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Abstract: Due to mobile and IoT devices’ ubiquity and their ever-growing processing potential,
Dew computing environments have been emerging topics for researchers. These environments
allow resource-constrained devices to contribute computing power to others in a local network.
One major challenge in these environments is task scheduling: that is, how to distribute jobs across
devices available in the network. In this paper, we propose to distribute jobs in Dew environments
using artificial intelligence (AI). Specifically, we show that an AI agent, known as Proximal Policy
Optimization (PPO), can learn to distribute jobs in a simulated Dew environment better than existing
methods—even when tested over job sequences that are five times longer than the sequences used
during the training. We found that using our technique, we can gain up to 77% in performance
compared with using human-designed heuristics.

Keywords: Dew computing; reinforcement learning; scheduling algorithms

1. Introduction

The massive growth of computation-intensive tasks in mobile applications has been
imposing heavy computation demands on resource-constrained devices in recent years.
Unfortunately, devices such as smartphones or IoT devices cannot usually meet those
demands. To tackle this problem, Dew computing proposes to offload computation-intensive
jobs to more powerful (nearby) devices [1–5]. A nearby device is a device that is connected
to the same local network. The idea is to, for instance, send jobs from your smartphone to
your laptop so each job is executed faster and does not drain your smartphone’s battery.
For Dew computing to work well in practice, however, the key challenge is to understand
how to effectively distribute jobs across nearby devices.

This work addresses the problem of task scheduling in Dew environments. A Dew
environment consists of a set of devices connected to a local network. The devices might
vary in their features and capabilities, including their power source (and battery capacity),
number of processor/CPU cores, storage, and sensors. In addition, users might interact
with some of these devices at different times. All these factors must be taken into account
to effectively distribute tasks in a Dew environment.

To distribute tasks in Dew environments, current methods follow human-designed
policies. These policies try to balance the workload among the devices by following a set
of predefined rules. Some examples include the Simple Energy-Aware Scheduler (SEAS) [6],
the Batch Processing Algorithm (BPA) [7], and Round Robin (RR) [8]. Unfortunately, these
methods are unable to adapt to the particular features of a given Dew environment and, as
a result, they make suboptimal decisions and waste valuable resources.

In this paper, we propose to learn how to distribute jobs in a Dew environment using
reinforcement learning (RL) [9]. RL is a subfield of artificial intelligence that studies how to
develop agents that can learn optimal behavior by interacting with an environment. Every
interaction with the environment delivers a reward signal that the agent seeks to maximize.
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To accomplish this, the agent improves its current policy (a mapping from observations to
actions) by learning from its past experiences. Powered by deep learning, RL agents have
been used to solve complex decision-making problems across different research areas, from
robotics [10] to conversational agents [11] and drug discovery [12]. Here, we propose to let
an RL agent learn how to effectively distribute jobs in a Dew environment.

Previous works have explored the use of RL for distributing jobs in Edge and Cloud
computing [13–16]. However, RL has not been tried in Dew computing. Dew computing
has its own particular challenges that do not normally arise in Cloud computing or Edge
computing. For instance, in Dew computing, some of the devices might run out of battery
or users might start interacting with them. In addition, existing works have not studied
whether RL agents can learn policies that generalize well to new situations. Our work
shows that deep RL agents can learn to offload tasks better than state-of-the-art heuristic
methods, even when tested in previously unseen situations.

The main contributions of our work are then as follows. First, we propose to use
Deep RL to distribute jobs in a Dew environment. By Deep RL, we refer to a family of RL
agents that use deep neural networks to encode policies. In contrast to tabular RL (such
as Q-learning [17] or SARSA [18]), Deep RL algorithms can learn policies that generalize
to unseen situations and solve problems with continuous state spaces—as is the case in
Dew computing. Specifically, we used a Deep RL agent, called Proximal Policy Optimization
(PPO) [19], to offload tasks in a fixed Dew environment (i.e., a Dew environment with a
fixed configuration of devices). By following a trial-and-error strategy, the agent learns
about the features of each device and how to assign jobs so that they are completed as soon
as possible.

Our second contribution is to develop an interface that connects OpenAI Gym [20]
with a state-of-the-art Dew computing simulator [21]. This interface allows us to quickly
test different RL methods for task offloading in Dew environments. In fact, our interface
allowed us to test another deep RL method, called A3C [22], but its performance was
considerably worse than PPO.

Finally, we empirically demonstrate that by constantly showing new situations to the
agent, the agent learns to generalize: that is, to appropriately distribute sequences of jobs
that arrive in patterns and sizes that the agent has not seen during training.

As a brief summary of our empirical findings, we discovered that RL agents can learn
to effectively distribute jobs in fixed Dew environments—largely outperforming state-of-
the-art heuristics with respect to the number of instructions per second that are executed in
the environment. To do so, however, the agent must be trained for a long time. As such,
there is a trade-off. On the one hand, human-designed heuristic methods can be applied
to any Dew environment and perform reasonably well right away. On the other hand, RL
agents achieve impressive performance in the long term, but in the short term, they would
not perform much better than a heuristic that randomly assigns jobs to devices. Whether it
pays off to rely on RL agents over heuristic methods is application dependent.

2. Edge and Dew Computing

Mobile Edge Computing is a paradigm that seeks to solve latency and network traffic
problems found in Mobile Cloud Computing environments [23]. Khan et al. [24] define
Edge Computing as “a model that allows a cloud-based computing capacity providing services
making use of the infrastructure that is on the edge of the network.” In this way, Mobile Edge
Computing allows the use of servers or workstations that are within a computer network,
thus ensuring low latency and at the same time enabling the efficient processing of infor-
mation, which permits the deployment of more robust applications. Furthermore, this
paradigm also lets Edge servers work with other nodes in proximity or collaborate with
Cloud services, thus deploying much larger and more efficient applications [25,26]. How-
ever, while Edge computing helps to reduce the network’s problems, it still depends on
the network backbone that may not be available or reachable in certain situations (such as
working with IoT devices in mines and on ships, in deserts, or moving vehicles).
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Dew computing is a new paradigm where connected devices offload jobs to nearby
devices in the same network. This paradigm proposes an architecture that tries to reduce
network latency, the energy cost of remote data communication, and the cost inherent
to Cloud infrastructure usage [27]. Through this, Dew computing optimizes the usage
of mobile and IoT devices in two manners. First, it treats mobile devices as clients in
the network infrastructure to offload their work to other devices located in the same
network [28]. Second, Dew computing considers mobile and IoT devices as resources to
increase the available computational power from an existing system. In this approach, one
device can offload its work onto another available device in the network (including other
mobile and IoT devices) [29,30].

