrix
[A] State matrix
[B] Input matrix
[C] Output matrix
[D] Feed-forward matrix
[k]i Stiffness matrix of the ith substructure in physical coordinates
[Kr] Reduced stiffness matrix in physical coordinates
[m]i Mass matrix of the ith substructure in physical coordinates
[Mr] Reduced mass matrix in physical coordinates
[TCB] Craig–Bampton transformation matrix
[TH ] Hintz’s transformation matrix
εi Percentage error between ith reduced-order and full-order mode
ω Natural frequencies of full-order system

Ω(td
i )

Reference trajectory at time td
i in the deceleration regime, and where td

0 indicates the
beginning of the braking of the regime

Ω(tas
i )

Reference trajectory at time tas
i in the acceleration and steady state regime, and where

tas
0 indicates the vehicle is commencing travel

ω∗ Retained modes in reduced system
ωn Fixed-constraint normal modes
Ωr Electrical machine rated speed
ω f n Free-interface normal modes
τ] Total number of substructures or components
τc Total number of couplings in the structure
Θa A constant and Θa > 0
Θd A constant and Θd < 0
{ū} Global physical displacements
{ūB} Global physical displacements for uncoupled boundary coordinates
{ü} Local acceleration in physical coordinates
{η} Modal coordinates
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{ηr} Modal coordinates for reduced-order model
{µ} Generalized coordinates
{φB} Eigenvectors of free-interface modes corresponding to boundary degrees of freedom
{φI} Eigenvectors of free-interface modes corresponding to interior degrees of freedom
{p} External forces in physical coordinates
{po} D’Alembert’s forces or inertial forces
{pr} External force at the rth degree of freedom of the reduced-order model
{u} Local displacements in physical coordinates
{ue} Elastic deformation vector
{uo} Rigid body displacement
{x} State variables
{z} Input vector
B Boundary degrees of freedom in ith substructure
h Simulation step size
I Interior degrees of freedom in ith substructure
N Total degrees of freedom in full-order system
N I

i Total degrees of freedom for ith substructure
R Retained degrees of freedom in reduced system
sd Distance to be traveled
si Displacement of the vehicle at time tas

i or td
i

sN Displacement at the narrow side
sW Displacement at the wide side
t Simulation epoch
vi Velocity of the vehicle at time tas

i or td
i

vm Maximum allowable velocity for the off-road vehicle
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