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Abstract: It is important to create a comfortable wind environment around high-rise buildings for
outdoor activities. To predict the wind environment, Computational Fluid Dynamics (CFD) has been
widely used by designers and engineers. However, the simulation results of different CFD turbulence
models might significantly vary. This paper researched the wind environment around a typical
high-rise building and verified the accuracy of the CFD simulations based on polyhedral meshes.
The differences between the simulation results of the k-ε turbulence models and those of the wind
tunnel experiments were compared from the perspectives of wind speed and turbulence energy. The
results show that the modified k-εmodels could still not perfectly match the wind tunnel experiment
results. Specifically, in the low-wind-speed areas, the simulation results of the Realizable Two-Layer
K-Epsilon (RTLKE) model were the closest to the experimental results of the wind tunnels, while
in the high-wind-speed areas the simulation results of the Standard Two-Layer K-Epsilon (STLKE)
model were the closest to the experimental results of the wind tunnels. Therefore, it is recommended
that these two k-ε turbulence models are applied under different conditions—the RTLKE model
should be used to simulate low-wind areas around high-rise buildings (e.g., defining the size of
the static-wind area around high-rise buildings, predicting the diffusion time of pollutants around
high-rise buildings, etc.); STLKE should be used to simulate high-wind-speed areas around high-rise
buildings (e.g., the high speed wind area around high-rise buildings during a typhoon, the maximum
wind speed area around high-rise buildings, etc.). It is expected that findings from this research study
supplement some existing high-rise building design guidance.

Keywords: high-rise building; polyhedral mesh; wind; k-ε turbulence model; accuracy

1. Introduction

Previous research showed that high-rise buildings often have a significant impact on
the airflow in their surrounding areas [1–7], which can be divided into high-wind-speed
areas and low-wind-speed areas. High wind speeds can cause some damages, while low
wind speeds cannot contribute to the decrease in air pollutants [8–11]. Moreover, the
wind environment around high-rise buildings can impact their energy consumption [12,13].
Therefore, it is necessary and important to predict the wind environment around high-rise
buildings before construction. In recent years, Computational Fluid Dynamics (CFD) has
been increasingly used in predicting the wind environment, though the accuracy of the
calculation results is still under research.

Many scholars have verified the calculation accuracy of different turbulence models
based on tetrahedral and hexahedral meshes under different conditions for high-rise
buildings [14–18]. For instance, Murakami and Mochida compared the CFD simulation
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results with wind tunnel experiment results and found that the k-ε model could predict
velocity and pressure fields well under fine-mesh conditions [19]. Tan and Li simulated the
wind effects on a super high-rise TV tower and found that the Realizable K-Epsilon (RKE)
model could come up with more accurate results in terms of mean pressure coefficients and
streamlines than the Standard K-Epsilon (SKE) and RNG K-Epsilon models [20]. Behrouzi
et al. presented two cases of wind flow around high-rise buildings and concluded that
the RNG K-Epsilon model and the RKE model overpredicted the reattachment length
behind the buildings [21]. Likewise, other scholars also pointed out the inaccuracy of
using revised k–epsilon models in reproducing the weak-wind area and the reattachment
length behind the building [22–25].The Reynolds Stress Model (RSM) with modified inlet
atmosphere boundary conditions, as proposed by Zhang et al., was able to better simulate
the wind flow around high-rise buildings [26]. Tominaga et al. compared the predicted
results using revised K–Epsilon models and Large Eddy Simulation (LES) for a high-rise
building and found that the LES showed better performance in predicting mean velocity
distributions and turbulence energy distributions [27]. Thordal et al. also found that the
LES model showed good performance in predicting the mean surface pressure of high-rise
buildings [28–30]. Liu et al. evaluated the influence of calculation parameters (e.g., mesh
numbers, discretization time step and sampling time, etc.) on simulating the outdoor wind
flow around an isolated high-rise building and found that the Detached Eddy Simulation
(DES) made a similar prediction of the mean wind velocity field in the lateral side and
wake region, while it had less computational cost than the LES [31]. To summarize, the
LES model and the DNS model can be more accurate in predicting the airflow, but they
require higher computational costs. A range of modified k-εmodels can be adopted as a
fast solution for many engineering designs and predictions [32,33].

Some scholars explored the accuracy of the CFD simulation results based on different
structured mesh generation methods. Du et al. proposed the near-wall mesh generation
method to simulate wind environments and evaluated the reliability of this method by
comparing the CFD results with the wind tunnel experiment results. The near-wall mesh
generation method could provide sufficient near-wall mesh density, while it could not lead
to a significant increase in the total amount of meshes and the consequent computational
cost [34].