We note that a network topology is needed in order to use mobile and IoT devices as
resources in a local network [3]. The Smart Cluster at the Edge (SCE) is a network topology
that is commonly used for that purpose in Dew computing. Figure 1 shows how the
devices are organized in this type of network. This topology can be established wherever
an access point and a group of mobile and IoT devices coexist. The topology’s main feature
is a central scheduler, which is primarily used to coordinate each task assignment among
the network’s available resources. This central scheduler can be any capable device in
the network [31]. In this work, we address the problem of distributing jobs in a Dew
environment under the assumption that the network topology is an SCE.

SchedulerProxy

Figure 1. Example of a smart cluster at the Edge architecture. In this example, there are eight devices
connected to the local network and communicating to a central scheduler. The devices include three
smartphones, two raspberry pis, two PCs, and the device assigned as the scheduler.

3. Related Work

Distributing jobs in Dew environments optimally is a challenging combinatorial prob-
lem [32,33]. There are many factors that must be taken into account to properly assign jobs
to devices. Those factors range from the device’s CPU speed to how often jobs arrive at
the scheduler. To deal with this complex problem, most previous works have proposed
heuristic methods. A heuristic method is a fixed policy that considers some features from
the SCE to distribute incoming jobs. In this paper, we explore an alternative approach,
which consists of learning a policy to distribute jobs using RL. To provide a coherent view
of the related work, we divided this discussion into two parts: We first discuss existing
human-designed heuristic methods to distribute jobs in an SCE, and then, we review
previous works at the intersection of RL with Cloud and Edge computing.
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3.1. Human-Designed Heuristic Methods in SCEs

In the context of SCEs, different algorithms have been proposed to optimize the
system’s utility and job execution time, using the mobile devices remaining battery as
a formal constraint of the resource allocation problem formulation [34–38]. These al-
gorithms, however, assume complete and accurate information in terms of the energy
spent and the execution time for every candidate node, making it challenging to apply in
real-life scenarios.

Loke et al. [39] and Shah [40] addressed the previous limitation by proposing algo-
rithms that do not rely on complete information. This approach seeks to exploit the nodes’
proximity and cost-effectiveness of node-transferring capabilities. However, the focus of
their study is to analyze the effect of nodes’ mobility rather than balancing the load to
efficiently utilize the battery and processing power of the available resources.

Hirsch et al. [31,32] presented other types of heuristics, which distribute jobs by con-
sidering the mobile devices’ battery level and computing scores obtained from benchmarks.
These methods outperformed traditional scheduling algorithms (such as Round Robin) but
had one limitation: they only consider battery-dependent devices. This problem was re-
cently addressed by Sanabria et al. [7]. Sanabria et al. [7] studied hybrid-mobile topologies,
which combine both battery-dependent and non-battery-dependent devices and proposed
heuristic methods that consider the device’s battery level, computing score, and current
work load in order to distribute jobs in Dew environments.

In contrast to those works, we propose to use RL to learn how to distribute jobs in a
Dew environment. The main advantage of this approach is adaptability. As discussed by
Sanabria et al. [7], no current heuristic seems to dominate across all Dew environments.
This makes sense, since each Dew environment might have considerably different charac-
teristics. Therefore, instead of trying to figure out (by ourselves) a clever way to correctly
distribute jobs in any Dew environment, we propose to let an RL agent do that work for
us (automatically).

3.2. RL Methods in Edge and Dew Computing

To the best of our knowledge, this is the first work exploring the use of RL for
distributing jobs in Dew computing. However, RL has been used for task scheduling
in closely related environments, such as in Cloud computing [13,41,42] and in Edge
computing [15,43–49].

In the context of Cloud computing, task scheduling focuses on deciding which of
the available resources (servers) should process an oncoming task. In this problem setup,
previous works have shown that RL agents can reduce the execution time in distributed
systems [41] and avoid overloading (and deadlocking) Cloud servers [13]. Furthermore,
Cheng et al. [42] showed that deep RL can be helpful for scheduling tasks in large-scale
Cloud Service Providers, surpassing traditional methods in terms of energy cost and
reject rates.

As for Edge computing, the task-scheduling problem is similar. The Edge server
receives tasks, and it has to decide whether to send those tasks to a nearby server or to the
Cloud. Several works have explored how to distribute jobs in Edge computing using RL
according to different performance metrics. These metrics include reducing computing
times [43], energy consumption [49], latency [44,45], task failure rate [46], or a combination
of the previous [15,47,48]. We note that in Edge computing, the action space is usually
limited. For instance, sometimes the agent only has to decide whether to send (or not) a job
to the Cloud [48]. In contrast, the action space in a Dew environment typically ranges from
tens to hundreds (i.e., one action per device)—which makes the decision-making problem
considerably harder in Dew computing.

There are three main differences between our work and the existing work on RL with
Cloud and Edge computing. First, we address a different problem. Distributing jobs in
a Dew environment has challenges that do not normally arise in Cloud computing or in
Edge computing. For instance, in Dew computing, some of the devices might run out of
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battery or users might start interacting with them. Taking these elements into account
is a non-trivial task. Second, we explicitly study the generalization performance of the
policies that the agent learned. This is a crucial step toward applying RL methods in real
systems since, in practice, it is unlikely that the agent would encounter scenarios that it
had previously seen during the training. Finally, we are using an RL agent that is better
suited for generalization than the agents used in previous works [50,51].

4. Reinforcement Learning (RL)

RL agents learn optimal behaviors by interacting with an environment [9], where
optimal behavior is defined with respect to a reward signal that the agent seeks to maximize.

Formally, the environment is modeled as a Markov decision process (MDP). An MDP
is a tuple M = S, A, r, p, γ, µ, where S is a finite set of states, A is a finite set of actions,
r : S× A× S→ R is the reward function, p(st+1|st, at) is the transition probability distribution,
γ ∈ (0, 1] is the discount factor, and µ is the initial state distribution, where µ(s0) is the
probability that the agent starts in state s0 ∈ S. A subset of the states might also be labeled
as terminal states.

