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Abstract: Human activity recognition (HAR) can effectively improve the safety of the elderly at home.
However, non-contact millimeter-wave radar data on the activities of the elderly is often challenging
to collect, making it difficult to effectively improve the accuracy of neural networks for HAR. We
addressed this problem by proposing a method that combines the improved principal component
analysis (PCA) and the improved VGG16 model (a pre-trained 16-layer neural network model) to
enhance the accuracy of HAR under small-scale datasets. This method used the improved PCA to
enhance features of the extracted components and reduce the dimensionality of the data. The VGG16
model was improved by deleting the complex Fully-Connected layers and adding a Dropout layer
between them to prevent the loss of useful information. The experimental results show that the
accuracy of our proposed method on HAR is 96.34%, which is 4.27% higher after improvement, and
the training time of each round is 10.88 s, which is 12.8% shorter than before.

Keywords: improved PCA; improved VGG16; human activity recognition; small-scale datasets

1. Introduction

The World Health Organization reports that 42% of people over 70 might fall at least
once a year [1]. By 2050, the proportion of the world’s population aged over 65 is expected
to increase to 21.64% [2]. As the world’s most populous country, China has accelerated
its urbanization process in recent years and its original family structure has changed. A
large number of empty nesters have appeared in both urban and rural areas of the country.
Empty nesters are vulnerable to safety hazards at home due to old age and limited mobility.
Especially for those empty nesters living alone, an unexpected fall can result in death in
the worst-case scenario. Research shows that timely help can save the lives of those who
fall [3]. However, existing medical resources are infeasible to meet the massive demand
for elderly home care due to the significant number of older adults. In this circumstance,
various sensors and technologies have been applied to monitor and recognize the activities
of the elderly at home to improve their home safety through technical means. Among
these technologies, human activity recognition (HAR) is a key technology for home safety
monitoring of the elderly. Although HAR is promising, it still faces many challenges. For
example, its recognition accuracy is unsatisfactory and not convenient enough for users [4].

2. Related Work

Many researchers have studied HAR from different aspects, such as sensors and
algorithms. HAR methods can be divided into the following three categories based on the
types of sensors: wearable devices, cameras, and millimeter-wave radars. The advantages
and disadvantages of different sensors are shown in Table 1. In addition to the reasons
listed in the table, cost is also an important and realistic factor influencing users’ choice.
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For example, the camera-based method is usually cheaper than the millimeter-wave radar-
based method, but the millimeter-wave radar-based method can better protect user privacy.
The cost of a wearable device is usually more than the cost of a single camera, but users may
need multiple cameras to monitor different rooms while one wearable device can fulfill a
user’s needs. Therefore, in the se-lection of monitoring methods, it is often necessary to
consider the actual situation and needs of users.

Table 1. Advantages and disadvantages of different sensors.

Types of Sensors Advantages Disadvantages

Methods based on cameras

� High accuracy and
robustness

� Non-contact and
comfortable

� Avoid manual use

� Limited application
scenarios

� Difficult to use in a dark
environment

� Privacy issues

Methods based on wearable
devices

� Privacy protection
� Easy to collect data
� Various types of sensors

can be chosen

� Inconvenient
� Uncomfortable
� Limited battery capacity
� Difficult for the elderly