In recent years, with the development of computational technology, the types of mesh
calculations based on unstructured mesh generation approaches gradually increased. Nozu
et al. assessed the wind pressure distribution and wind force coefficients on the facade
of a high-rise building, using the combined model consisting of a Cartesian mesh and
an unstructured mesh. The results showed that the wind pressure distribution on the
surface could be accurately calculated by using the unstructured mesh system [35]. Blocken
and Carmeliet adopted an unstructured mesh with tetrahedral cells in the simulation of
complex high-rise residential buildings to evaluate the comfortable outdoor-wind levels for
pedestrians [1,36]. The polyhedral mesh has the advantage of achieving better simulation
results with relatively fewer meshes. Some scholars analyzed the calculation speed and
accuracy of polyhedral meshes and verified the accuracy of the simulation results. For
instance, Sosnowski et al. proposed a new method for computational domain discretization
based on polyhedral meshes and compared the simulation results generated by three mesh
types (i.e., hexahedral, polyhedral, and tetrahedral). It was found that the polyhedral mesh
was a reliable choice for computational domain discretization. Moreover, this method could
reduce the numerical diffusion of the meshes and the calculation time [37].

Previous research in this field mainly focused on the influence of different turbulence
models and parameter settings on the simulation results, and there is no comprehen-
sive study on the accuracy of the simulation results in low- and high-wind-speed areas
around high-rise buildings. Some requirements about wind speed were included in the
design guidelines for green buildings. For example, “Green Building Evaluation Stan-
dard” (GB/T50378-2019) requires that the maximum wind speed is less than 5 m/s at the
pedestrian level (1.5 m above the ground) around buildings in winter and that there are
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no static wind areas in playgrounds in summer [38]. However, the methods of predicting
outdoor wind environment and the choices of turbulence models were not suggested in
this standard. To fill the gap, this study shed light on the wind flow around a high-rise
building using various k-ε turbulence models (e.g., SKE, RKE, etc.) based on polyhedral
meshes. The simulation results were cross-compared with the wind tunnel experiment
results to verify the accuracy of the simulation under different conditions. It is expected
that this study can provide a benchmark for future work and improve the accuracy of
predicting the wind environment around a high-rise building.

2. Method

Figure 1 shows the flowchart of this research work.
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Figure 1. Flowchart of this research work.

2.1. Outline of Wind Tunnel Experiment

Architectural Institute of Japan (AIJ) has conducted many wind tunnel experiments
and summarized the experimental data into a database [16]. This research study selected
the case of a single high-rise building from the database as benchmark and compared the
numerical simulation results based on the k-ε models and the wind tunnel experiment
results from the AIJ database. In the selected case, a high-rise building model with a size of
0.08 m (b) × 0.08 m (d) × 0.16 m (h) was placed in a wind field with a velocity gradient in
the vertical direction, and the average wind speed in three dimensions around the model
and the average wind speed of the test points on the horizontal plane with heights of 0.125b
and 1.25b and the center vertical plane were collected [39,40].

2.2. Numerical Simulations

This research study used Star CCM+ software for numerical simulations. All cases
were calculated by the same PC. The parameter settings for the numerical simulations were
as detailed below.

2.2.1. Model Building and Computational Domain

The size of the computational domain was set as 1.68 m × 1.1 m × 0.9 m (Figure 2),
referring to previous research [31,39]. The height and width of the domain were the same
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as those of the wind tunnel experiments. To reduce the influence of inflow profiles, the
windward distance was set slightly shorter than that suggested in the AIJ guidelines [31].
The location of the high-rise building model in the domain is shown in Figure 2. The
blockage ratio was 1.29%, which was recommended by Frank et al. [41] and Blocken [42].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 22 
 

2.2.1. Model Building and Computational Domain 

The size of the computational domain was set as 1.68 m × 1.1 m × 0.9 m (Figure 2), 

referring to previous research [31,39]. The height and width of the domain were the same 

as those of the wind tunnel experiments. To reduce the influence of inflow profiles, the 

windward distance was set slightly shorter than that suggested in the AIJ guidelines [31]. 

The location of the high-rise building model in the domain is shown in Figure 2. The 

blockage ratio was 1.29%, which was recommended by Frank et al. [41] and Blocken [42]. 

 

Figure 2. High-rise building and computational domain. 

2.2.2. Boundary Conditions 

Inlet boundary: As shown in Figure 3, wind velocity U and turbulent kinetic energy 

k were set as the same as the values in the wind tunnel experiment. More detailed infor-

mation can be found from the wind tunnel experiment [39]. Turbulent energy dissipation 

rate ε could be calculated by Equation (1), where 𝐶𝜇 is a constant with a value of 0.09; k(Z) 

is the turbulent energy, which can be obtained from a wind tunnel experiment or an ob-

servation of corresponding surroundings; U(Z) is the wind speed at any point in the com-

putational domain; and z is the height of any point in the computational domain [43]. 