At the beginning of an episode, the environment is set to an initial state s0, which is
sampled from µ. Then, at time step t, the agent observes the current state st ∈ S and executes
an action at ∈ A. In response, the environment returns the next state st+1 ∼ p(·|st, at) and
the immediate reward rt+1 = r(st, at, st+1). The process is then repeated from st+1 until
potentially reaching a terminal state, when a new episode will begin.

The agent’s goal is to collect as much reward from the environment as possible. To
do so, the agent learns a policy π(a|s), which is a probability distribution over the actions
a ∈ A given a state s ∈ S. Every policy induces a probability distribution over the future
states and rewards that the agent will encounter if it selects actions according to such a
policy. Therefore, we can rank different policies by how much reward they are expected to
receive. Ideally, the agent will be able to improve its policy until finding an optimal policy,
denoted by π∗, which is a policy that maximizes the expected reward received by the agent.
Formally, optimal policies are defined as follows:

π∗ = argmaxπ ∑
s∈S

µ(s)Eπ

[
∞

∑
t=0

γtrt

∣∣∣∣∣s0 = s

]
(1)

Different methods have been proposed to learn optimal policies. Some classical
examples include Q-learning [17] and SARSA [18]. Those approaches are known as tabular
methods, since they use a large table to approximate π∗. Such a table includes one entry
per state s ∈ S and then, for each action a ∈ A, approximates the expected reward from
executing action a in state s. Note that the size of the table is equal to S× A and, thus,
tabular methods are impractical when solving problems with really large state spaces—as
is the case in Dew environments.

To solve problems with large (and potentially infinite) state spaces, deep RL methods
use deep neural networks with parameters θ to model the policy πθ(a|s). Neural networks
are state-approximation techniques that, given a large enough network, can model any
function [52]. In this case, the neural network πθ receives as input a vector of real numbers
(i.e., features) that represents the current state of the environment and outputs a probability
distribution over the possible actions a ∈ A. We note that the output of the network
depends on the parameters θ, which are initially set to a random value. As a result, the
initial policy πθ(a|s) will tend to select all actions with equal probability. Then, the learning
goal is to find θ∗ such that πθ∗ ≈ π∗.

The key difference between deep RL methods lies in how they search for θ∗. The
first deep RL algorithm was Deep Q-Network (DQN) [53], which is a value-based method.
After DQN, an actor-critic method, called, Asynchronous Advantage Actor-Critic (A3C) [22],
was proposed. A3C learns much faster than DQN if we consider training time (although
A3C is less sample efficient than DQN). Then, Proximal Policy Optimization (PPO) [19]
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was proposed. PPO is an improved version of A3C that quickly became a state-of-the-art
method. In fact, we note that A3C and PPO have shown strong generalization perfor-
mance across different RL benchmarks [50,51,54]. However, that has not been the case for
DQN [55]. For that reason, we experimented with A3C and PPO in this paper and left
as future work the task of prototyping using other deep RL methods. Below, we provide
further details about how PPO works, since PPO is the approach that achieved the best
performance in our experiments.

PPO iteratively updates the parameters θ searching for a better policy (i.e., a policy
that collects more reward). To do so, it first collects experiences by running n agents in
parallel for some fixed number of steps. Each agent collects experiences by sampling actions
from the stochastic policy πθ(a|s). Then, all those experiences are gathered together and
become a training set that PPO uses to improve its current policy πθ(a|s). This process is
then repeated.

To update the parameters θ, PPO uses gradient descent and a loss function that
considers two main terms. The first term tries to predict how much expected return the
current policy will obtain. That is, the network outputs one value, known as the value
function vθ(s), and updates θ towards making accurate predictions of how much reward the
agent received form state s in the training set. The second term updates θ toward increasing
the reward that the policy πθ(a|s) obtains. In short, PPO will increase the probability of
selecting action a from state s if, whenever the agent selected a in s in the training set, the
agent received more reward than expected. That is, if the difference between the reward
that the agent received and vθ(s) is positive, then PPO will update θ such that πθ(a|s)
increases (and decrease πθ(a|s) otherwise). For more details on how and why PPO works,
we refer the reader to the following papers [19,56].

5. Reinforcement Learning for Dew Computing

In this section, we discuss how we integrate Dew computing with RL. First, we
formally define the problem of task scheduling in a Dew environment. Then, we describe
how to solve such a problem using RL. Finally, we discuss the software architecture behind
our proposed solution—which combines the Dew simulator EdgeDewSim [21] with the
RL framework OpenAI Gym [20]. First, we briefly discuss the notation that we use in
this section.

5.1. Notation

Below, we use the following notation. We use uppercase letters to refer to sets of
elements and lowercase letters to refer to individual elements in those sets. For instance,
we use J to denote the set of possible jobs that arrive in the Dew environment and j ∈ J
to denote one particular job in J. In addition, |J| denotes the number of elements in J.
Elements in a set have different features. To refer to the value of a feature, we use x. f eature.
For instance, j.ops refers to the number of giga-operations of job j ∈ J.

5.2. Problem Definition: Task Scheduling in Dew Computing

We tackle the problem of distributing jobs in a Dew environment. The Dew environ-
ment consists of a set of devices connected to a local network. Some of these devices are IoT
devices that have an unlimited power supply (e.g., Raspberry Pis and personal computers)
and others are mobile devices with a limited battery (e.g., tablets and smartphones). In addi-
tion, one node in the local network is assigned as the scheduler. The scheduler’s purpose is
to receive jobs and distribute them among the devices, as shown in Figure 2.
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CPU: 5 OPS
Bat: 80%

CPU: 15 OPS
Bat: Inf

SchedulerProxy

Job (2 Ops)

Job (5 Ops)

Job (5 Ops)

Job (2 Ops)

Job (2 Ops)

Job (3 Ops)

Job (3 Ops)

Jobs that arrive over time

CPU: 8 OPS
Bat: 10%

CPU: 5 OPS
Bat: 50%

Arrives in 30
seconds

Arrives in 10
seconds

Figure 2. Overview of a scheduling problem in a Dew environment. Jobs arrive over time to the
scheduler. Once a job arrives, the scheduler must assign that job to a device connected to the local
network. In order to make such a decision, the scheduler has access to information about the job and
the state of each device connected to the network. More details can be found in Section 5.3.