to use

Methods based on
millimeter-wave radars

� Privacy protection
� Non-contact and

comfortable
� Avoid manual use
� Not affected by the light

condition

� Difficult to collect data
� Easily affected by noise
� Limited location of

installation

HAR based on cameras has been popular in the past. Some researchers separated
the image background from the human and then used machine learning or deep learning
to extract features [5,6]. Espinosa et al. [7] separated the person in the picture from the
background and extracted the ratio of length to width of the human body to recognize
standing and falling. In addition, some researchers extracted human contour features and
recognized activities through changes in contour [8–10]. Rougier et al. [11] used an ellipse
rather than a bounding box on HAR. They suggested that the direction standard deviation
and ratio standard deviation of the ellipse can better recognize the fall. Meanwhile, Lai
et al. [12] improved this method by extracting the picture’s features and using three points to
represent people instead of using the bounding box. In this way, the changed information of
the upper and lower parts of the human body can be easily analyzed. With the development
of computer technology and deep learning, Nunez-Marcos et al. [13] proposed an approach
that used convolutional neural networks (CNN) to recognize the activities in a video
sequence. Khraief et al. [14] used four independent CNNs to obtain multiple types of data
and then combined the data with 4D-CNN for HAR. Compared with other methods, visual
methods have better recognition accuracy and robustness, but the performance of cameras
will decline rapidly in the dark environment. Having the camera based in certain places,
such as bedrooms and bathrooms, will significantly violate personal privacy and bring
moral and legal problems [15]. As a result, the usage of traditional cameras as sensors
for HAR has been abandoned in recent years. Although researchers including Xu and
Zhou [16] have promoted 3D cameras, they have a limit on the use distance and can only
be used within 0.4–3 m, which is not suitable for daily use.

Wearable devices are also widely used for HAR, based on the principle that accelera-
tion changes rapidly when the human body moves. There are many methods to measure
the change of acceleration, such as accelerometer [17,18], barometer [17], gyroscope [19,20],
and other sensors. In 2009, Le et al. [21] designed a fall recognition system with wearable
and acceleration sensors to meet the needs of comprehensive care for the elderly. In 2015,
Pierleoni et al. [22] designed an algorithm to analyze the tri-axial accelerometer, gyroscope,
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and magnetometer data features. The results showed that the method had a better perfor-
mance on the recognition of falls than similar methods. In 2018, Mao et al. [23] extracted
information and direction by combining different sensors, and then used thresholds and
machine learning to recognize falls with 91.1% accuracy. Unlike visual methods, wearable
devices pay more attention to privacy protection and will not be disturbed in a dark envi-
ronment. However, wearable devices need to be worn, which reduces comfort and usability
and is challenging to apply to older adults. In addition, the limitations of the battery
capacity of wearable devices makes it difficult for them to work for an extended period. To
address these disadvantages, Tsinganos and Skodras [24] used sensors in smartphones for
HAR. However, this method still has some limitations for the elderly who are either not
familiar with or do not have smartphones.

With the development of radar sensors, there has been an emergence of HAR using
millimeter-wave radar data [25]. Compared with other methods, radar data can better
protect personal privacy and is more comfortable for users. The key to using radar to
recognize human activities is to extract and identify the features of the micro-Doppler
signal generated when the elderly move. In 2011, Liu et al. [26] extracted time–frequency
features of activities through the mel frequency cepstrum coefficient (MFCC) and used
support vector machine (SVM) and k-nearest neighbor (KNN) to recognize activities with
78.25% accuracy for SVM and 77.15% accuracy for KNN. However, the limit of supervised
learning is that it can only extract features artificially and cannot transfer learning. Deep
learning does not require complex feature extraction and has good learning and recognition
ability for high-dimensional data. Sadreazami et al. [27] and Tsuchiyama et al. [28] used
distance spectrums and time series of radar data combined with CNN for HAR. In 2020,
Bhattacharya and Vaughan [29] used spectrograms as input of CNN to distinguish falling
and non-falling. In the same year, Maitre et al. [30] and Erol et al. [31] used multiple radar
sensors for HAR to solve the problem that a single radar sensor could only be used in a
small range. Hochreiter et al. [32] proposed a long short-term memory network (LSTM))
to solve the problem of gradient vanishing and gradient explosion. Wang et al. [33] used
an improved LSTM model based on a recurrent neutral network (RNN) combined with
deep CNN. Their work recognized radar Doppler images of six human activities with
an accuracy of 82.33%. Garcia et al. [34] also used the CNN-LSTM model to recognize
human activities. The authors proposed an approach to collect data on volunteer activity by
placing a non-invasive tri-axial accelerometer device. Their innovation lies in two aspects:
they used LSTM to classify time series and they proposed a new data enhancement method.
The results show that their model is more robust. Bouchard et al. [35] used IR-UWB radar
combined with CNN for binary classification to recognize falling and normal activities with
an accuracy of 96.35%. Cao et al. [36] applied a five-layer convolutional neural network
AlexNet with fewer layers on HAR. They believed that features could be better extracted
by using fewer convolution layers.