ε(𝑧) ≅ P𝑘(𝑧) ≅ −u′w′̅̅ ̅̅ ̅̅ (𝑧)
𝑑𝑈(𝑧)

𝑑𝑧
≅ C𝜇

1
2⁄

𝑘(𝑧)
𝑑𝑈(𝑧)

𝑑𝑧
 (1) 

 

Figure 3. Wind speed and turbulent kinetic energy measurements. 

Figure 2. High-rise building and computational domain.

2.2.2. Boundary Conditions

Inlet boundary: As shown in Figure 3, wind velocity U and turbulent kinetic energy k
were set as the same as the values in the wind tunnel experiment. More detailed information
can be found from the wind tunnel experiment [39]. Turbulent energy dissipation rate ε
could be calculated by Equation (1), where Cµ is a constant with a value of 0.09; k(z) is the
turbulent energy, which can be obtained from a wind tunnel experiment or an observation
of corresponding surroundings; U(z) is the wind speed at any point in the computational
domain; and z is the height of any point in the computational domain [43].

ε(z) ∼= Pk(z) ∼= −u′w′(z)
dU(z)

dz
∼= C

1
2
µ k(z)

dU(z)
dz

(1)
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Outlet boundary: The normal gradients of all variables were set to zero for the out-
flow [43].
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Building-surface boundary and ground boundary: Rough wall conditions and the
default parameters of wall roughness in simulation software were used to define the
building surface and ground boundary.

Side boundary and top boundary: The smooth wall condition and the default wall
treatment in simulation software were used to define the side and top boundaries.

2.2.3. Turbulence Model

The Standard K-Epsilon model was chosen for mesh sensitivity, thereby to determine
the appropriate mesh in numerical simulation.

Previous research indicated that the modified k-εmodels were suitable for industrial
applications in comparison with the LES models and the DNS models. A range of modified
k-ε models (e.g., models incorporating wall functions or damping functions) were selected
for comparison purposes, including the Standard K-Epsilon (SKE) model [44], the Standard
Two-Layer K-Epsilon (STLKE) model [45], the Standard Low-Reynolds Number K-Epsilon
(SLRNKE) model [46], the Realizable K-Epsilon (RKE) model [47], the Realizable Two-Layer
K-Epsilon (RTLKE) model, the Abe–Kondoh–Nagano Low-Reynolds Number K-Epsilon
(AKNKE) model [48], the Elliptic Blending K-Epsilon (EBKE) model [49], and the V2F
Low-Reynolds Number K-Epsilon (V2FKE) model [50,51]. The source files of numerical
simulation can be find in Supplementary Materials. The simulation results of these models
were evaluated against the experimental results based on wind tunnels.

2.2.4. Convergence Conditions

All the calculations were finished until the residuals were less than 10−4 and the
variation values of 50 iterations on specified points were less than 10−3 [41,43].

2.2.5. Meshing

A polyhedral mesh is commonly adopted to reduce the calculation time and the
numerical diffusion of the mesh (eliminating discretization errors providing a coarse
mesh) [37]. In this study, a polyhedral unstructured mesh was used to make a preliminary
calculation, where the base mesh size was set to 0.10 m [43]. Base mesh size refers to
the reference mesh of the whole computational domain. Besides the custom boundaries
and areas, all the surface and volume in the computational domain were divided into the
base mesh size. The custom meshes were set with reference to the ratio of the base mesh
size [52].

According to the simulation results, the mesh was refined in the areas where the wind
speed changed greatly. The mesh close to the building had relatively high density, and the
mesh far from the building had relatively low density. Mesh size could be controlled by
“Volumetric control” in Star CCM+. Based on the distribution of test points and changes in
wind speed in the wind tunnel experiment, three blocks were added around the building,
as shown in Figure 4. The sizes of three blocks and the size ratio of the mesh within blocks
to the base mesh are shown in Table 1.

Table 1. Block size and size ratio.

Length (m) Width (m) Height (m) Block Mesh Size/Base Mesh Size

Block 1 0.16 0.16 0.2 10%

Block 2 0.64 0.24 0.26 15%

Block 3 0.72 0.4 0.32 20%
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To achieve good computational efficiency, a mesh sensitivity analysis was conducted
as described below.

2.3. Mesh Sensitivity Analysis

Four meshing cases were studied for the mesh sensitivity analysis, in which the base
mesh sizes gradually became finer, as listed in Table 2. Table 2 also shows the mesh numbers
and the calculation times for all the cases.

Table 2. Mesh and calculation times of 4 cases.