Once a job is assigned to a device, the time that it takes to complete the job (and how
much battery it consumes) depends on the features of the job and the current state of the
device. For instance, since some devices have limited battery, a job might not be completed
if the job is assigned to a device with a low battery level. Users might also interact with the
devices, and the local network might suffer from congestion issues. The scheduler must
consider all these factors in order to distribute jobs effectively.

In more detail, assigning a job to a device adds that job to the device’s job queue. Then,
the device will keep running the jobs in its queue, one by one, until either completing all of
them or running out of battery. Once a device runs out of battery, all the jobs in its current
queue are discarded. If a job is assigned to a device that has no battery, that job is also
discarded. In our experiments, if a job is discarded, it cannot be reassigned to a different
device. This forces the scheduler to be extra careful when deciding to assign a job to a
battery-dependent device.

To evaluate the effectiveness of a given job distribution, we use the giga-instructions
per second (GIPS) that are completed in the Dew environment:

GIPS(t0, t) =
∑j∈Jc j.ops

t− t0
, (2)

where Jc ⊆ J is the subset of jobs that were completed within the time interval [t0, t] and
j.ops is the number of giga-operations executed when processing job j ∈ Jc. Intuitively,
GIPS is a measurement of how many operations are completed by a unit of time. The goal
of the scheduler is then to distribute the jobs so that the GIPS are maximized in the Dew
environment.

In this work, we assume that the Dew environment is fixed. That means that no device
leaves or enters the local network during the period that we evaluate the system. We
discuss how to extend our model to work in non-fixed Dew environments in Section 7.

5.3. Environment Definition: States, Actions, and Rewards

The first step to apply RL in Dew computing is to properly define the environment
that the agent is going to interact with: that is, to define the states S of the environment, the
actions A that the agent can perform, and the reward signal r(s, a, s′) that the agent will
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optimize for. We might also have to define the transition probabilities p(s′|s, a) if the agent
does not interact with a real system (or with a predefined simulator). Whether the agent
succeeds or fails at distributing jobs in a Dew environment partially depends on how we
define those four elements: S, A, r, and p.

To define a Dew environment in terms of S, A, r, and p, our starting point was a
state-of-the-art simulator called EdgeDewSim [7,21]. EdgeDewSim simulates real Dew
environments with high accuracy. Among its many features, EdgeDewSim simulates
the energy consumption of each device, the job executions, user behaviors, and basic
network congestion. Thus, the transition probabilities p in the environment are modeled
by EdgeDewSim.

To define the state space S, we considered two key features of RL. First, most RL agents
do not have memory. They learn a policy π(at|st) that makes decisions purely based on
the information available in the current state st ∈ S. Thus, st must include all the relevant
information that the agent needs in order to assign a job to the correct device. Second, we
note that any information that is identical for all the states s ∈ S is useless for the agent.
The reason is that the agent has to discriminate whether action a is a good action in state s.
If a subset of information x ⊂ s is identical for all states, then x provides no discriminatory
information to the agent.

We then define the state space as follows: S = D× J × C, where (d, j, c) ∈ S. Specif-
ically, d ∈ D contains information on the current state of each device. This information
includes, for each device, its CPU usage percentage, its remaining battery, and its current
job queue. Then, j ∈ J provides information about the job that the scheduler must assign
next. This information includes the job’s ops, input size, and output size. Finally, c ∈ C
contains general statistics about the previously completed jobs. These statistics include
the number of jobs that have arrived, the number of jobs that have been completed, the
sum of the jobs’ ops that have been completed, and the elapsed time since the beginning
of the simulation (i.e., t− t0). We note that s ∈ S comprises all the necessary information
to properly assign job j to a device in a fixed Dew environment. If the environment is
not fixed, then we might want to add some additional features, such as the number of
instructions per second a device can execute, or how big its battery is. We discuss this
further in Section 7.

Our definition of the action space A is as expected. We define one possible action per
device in the Dew environment. Then, whenever the agent executes action ai ∈ A given
the current state (d, j, c) ∈ S, the job j is assigned to the device associated with action ai.

Finally, the reward function is equal to the GIPS executed in the Dew environment, as
defined in Equation (2). Formally,

r(s, a, s′) =

{∑j∈Jc j.ops
t−t0

if s′ is terminal

0 otherwise
(3)

Note that this reward function only rewards the agent in terminal states. That is, after
the agent finishes distributing the whole sequence of jobs, the agent receives a reward that
is equivalent to the GIPS executed in the Dew environment. As a result, any optimal policy
π∗(a|s) will, indeed, optimally distribute jobs according to our problem definition from
Section 5.2.

As a brief summary of this section, Figure 3 illustrates the training loop and how a
learning agent interacts with our proposed environment. The agent assigns the current
job to a particular device using its actions. In response, the Dew environment returns the
next state st and a reward rt. The state includes information about the current job to be
assigned and the state of the devices. The reward rt will be zero unless the agent has just
distributed the last job. If that is the case, rt will be equivalent to the GIPS. Since the agent
tries to maximize the reward received from the environment, it will learn to distribute jobs
in a way that improves the performance of the Dew environment.
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RL agent

Policy

Environment

Transition probabilities

Reward function

action at

state st & reward rt state st+1 & reward rt+1

Figure 3. Training loop of the EdgeDewSim environment. The agent receives a job and the state of
the devices. It then decides which device to assign the job to and sends that decision back to DewSim.

5.4. Implementation Details and Challenges

For the Dew environment simulator, we used the modified version of the DewSim
simulator [21] proposed by Sanabria et al. [7]. This version can handle both battery-
dependant and non-battery-dependant devices. To simplify the process of training and
testing deep RL methods, we also developed an OpenAI Gym environment [20]. This
allows us to quickly and easily test different RL agents using existing implementations
made for the OpenAI Gym library.

Since EdgeDewSim is written in java and OpenAI Gym is written in python, we
developed an interface that allowed us to control EdgeDewSim from OpenAI Gym. To
do so, we added logic on top of EdgeDewSim to delegate the scheduling decision to
an external agent, so that every time a job arrives, the simulator broadcasts the general
state of the simulation and then listens for which device has to be selected, as shown
in Figure 4. Then, we developed a new RL environment, following the guidelines from
OpenAI Gym [20], that does three main things: (i) it establishes the connection with
the simulator, (ii) it sends actions to the simulator, and (iii) it resets the environment to
restart from an initial state. Further details about our implementation can be found in
Appendix A.