Although deep learning has a strong learning ability and high accuracy in HAR, it
needs a large volume of data for training purposes. Due to the particularity of the elderly, it
is difficult for them to generate some high-risk activities for data collection. In order to solve
this problem, we proposed a method that combines improved principal component analysis
(PCA) with an improved VGG16 model (a 16-layer neural network model pre-trained by
the Visual Geometry Group) for HAR. This method enhances feature dimensions with
high-value information while preserving the basic features of the raw data. Moreover, it
speeds up the convergence rate and reduces over-fitting.

3. Methodology
3.1. Improved VGG16

VGG is a model proposed by the Visual Geometry Group at the University of Ox-ford.
It obtained excellent results in the 2014 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC-2014), which ranked second in classification task and first in localization task. The
outstanding contribution of VGG is proving that small convolution can effectively improve
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performance by increasing network depth. VGG retains the characteristics of AlexNet and
also of a deeper network layer.

The improvement of the VGG16 model has two aspects: the improvement of the model
structure and the optimization of the model training parameter. Firstly, we adjusted the
number of layers to fit the sample features of spectrograms and added a Dropout layer be-
tween Fully-Connected layers to prevent over-fitting. Then, in relation to convergence rate,
we converted the constant learning rate to a dynamic learning rate to ensure convergence.

3.1.1. Improvement of the Model Structure

In our experiments, we chose to train a VGG16 model to recognize human activi-
ties, not only because it excels at image feature extraction but also because it uses fewer
convolutional layers, making it more suitable for the task of the small-scale millimeter-
wave radar dataset. The traditional VGG16 model has 16 layers, including 13 Convolu-
tional layers and 3 Fully-Connected layers. The initial input size of the VGG16 model is
224 × 224 × 3. After multiple convolutions and 2 Fully-Connected layers, the output of
the Fully-Connected layer is 4096 and the final output dimension is 1000. The VGG16
model was originally trained on the ImageNet dataset with 1000 classifications [37]. In
this work, the implemented VGG16 model does not need as many complex layers as the
original VGG16 model. Therefore, we reduced the 3-layer Full-Connected layer to 2-layer
and used Relu as the activation function. In addition, a Dropout layer was added between
Fully-Connected layers in the improved VGG16 model, as the high-dimensional features
of the spectrogram of radar data account for the most amount of information. Doing this
could reduce ineffective features, improve the recognition speed of single images, and
prevent over-fitting. The results of HAR are obtained after a Softmax layer. In the improved
VGG16 model, we not only reduced the number of network parameters but also accelerated
the convergence rate. Figure 1 shows the improved VGG16 model.
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3.1.2. Optimization of the Parameter

In the training of the VGG16 model, the learning rate controls the error used to update
the parameters during the back propagation, so that the parameters gradually fit the output
of the sample and tend to the optimal result. If the learning rate is high, the influence of
output error on the parameters is more significant and the parameters are updated faster
but, at the same time, the influence of abnormal data is greater. For small-scale datasets,
the ideal learning rate is not fixed but is a value that changes with the training rounds. In
other words, the learning rate should be set to a larger value at the beginning of training,
and then the learning rate will decrease in the training model until convergence.