Simulation RemoteLoadBalancing External
EnvironmentDevice

runSimulation()

receiveEvent(Job)

sendData(Job, devices)

device

sendJob(job)

sendEvent(job, status)

Figure 4. Sequence diagram of one job scheduling with an external environment.
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In addition to implementing an efficient communication protocol between EdgeDewSim
and OpenAI Gym, the main challenge toward using RL in Dew computing was to find a
good set of hyperparameters for the agent. After careful fine tuning, we found a hyper-
parameter configuration that works well across all of our domains (as discussed below).
However, we are not certain that those exact hyperparameters would work well in Dew
environments that differ too much from the types of environments that we tested.

6. Experimentation

In this section, we provide an empirical evaluation of our method. The purpose of our
experiments is to investigate the following research questions:

1. Can a deep RL agent learn to distribute jobs better than heuristic methods in a fixed
Dew environment?

2. Can a deep RL agent learn a policy that generalizes well to unseen situations in a
given Dew environment?

To answer these questions, we ran two sets of experiments. First, we show that deep
RL is able to learn to distribute jobs better than human-designed heuristic methods in a
fixed job environment. A fixed job environment is an environment where the agent is always
presented with the exact same sequence of jobs and has to distribute them in a fixed Dew
environment. We then discuss why such an approach is not expected to generalize well to
unseen situations (i.e., other sequences of jobs) and show how to address that issue.

6.1. Baselines

We compare the performance of the RL agent with different heuristic methods. Each
of these heuristic methods follows a fixed policy to distribute jobs in the Dew environment.
They are the most common approaches for distributing jobs in Dew environments but,
unfortunately, none of these algorithms dominates in every possible scenario [7]. In practice,
depending on many factors, their performance can be strong or mediocre. In that regard, an
RL agent has the advantage of being able to adapt its behavior to any particular situation.

Specifically, we compare the RL agent with the following heuristic methods:

• Enhanced Simple Energy-Aware Scheduler (E-SEAS) [32]: Before every allocation, the
scheduler computes a score for each device which considers the node’s current battery
level, computation capabilities, and the number of jobs currently in its queue. Then,
the device with the lowest score is selected.

• Round Robin (RR) [8]: The traditional RR algorithm gives one task to each device in a
circular order until all tasks have been assigned.

• Weighted Round Robin (W-RR) [7]: Each device is assigned a weight proportional to its
computing power. Then, when giving tasks to the devices in circular order, those with
higher weights will be assigned more jobs at once.

• Weighted Random (W-Rand) [7]: Similarly to W-RR, the weight of each device is pro-
portional to its computing power. The scheduler will then sample a random device
when assigning a job, but those with higher weights will have a higher chance of being
selected.

• Batch Processing Algorithm (BPA) [7]: In the same way as E-SEAS, the scheduler com-
putes a score considering the node’s current battery level, computation capabilities,
and job load measured in how many operations are needed to finish each task. Then,
the device with the lowest score is selected.

6.2. Fixed Job Experiments

We run our first set of experiments in two fixed job environments, which were pro-
posed by Sanabria et al. [7]. The aim of these experiments is to answer our first research
question. Below, we present the experimental setup, details on how we configured the deep
RL agents, results, and a discussion about the limitation of this approach with respect to
generalizing to new situations.
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6.2.1. Experimental Setup

In this experiment, all the approaches have to distribute the same sequence of jobs over
a predetermined set of devices. We used the same job sequence and device configuration
as Sanabria et al. [7]. We note that Sanabria et al. [7] proposed such an experiment for the
purpose of comparing heuristic methods in a complex Dew environment.

In more detail, the job sequence was generated using the standard methodology to
create jobs in EdgeDewSim [21]. That is, each job is created by generating its input and
output at random (between 1 and 500 MB). Then, the number of operations required to
complete a job is computed as a function of the input data size. This function can be
n · log(n), n2, or n3 (chosen at random for each task). The time of arrival to the scheduler
was also sampled at random between 1 and 60,000 ms. Following this methodology,
Sanabria et al. [7] proposed two datasets: one with 1500 jobs and another with 2500 jobs.

Regarding the devices, the Dew environments from these datasets use 70 devices
with a constant source of energy and 50 devices with a limited battery supply. The non-
battery-dependent devices consist of 35 Raspberry Pi 3 and 35 ODROID XU4. The battery-
dependent devices consist of 10 Acer A100 tablets, 15 Samsung Galaxy Tab 2 tablets, and
25 LG L9 smartphones.

6.2.2. The Agent Configuration

In our experiments, we used the OpenAI baselines [57] implementation of PPO [19].
As explained in Section 4, PPO uses a deep neural network to model the policy πθ(a|s) and
the value function vθ(s). In all our experiments, we used a feed-forward network with six
hidden layers and 512 tanh units per layer to model πθ(a|s) and vθ(s). PPO then collects
experience by running many agents in parallel for some number of steps. In our case,
we let 96 agents collect experience until completing one episode. That is, they performed
1500 steps in the dataset with 1500 jobs and 2500 steps in the dataset with 2500 jobs. The
resulting training set was used to update the parameters of the neural network. To do so,
the training set was split into 96 minibatches, and the network was trained for 4 epochs
using a learning rate of 10−5. The whole process is then repeated.

There are two additional hyperparameters that were key to making PPO work well
in practice. Those are the discount factor γ and the advantage estimation discounting factor λ.
Those hyperparameters control how much the agent discounts future rewards. Intuitively,
in many problems, we want the agent to collect rewards as soon as possible. However,
in a Dew environment, all the rewards are given at the end of the episode and, hence,
discounting future rewards encourages the agent to repeat actions that received a large
reward only because they were taken at the end of the episode. As a result, we recommend
removing any form of discount by setting γ = 1 and λ = 1. The rest of the hyperparameters
can be set to their default values from baselines [57].

6.2.3. Results

Figure 5 shows the results in the hybrid datasets with 1500 and 2500 jobs from [7]. The
plots show the performance of each of the methods in GIPS as a function of the number
of jobs that the agent has distributed so far. Note that the performance of the heuristic
methods remains the same over time as they distribute jobs by following fixed policies. In
contrast, the performance of PPO increases as the agent gains experience interacting with
the Dew environment. In the case of PPO, the plot shows the average performance across
16 runs as well as one standard deviation in the violet shaded area and the maximum and
minimum performance in light violet.
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Figure 5. Training performance on the fixed job experiments. In both cases, the RL agent learned to
distribute jobs better than existing state-of-the-art methods.