In this paper, we halve each round’s learning rate. We then increase the learning
rate according to the number of training rounds, and decrease it with the exponential
interpolation. The value of the learning rate can be derived as below.

lrt = lr0 × k
t
T (1)

lrt = lrt−1 × k
1
T (2)

lrt denotes the learning rate after the change, lrt−1 denotes the learning rate of the last
round (they are recursive), lr0 denotes the initial learning rate, k controls the speed at which
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the learning rate decreases, t denotes the number of training rounds, and T denotes the
number of rounds to finish the learning rate decay.

3.2. Improved PCA

Traditional principal component analysis (PCA) is a linear dimension reduction
method which uses orthogonal transformation as the mapping matrix. PCA uses the
orthogonal matrix A ∈ Rk ∗ n to map samples to lower dimensional spaces Am ∈ Rk for
data samples in high-dimensional spaces. k� n plays a role in dimensionality reduction,
which can solve the problem of too many parameters due to poor data and also speeds up
the rate of convergence.

Equation (3) shows a m× n matrix created from m samples of n dimensions.

X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (3)

Xpre is given by zero-mean normalization and standardization, as shown in Equa-
tion (4).

Xpre =


X11−X1

S1
· · · X1n−Xn

Sn
...

. . .
...

Xm1−X1
S1

· · · Xmn−Xn
Sn

 (4)

Xn =
1
n

m

∑
i=1

xmn (5)

In Equation (5), Xn denotes the mean value of each dimension and
Sn denotes the standard deviation of each dimension.

Sn =
1
m

√
m

∑
i=1

(xmn − Xn) (6)

The covariance matrix Xcov is given by Equation (7).

Xcov =
1

n− 1
XpreXT (7)

The value λ = [λ1, . . . λn] of the covariance matrix and the orthonormal vector V =
[v1, . . . , vn] are obtained by diagonalizing Xcov.

Traditional PCA extracts orthonormal vectors and sorts the values to obtain the top
principal components with the highest contribution. When the principal component matrix
is given, it is compressed from n dimension to k dimension by multiplying with Xpre.
However, when the data dimension is greatly compressed for small-scale datasets, it can
lead to a decrease in accuracy and over-fitting. This effect also pays the price, that is,
at the expense of freedom. The loss of information caused by data compression can be
offset by increasing the number of principal components retained for final analysis with an
associated cost of a loss of degrees of freedom. The impact is more significant in smaller
datasets than in larger datasets.

Therefore, our work used an improved PCA to arrange the contribution of principal
components and enhance values. Firstly, we selected k eigenvectors from the n dimensions,
which accounted for most (>70%) of the valuable information of the spectrograms and then
enhanced these k values by making them normally distributed. The abnormal values that
are not on the interval of (x− 2σ, x+ 2σ) were replaced by the mean of the n− k dimensions.
The substituted values were then added with a deviation to prevent over-fitting, while
the values of the n− k eigenvectors left did not change. Finally, the k eigenvectors were
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combined into a new principal component matrix V’ after enhancement, with V’ given by
Equation (8).

V’ =


v′1
v′2
v′p
. . .
vk

 (8)

v′1, v′2 . . . v′k are eigenvectors whose values are processed by the algorithm and V’ is an
enhanced matrix that combines these values with the rest of the unchanged values. Finally,
the compressed matrix of k dimensions is given by V’ × Xpre. The data preprocessing
process based on PCA is shown in Figure 2.
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4. Experiments and Results

Comparative experiments were conducted to evaluate the performance of our pro-
posed method against traditional methods. For comparisons, we processed radar spectro-
grams with the improved PCA algorithm and the traditional PCA algorithm, respectively.
Moreover, the wanted HAR model was trained with the improved VGG16 model and the
original VGG 16 model.

4.1. Dataset

The dataset [38] that we used in the experiments was downloaded from
http://researchdata.gla.ac.uk/848/ accessed on 5 September 2019. It was contributed
by Shah et al. from the University of Glasgow. They collected data using FMCW radar,
which operated in C-band (5.8 GHz) with a bandwidth of 400 MHz, chirp duration of 1
ms, and output power of about 18 dBm. The radar can record the micro-Doppler signals of
moving people in the region of interest, and the format of each collected original radar data
is a long 1D complex array. This dataset includes six activity types and the data format is
binary. These data files can be used to generate 224 × 224 PNG images using MATLAB
code provided by the authors.