As Figure 5 shows, PPO eventually outperforms all the heuristics methods in both
environments. In the 1500 jobs environment, PPO quickly improves and exceeds the
performance of the baselines. With 2500 jobs, however, the agent requires around eight
times more experience to outperform the baselines than with 1500 jobs. Part of the reason
is that the baseline W-RR works particularly well with 2500 jobs. The other part is that
the agent has to explore a larger space of possibilities when dealing with 2500 jobs than
when distributing 1500 jobs. As a frame of reference, it took 5 days to train the agent with
1500 jobs and 10 days with 2500 jobs on an AMD Ryzen Threadripper 2990WX processor.

Interestingly, PPO outperforms all the baselines while being competitive at job com-
pletion. Recall that jobs can be lost in our environments if they are assigned to devices
that are running out of battery. Even though we did not provide a reward to the agent
for completing jobs, PPO learned to maximize GIPS while completing most of the jobs.
As Table 1 shows, PPO completes more jobs than BPA, E-SEAS, and W-Random in both
domains and is competitive with the Round Robin methods.

Finally, note that we also ran experiments using another RL agent, which is called
A3C [22]. PPO could be considered an improved version of A3C. In particular, PPO has an
extra constraint that A3C does not: PPO explicitly penalizes when the policy πθ changes
abruptly between two consecutive learning steps. As the results show, avoiding such large
changes makes learning more stable and allows PPO to find good policies, while A3C does
not. In these experiments, A3C is using the same hyperparameters as PPO. Since A3C is
unable to find good policies in our experiments, we focus the discussion around PPO in
the rest of the paper.

6.3. Discussion on Generalization

The previous results are encouraging. They show that RL agents can find ways to
distribute jobs in Dew environments that are considerably better than distributing jobs
using a heuristic method. However, it is still unclear whether the policy that the agent
learned generalizes well: that is, whether that policy will work equally well on sequences
of jobs that are different from the one used for training the agent. Indeed, it is possible
that the agent is overfitting the sequence of jobs that was used for the training. The agent
may have even memorized a sequence of actions that leads to high rewards in our specific
training instance—which is a common behavior in deep RL [54,58].
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We note that most machine learning models, including neural networks, assume that
the training and test data are drawn from the same probability distribution in order to
provide generalization guarantees [59]. In addition, the larger the training set is, the more
likely it is that the model will generalize well. This behavior has also been observed in
deep RL [50,54,55]. In short, the main conclusions from this body of work are two: (i) RL
agents generalize better if they are presented with a diverse set of training instances, and
(ii) the farther the testing instance is from the training distribution, the less likely it is that
the agent will perform well (without been further trained).

To investigate this topic, we generated a set of 1000 job sequences (of different sizes)
to test the generalization capabilities of the policy learned by the agent. Specifically, we
generated six test sets. Each test set contains 1000 job sequences of a certain size, which
were generated using the job generation procedure from EdgeDewSim [21] (as described in
Section 6.2.1). The size of the sequence depends on the test set. We created test sets with
sequences in the following sizes: 1500, 2500, 3500, 4500, 5500, and 6500 jobs. Note that the
agent’s performance on the test sets with 1500 and 2500 jobs will tell us whether the RL
agent is generalizing to unseen instances that were sampled from the same distributions as
the training instance. In contrast, the test sets with more than 2500 jobs allow us to study
out-of-distribution generalization, where the longer the job sequences are, the harder it will
be for the agent to generalize well.

Table 2 shows the performance of the RL agent (and the baselines) in each of the test
sets. We tested two RL agents: PPO-1500 and PPO-2500. They are the same agent, but they
were trained using the job sequence of 1500 jobs and 2500 jobs, respectively. Recall that we
trained 16 agents per environment, so we are reporting the generalization performance
of the agent that achieved the highest training performance among those 16 runs. The
test performance was computed as the average GIPS across the 1000 testing instances.
In addition, note that we are not further training PPO in any of the test environments.
We are just running the learned policy of PPO-1500 and PPO-2500 and reporting their
performance on each of the test sets.

Table 1. Percentage of job completed in the fixed job environments with 120 devices.

Methods BPA E-SEAS RR W-Rand W-RR PPO

1500 jobs 0.87 0.85 0.89 0.84 0.89 0.88
2500 jobs 0.76 0.74 0.80 0.74 0.80 0.78

Table 2. Upward generalization of policies that were learned over the fixed job environments with
120 devices and 1500 (or 2500) jobs measured in GIPS.

Method Train Set Upward Generalization

Jobs: 1500 j 2500 j 1500 j 2500 j 3500 j 4500 j 5500 j 6500 j

BPA 0.53 1.00 0.79 0.91 1.00 1.13 1.23 1.32
E-SEAS 0.52 0.85 0.74 0.82 0.86 0.94 1.02 1.09
RR 0.75 0.78 0.67 0.76 0.86 0.93 0.97 1.04
W-Rand 0.81 1.10 0.72 0.80 0.86 0.94 1.01 1.07
W-RR 1.04 1.28 0.68 0.77 0.84 0.90 0.97 1.01

PPO-1500 1.73 — 1.35 1.46 1.35 1.25 1.18 1.14
PPO-2500 — 1.60 1.06 1.23 1.23 1.21 1.19 1.17

Overall, Table 2 shows two expected and two unexpected results. The first expected
result is that the performance of PPO decreases from the training set to the test set. For
instance, the performance of PPO-1500 decreased from 1.73 to 1.35 in the test set with
1500 jobs. This is a symptom of overfitting, which is expected since we trained PPO-1500
using only one training instance. The second expected result is that the performance of
PPO tends to decrease as we test on longer job sequences. In fact, BPA starts to dominate
when the job sequences have 5500 or more jobs.
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There are two (quite positive) unexpected results from Table 2. First, even though
we trained using only one training instance, PPO still dominates in the test sets with
1500 to 4500 jobs. The second unexpected result is that the test performance of PPO-1500
with 2500 jobs was better than the test performance of PPO-2500 with 2500 jobs. As we
discussed in Section 6.2.3, training PPO-2500 was considerably harder than training PPO-
1500. However, the results from Table 2 suggest that it might be a better strategy to train
the RL agents using short sequences of jobs and then gradually increase the length of the
training sequences. The reason is that the agent is generalizing well to longer sequences
and, hence, gradually increasing the size of the training sequence might allow us to train
RL agents in Dew environments more effectively.

6.4. Generalization Experiments

One way of encouraging the agent to learn a policy that generalizes well is to show the
agent a large collection of training instances that are sampled from the same distribution
as the testing instances. We proposed a new environment to explore this idea. In this
environment, the agent has to distribute a different sequence of jobs in every episode. As a
result, the agent will have to learn a policy that works well for any possible job sequence in
order to collect rewards. That includes performing well on the (unseen) testing instances.

Unfortunately, training an RL agent that can generalize to job sequences of different
lengths and characteristics is more challenging. Indeed, previous works have shown that
training RL agents that perform well across many training instances tends to require using
considerably larger networks and more training experience [50,54] (i.e., more computational
power). To reduce this computational burden, we decreased the number of devices in
the Dew environment from 120 to 25 and trained the agent using job sequences of length
of 300 to 500. Specifically, we used the following devices: seven Raspberry Pi 3, nine
ODROID XU4, five Acer A100 tablets, two Samsung Galaxy Tab 2 tablets, and two LG
L9 smartphones. The job sequences were generated using the methodology described in
Section 6.2.1. Regarding hyperparameters, the RL agent used the same hyperparameters as
those used for training the PPO-1500 model (see Section 6.2.2).

Figure 6 shows the average test performance over 1000 testing instances that were
sampled from the same distribution as the training instances (i.e., job sequences of 300 to
500 jobs that were generated using EdgeDewSim). Note that in contrast to the plots from
Section 6.2.3, Figure 6 is already showing the generalization performance of the RL agent.
In particular, the plot shows the performance of all the baselines, the average performance
of PPO across eight runs, and one standard deviation in the violet shaded area and the
maximum and minimum performance across the eight runs in light violet. As the result
shows, PPO is able to find a policy that generalizes well to unseen instances in addition to
outperforming all the baselines.

To explore the agent’s generalization capabilities further, Table 3 shows the test per-
formance over test sets that were created in the same way as those from Section 6.3. The
table reports the performance of all the baselines and the performance of the agent that
achieved the highest training performance across the eight runs. As the table shows, there
is no significant difference between the training and test performance of PPO in this case
(0.54 vs. 0.55). Thus, there is no signal of overfitting. In addition, PPO outperforms all the
baselines—even in sequences that are five times longer than the training sequences. That
said, we can still see that the agent’s performance decreases as the job sequences become
longer. This is expected, since the agent optimized its behavior toward distributing up to
500 jobs during training.
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Figure 6. The plot shows the test performance (over 1000 testing instances) when the agent is trained
using sequences of jobs sampled from the same distribution as the testing instances. Since some of
the baselines’ lines overlap, we also included their performance in the legend. Note that the RL agent
quickly learned a policy that outperforms existing methods in the unseen testing instances.

Table 3. Upward generalization of policies that were trained using randomly generated job sequences
in a Dew environment with 25 devices measured in GIPS.

Method Train Set Upward Generalization

Jobs: 300–500 j 300–500 j 1000 j 1500 j 2000 j 2500 j

BPA — 0.31 0.34 0.38 0.40 0.42
E-SEAS — 0.31 0.30 0.33 0.35 0.37
RR — 0.30 0.30 0.31 0.33 0.35
W-Rand — 0.30 0.30 0.32 0.34 0.37
W-RR — 0.30 0.29 0.31 0.33 0.34

PPO 0.54 0.55 0.52 0.47 0.44 0.43

6.5. Discussion

Our experiments suggest positive answers to our two research questions. Deep RL
did find policies that work better than heuristic methods and generalized well to unseen
situations in our domains. In addition, we found two ways to achieve this behavior. One
option is to train the agent using a single training instance. This method is computationally
cheap and, as shown in Table 2, generalizes reasonably well. However, from a theoretical
point of view, there are no guarantees that such an approach will generalize well in general.
Another option is to train the agent using a different job sequence in every episode. This
approach is computationally expensive but leads to policies that behave similarly in training
and testing instances.

As for the limitations, the final policy learned by the agent is still a heuristic. This
learned heuristic will perform well in situations that are similar to the training instances
(and perform poorly in situations that differ too much from the training instances). Thus,
the advantage of using RL is to allow users to learn an ad hoc heuristic for their particular
Dew environment. The disadvantage is that the agent requires extensive training in order
to learn such a heuristic. Searching for ways to decrease the cost of training the agent is a
promising direction for future work.

7. Conclusions and Future Work

This work proposed to distribute jobs in Dew environments using RL. By following
a trial-and-error strategy, the RL agent learned how to assign jobs to devices effectively—
outperforming existing methods by up to 77% in GIPS performance. Perhaps our most
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notable finding was that RL agents tend to learn policies that generalize well to unseen
instances. This includes out-of-distribution examples, such as longer sequences of jobs than
those seen during the training.

These are promising results. Beyond Dew computing, it is interesting to see a real-
world application where Deep RL generalizes well from only one training instance. Inves-
tigating whether this is a common feature of large-scale scheduling problems (or only a
peculiarity of Dew computing) is one of the many research directions that this work opens.

Another direction for future work is to study the performance of RL agents that are
more sample efficient than PPO. As we said, PPO is one of the preferred methods for solving
problems that require generalization. However, PPO is also known for being data-hungry—
which is why PPO needed millions of interactions with the environment to become a
state-of-the-art scheduler in our experiments. Now that we know that PPO works well in
practice, it makes sense to try other RL methods that are more sample efficient, such as
off-policy methods [60] and model-based methods [61].

In this work, we focused on scheduling jobs in a fixed Dew environment (i.e., an envi-
ronment where the set of available devices is fixed). However, in some Dew environments,
it is not uncommon that devices enter and leave the network over time [62]. This further
complicates the process of assigning jobs to devices. We note that extending our method to
handle such cases is relatively straightforward. The key is to show the RL agent situations
in which a device leaves or enters the local network during the episode. That said, training
the agent in such a setting will likely require more computational power.