The dataset contains radar signatures of six types of indoor human activities—walking,
sitting, standing up, picking up items, drinking, and falling—collected from 99 older people
in nine different places. Table 2 shows the number of samples of each activity type in the
dataset. Figure 3 shows the examples of radar spectrograms (Time–Velocity pattern) of six
activities from 20-to-100-year-old female/male subjects. Among these volunteers, people
over 60 years old make up the majority.

http://researchdata.gla.ac.uk/848/
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Table 2. Number of samples per activity type.

Types of Activities Number

Walking 286
Sitting 289

Standing 287
Picking up things 287

Drinking 286
Falling 198
Total 1633

4.2. Signal Preprocess: Improved PCA

To convert the 1D raw radar data into 2D spectrograms, we first performed FFT (Fast
Fourier transform) on the raw radar data and obtained the Range-Time images. Range FFT
is used to derive the distance information of the target. The sampling data on each chirp
is FFT and stored as a row vector of the matrix. We then transposed the X-axis with the
Y-axis of the Range-Time images to obtain the Time-Velocity pattern of spectrograms which
can better represent the characteristics of the movement. After the transposition, the X-axis
represents Time and the Y-axis represents Range. Finally, we performed a second FFT
on each range dimension using the Doppler FFT to obtain target speed information from
the spectrogram (Time-Velocity pattern). The data conversion process is demonstrated in
Figure 3. The typical spectrogram of each activity type is shown in Figure 4.

To extract the features of the obtained 2D spectrograms, we processed the data using
the PCA algorithm. Figure 5 shows the contribution rate of the first 10 components extracted
from six types of radar spectrograms.

As shown in Figure 5, the first two eigenvectors account for 70–80% of the sample
information. Therefore, we set the parameter p = 2 in the improved PCA method and
select these two eigenvectors for value enhancement. The other eigenvectors do not change
their values. Figure 6 shows the spectrogram reconstructed from the principal components
k = 1 to k = 6.
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Figure 6 highlights that the first two principal components have reconstructed the
main contours of the original spectrogram. After that, as the principal components increase,
the information of the image gradually increases and the noise becomes smaller but still
exists. Therefore, we only enhanced the first two values of the dimensions that contain
most of the spectrogram information.

In value enhancement, the size of the original radar spectrograms was 256× 256 and
the number of values in each dimension was 256. We selected the values of the first two
dimensions for enhancement which accounted for most of the image information, with
the number of selected values being 2× 256. Each type of activity contained Q images.
We calculated the mean value of data in these two dimensions of spectrograms. These
values with the size of Q× 1 are normally distributed and the abnormal values were then
selected and replaced with the mean values while the remaining normal values remained
unchanged. The process of selecting and enhancing values is shown in Figure 7.
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In Figure 7, vnormal denotes the normal values, vabnormal denotes the abnormal values,
and V represents the mean values. The mean is not global. There are six activities in the
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dataset and Q samples in each activity. The mean value is obtained according to each
value of the enhanced eigenvector. The mean number of the enhanced eigenvectors is the
sequence length of the eigenvectors.

As can be seen in Figure 8, before the normal distribution, some of the values of the
first two dimensions did not follow the 2σ principle of normal distribution and were outside
the (x− 2σ, x + 2σ) range. Therefore, to enhance the values, we assigned these outlier
values to the mean of the values. In order to avoid over-fitting in training, the assigned
values were added to a random constant of the range of (10−3,10−4). By doing so, all values
within these two dimensions were following the 2σ principle of normal distribution.

Figure 9 shows the comparisons of spectrograms processed by the improved and
traditional PCA methods. Both methods preserved 90% of the information in the raw radar
spectrograms.

While traditional PCA preserves the most valuable information, the spectrograms of
walking and sitting in Figure 9a,c still had large areas of blur and noise. Spectrograms
processed by using the improved PCA method were significantly better. Although there
was still noise in Figure 9b,d, the overall spectrograms were smoother and clearer, proving
that the improved PCA had a better performance in processing the radar spectrograms
than did the traditional PCA.
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4.3. Test and Evaluation

In order to verify the effectiveness of the proposed algorithm and network structure,
the parameters of accuracy, precision, recall, F1-score, and training time were used as the
evaluation index of the experiments.

Accuracy =
TP + TN

TP + FN + FP + TN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(12)

TP means true positive, TN means true negative, FN means false negative, and FP
means false positive.

Comparative experiments were conducted to evaluate the performance of our pro-
posed method with traditional methods. The spectrograms in the dataset were divided
into the training set and test set by a ratio of 8:2. The initial learning rate is 1 × 10−4, batch
size is 32, and the epoch is 300. The optimizer adopted Adam and the loss function was the
cross-entropy loss function.

The following methods were trained respectively:

• Method 1: Training raw radar spectrograms through VGG16;
• Method 2: Training raw radar spectrograms through improved VGG16;
• Method 3: Training the data processed by traditional PCA through improved VGG16;
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• Proposed Method: Training the data processed by improved PCA through improved
VGG16.

The training accuracy of these four methods with epochs based on the training set is
shown in Figure 10.
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The accuracy, precision, recall, and training time of each round of the four methods
based on the test set are shown in Table 3.

Table 3. Performance of different methods.

Methods Accuracy/% Precision Recall F1-Score
Training

Time
(/epoch/s)

Method 1 92.07 0.93 0.91 0.92 12.47

Method 2 93.47 0.94 0.93 0.93 11.39

Method 3 87.84 0.90 0.87 0.89 10.14

Proposed
Method 96.34 0.96 0.96 0.96 10.88

As shown in Table 3, method 1 used raw radar spectrograms to train the VGG16 model
with 90% accuracy after 100 rounds of training; At this point, the parameters had converged
in a smaller range. However, the curve appeared to oscillate after 100 rounds and there was
over-fitting as the dataset is small-scale. Method 2 used raw radar spectrograms to train the
improved VGG16 model, achieving 90% accuracy after 50 rounds, 1.4% higher than method
1. Although method 2 is faster, there was still over-fitting in the later training phase. Method
3 used samples processed by traditional PCA to train the improved VGG16 model. These
reconstructed samples removed surplus information from the raw radar spectrograms and
compressed the data dimensions. The results of method 3 showed that although the model
can converge in less than 50 rounds, its accuracy and precision are the lowest among the
four methods. Its accuracy-epoch curve also had a severe oscillation later in training, which
usually indicates serious over-fitting. The proposed method used processed images which
were given by the improved PCA to train the improved VGG16 model, with the results
showing that it had the best performance among the four methods in terms of accuracy,
precision, recall, and F1-score. The proposed method converged faster than methods 1 and
2. Although it did not converge as fast as method 3, its accuracy-epoch curve was the most
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stable, with no significant oscillations in the later training phase. According to the results,
the proposed method had the best performance compared with other methods, and the
improved PCA combined with the improved VGG16 model significantly improved the
performance of HAR and reduced the training time.

4.3.1. Performance Comparison

We used the Skimage Python package to convert image files into pixel information
and stored the data in a python array. The shape of the image data array is [224,224,3], rep-
resenting a PNG file with a width of 224 pixels and height of 224 pixels, with 3 representing
the pixel values of red, green and blue (RGB). We then converted the image to a grayscale
image, removed the color, and changed the array shape to [224,224,1]. This data array was
saved in CSV format for machine learning processing. We then compared the proposed
method with some commonly used machine learning methods, with the results shown in
Table 4.