Finally, it is worth mentioning that there is an important open question that we did
not entirely address here. It is unclear how to evaluate the effectiveness of a scheduler in
a Dew environment. There is no standard metric in the literature. Some metrics consider
the GIPS [7], the number of jobs completed [31], the network latency [63], or the battery
levels [64]. However, they all have advantages and disadvantages. In this work, we used
GIPS because it pushes the agent to get the most out of the available resources. In order
to maximize the GIPS, an optimal scheduler would keep all the available devices busy (if
possible). Otherwise, the scheduler might improve its GIPS performance by assigning jobs
to the IDLE devices. However, the disadvantage is that by doing so, the agent might decide
to exploit the battery-dependent devices until their battery levels are close to zero. We leave
as future work to study how RL agents behave under different performance metrics in
Dew environments.
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Appendix A. Simulator Details

In our previous work [7], we modified the original DewSim [21] to handle topologies
based on hybrid networks; that is, we added the support of non-battery-dependent devices.

https://github.com/psanabriaUC/gym-EdgeDewSim
https://github.com/psanabriaUC/gym-EdgeDewSim
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DewSim was chosen as a base simulator because it supports modeling different features
present in an SCE. The main features of DewSim are the simulation of the arrival of tasks,
completeness metrics, battery consumption, network activity derived from the transfer of
input/output data of tasks, and status notifications of devices based on events. In addition,
the Simulator allows modeling battery consumption and CPU usage in mobile devices
thanks to its method based on profiles extracted from real devices, that is, traces that contain
(not synthetic) information about the relationship between battery events and CPU usage.
Battery depletion is simulated by executing events related to CPU usage, network usage, or
screen activity. Figure A1 shows the logic of the Simulator to manage the battery status of
the network’s devices.

receiveEvent()

processEvent()

Simulation Device DefaultInfiniteBatteryManager

runSimulation()

onStartup()

startWorking()

Event

createEvent()

BatteryUpdateEvent
addEvent(BatteryUpdateEvent)

BatteryUpdateEvent
is only added once,
on device startup

Figure A1. Sequence Diagram of DewSim battery management.

Appendix A.1. Scheduling Logic

The Simulator manages the scheduling process using a base class called SchedulerProxy.
This class has all the primary interaction and information required to handle the Events
related to Job arrivals to the network. The scheduler has a method called processEvent
that receives the Job, and then, based on its logic, using the data from the mobile devices,
such as battery or CPU usage, and the data from the Job to process, it returns the selected
device to perform the arrived Job. In Figure 3, we can see a class diagram showing how the
different objects present in the Simulator are related.

In this work, to make it feasible for an RL agent to take the scheduling decision, we
added a new Scheduler called RemoteScheduler. This Scheduler delegates the scheduling
logic to an external entity by exposing a network interface. This interface exposes and
sends the essential information, and then, it listens for which device has to be selected.
Sent information includes job completion rate statistics, the list of devices with their
corresponding assigned jobs, and energy status.

Appendix A.2. Client/Server Mode

To integrate external scheduling algorithms made in other languages, we made new
modifications to the Simulator. Firstly, we added a server mode that remotely helps control
the simulation parameters and allows parallel simulation environments using a threaded
model. After that, we created a RemoteScheduler class extending the base scheduler class.
This RemoteScheduler does not do anything on its own and always waits for the instruction
from an external entity. The flow begins with the server listening for connections, and when
the client connects to the server, the server creates an entire Thread to attend the remote
simulation. Next, the client sends the initial configuration using a defined communication
protocol. Afterward, the server responds with an ACK response and begins the simulation
until a scheduling decision needs to be made. When this scheduling decision arrives, the
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Simulator passes the event to the RemoteScheduler class. It sends the current Simulation
state, the current Job to assign, and the list of connected devices and waits for the client’s
response. The client then sends the ID of the assigned device to perform the Job and
receives an ACK signal. This process is repeated until the simulation is finished or until
the client sends a reset command. When the simulation ends, the server sends the client
the last Simulation state and waits for a restart or finish command from the client. We
show in Figure A2 the protocol and the logic followed by the Simulator and the client.

Client: Start Connection
Server: ACK, Create new thread and start a simulation instance
Client: Send string containing the configuration to use
        String length (n)             : 4 bytes Integer
        Null-terminated char array    : N bytes char array
Server: Send simulation ID
        ID Least significant bytes    : 8 bytes Long Integer
        ID Most significant bytes     : 8 bytes Long Integer
Client: ACK
(Simulation starts)
Server: Send Status: NEXT (2)
        Status:                       : 4 bytes Integer
Client: ACK
Server: Sends simulation metadata
        Device List size              : 4 bytes Integer
        Foreach device, send device metadata:
            If (firstTime)
                Send Full Data:
                    Device ID:        : 8 bytes Long Integer
                    MIPS              : 8 bytes Long Integer
                    Total Jobs        : 4 bytes Integer
                    Remaining Battery : 4 bytes Integer (Range 0-10000000)
                    CPU-Usage         : 8 bytes Double
                    Has Battery?      : 1 byte Boolean
                    AssignedJobs:     : 8 bytes Long
            Else
                Send Resumed Data:
                    Total Jobs        : 4 bytes Integer
                    Remaining Battery : 4 bytes Integer (Range 0-10000000)
                    CPU-Usage         : 8 bytes Double
                    AssignedJobs:     : 8 bytes Long
        Send Job Data:
            Job OPS                   : 8 bytes Long
            Job Input Size            : 4 bytes Integer
            Job Output Size           : 4 bytes Integer
        Send Statistics:
            Total Jobs                : 4 bytes Integer
            Completed Jobs            : 4 bytes Integer
            Elapsed time              : 8 bytes Long
            Successful Jobs OBS       : 4 bytes Float
Client: Send Assigned Device ID (or Reset command=0)
            Next Device               : 4 bytes Int
Server: ACK, Process with the next simulation action.
Repeats process Until Simulation finishes (or reset command is sent from the client)
Server: Sends END and final statistics Data:
            End Command (Value = 1)   : 4 bytes Integer
            Total Jobs                : 4 bytes Integer
            Completed Jobs            : 4 bytes Integer
            Elapsed time              : 8 bytes Long
            Successful Jobs OBS       : 4 bytes Float
Client: ACK, Send Next Command (RESET = 0, Finish = 1)
            Command                   : 4 bytes Integer

Figure A2. Client/Server communication protocol.
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