According to the results shown in Table 4, our proposed method had the best per-
formance in terms of accuracy, precision, recall, F1-score, and training time. In addition
to our proposed method, KNN had better performance than the other machine learning
algorithms when using original radar spectrograms, mainly due to its simple logic and
insensitivity to abnormal values. SVM had a shorter training time than the other methods
due to its advantages in processing small-scale datasets. However, the traditional SVM
only gave the binary classification algorithm, so the results of SVM were not ideal when
dealing with the problem of six classifications. The overall performance of Bi-LSTM was
acceptable, but the training time was too long because of its complex network structure.
Overall, the results of traditional machine learning methods in radar data classification
were not satisfactory. Our proposed method based on improved PCA and an improved
VGG16 model is more suitable for processing small-scale radar data, which is superior to
other methods in terms of results and training time reduction.

Table 4. Comparison of different methods with the proposed method.

Methods Accuracy/% Precision Recall F1-Score
Training

Time
(/epoch/s)

Random
Forest 84.75 0.86 0.85 0.85 16.49

SVM 74.46 0.76 0.74 0.70 13.76

KNN 90.85 0.91 0.91 0.91 14.28

Bi-LSTM 83.53 0.87 0.84 0.85 23.17

Proposed
Method 96.34 0.96 0.96 0.96 10.88

4.3.2. Performance Study in Fall Detection

Among the six typical activities, walking, sitting, standing, picking up things, drinking,
and falling, falling is the most harmful to the elderly. Older adults may suffer severe injuries
after falling, or even endanger their life. For this reason, recognizing falls was critical in
the HAR field. We separated the other five daily activities from falls and used binary
classification to recognize the fall.

As can be seen from Figure 11, our proposed method had a significant advantage in
detection accuracy, with a fall detection of 96% and non-fall detection of 95.5% compared
with the other three methods. It can also be seen that method 2 was slightly higher than
method 1 in the accuracy of fall detection, but there was no difference in identifying normal
activities. The reason might be that the improved VGG16 model used in method 2 can better
identify differences between falls and other activities. The performance of method 3 was
the worst, mainly because the spectrograms processed by the traditional PCA algorithm
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not only reduced the dimension of the samples but also discarded a large amount of
information, resulting in method 3 having difficulty identifying the fall. The proposed
method achieved the best performance in fall detection, mainly because the improved PAC
algorithm enhanced the values of the retained dimension while reducing the redundant
dimension, thereby improving the training speed and recognition of the spectrograms.
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5. Conclusions

This paper used a convolutional neural network to recognize the human activities
of the elderly. To solve the problem of over-fitting caused by the small-scale dataset and
improve the training speed of the model, we proposed an improved PCA method to process
the raw radar spectrograms and then used them to train an improved VGG16 model to
develop an efficient human activity recognition model. Our proposed method determined
the number of principal components by preserving 90% of information. The values of
the extracted dimensions were normally distributed to obtain the normal and abnormal
values. The abnormal values were then replaced with the mean value of its dimension to
enhance values. In this way, the meaningless and unimportant dimensions in the image
can be removed by the PCA algorithm, and dimensions that can represent the image can
be enhanced. This is beneficial to improve the rate of convergence in model training and
reduce over-fitting when using small-scale datasets. In conclusion, we used a radar-based
non-contact method to recognize human activities. This ensured the recognition accuracy
and did not infringe on the home privacy of the elderly, nor did it require the elderly to
carry out complex installation and wearing, which can effectively alleviate the pressure on
the medical care industry.

However, there are also certain limitations to our work. First, the dataset we used
in this study is balanced and contained only six types of activities, so it is worth testing
our method with some unbalanced data and extreme types of activities in future work. In
addition, this future work will also apply our methods to areas such as object recognition
in autonomous driving technology. Since millimeter-wave radar has some defects, such as
poor penetration ability in automatic driving applications [39], the object activity recogni-
tion algorithm that combines millimeter-wave radar data and ultrasonic radar data is also
worth further investigation and research.
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