Base Mesh Size
(m)

Architectural
Mesh Size (m)

Mesh Numbers
of Building

Surface

Calculation
Time (s)

Case 1 0.10 0.01 977 152

Case 2 0.06 0.006 2869 865

Case 3 0.04 0.004 5944 6235

Case 4 0.02 0.002 23,386 81,154
Legend: Building mesh size refers to the mesh size of the building surface. The ratio of the building mesh size to
the base mesh size is 10%.

The monitoring points were set in the areas where the wind speeds changed greatly.
In total, 66 monitoring points were in the vertical plane at y = 0, and 82 monitoring points
were in two horizontal planes at z/b = 0.125 and z/b = 1.25. These monitoring points were
distributed around the target building, as shown in Figure 5.

To compare the difference among the above four meshing cases, the error rate proposed
by Qin et al. [53] was defined as shown below.

Error Rate =
∑

√(
v0−vx

v0

)2

n

where v0 is the value of the finest mesh (Case 4 in Table 2; base mesh size of 0.02 m), vx is
the value of the other mesh (other cases in Table 2; base sizes of 0.1 m, 0.06 m, and 0.04 m),
and n is the number of monitoring points.
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As shown in Figure 6, the error rates were 16%, 8%, and 6% for Case 1, Case 2, and
Case 3, respectively. There was a notable reduction from Case 1 to Case 2, while the
error rates for Case 2 and Case 3 were rather close. It was, therefore, concluded that the
influence of the mesh size was insignificant once the base mesh size was smaller than
0.06 m. Additionally, the calculation time of Case 3 was nearly 7 times longer than that
of Case 2 (Table 2). Considering both calculation time and accuracy, the mesh setting of
Case 2 was selected for this study (Figure 7).
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3. Results

The inflow wind blocked by high-rise buildings resulted in a separation of the airflow
on the lateral sides and the roof of the high-rise building. In this case, the wind speed
was relatively faster on the lateral sides and the roof of the building and relatively slower
behind the building. This paper focused on the wind environment of the high-wind-speed
areas (i.e., the lateral sides and the roof of the high-rise building) and the low-wind-speed
area (i.e., the wake region of the high-rise building). Due to the limited test points in
the wind tunnel experiment and mesh refinement around the building in the simulations,
the contours close to the high-rise building were different from those of the wind tunnel
experiment. This was beyond the scope of this research study and requires further studies
in future.

3.1. Reattachment Length Comparison

The reattachment lengths [54] on the top of the building (XR) and behind the building
(XF) are shown in Figure 8 [40]. Different CFD codes or different calculation conditions lead
to different simulation results [55]. Table 3 lists the relative reattachment lengths on the top
of the building (XR/b) and behind the building (XF/b) for eight turbulence models and
the corresponding wind tunnel experiment. The SKE and SLRNKE models did not show
a reattachment on the top of the building, which was inconsistent with the experiment.
The XF/b-value for the V2FKE model was much higher than the value derived from the
experiment. The simulation results of the STLKE model, the RTLKE model, the SLRNKE
model, and the EBKE model are compared in this paper.
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Table 3. Calculation results of each turbulence model.

SKE STLKE SLRNKE RKE RTLKE AKNKE EBKE V2FKE Wind Tunnel Experiment

XR/b — 0.33 — 0.38 0.32 0.89 0.37 0.85 0.52

XF/b 2.63 2.38 2.53 3.05 2.65 3.55 3.20 4.35 1.42

3.2. Speed Comparison
3.2.1. Comparison of Wind Speeds on the Vertical Plane at Y = 0

Figure 9 shows the contour plots of the X-velocity (U) at y = 0. Table 4 presents
the locations of the contour line at y = 0 (U). For the contour line of the 0 m/s wind
speed in the low-wind-speed area behind the building, the simulated x/b-values were
all higher than the value of 1.85 from the wind tunnel experiment. Among them, the
x/b-value for the STLKE model was 2.90, which was the closet to the value of 1.85 from the
experiment, followed by the RTLKE model. The results of the other three models showed
more significant differences compared with the experimental results.
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Table 4. Location of contour line at Y = 0 (U).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of contour line of 0 m/s
in X-direction (low-wind-speed

area)
>3.5 >3.5 >3.5 2.90 3.15 1.85

Location of contour line of 5 m/s
in Z-direction (high-wind-speed

area)
2.65 2.72 2.78 2.83 2.80 2.90

For the contour line of the 5 m/s wind velocity in the high-wind-speed area above the
building, all the turbulence models displayed a similar trend. The simulated z/b-values
were all close to the value of 2.90 from the experiment. All the five models showed good
performance in predicting flow separation above the building.

Figure 10 shows the contour plots of the Z-velocity (W) at Y = 0. Table 5 presents the
locations of the contour line at y = 0 (W). For the contour line of the –0.25 m/s wind speed
in the low-wind-speed area behind the building, the simulated z/b-values were all lower
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than the value of 1.05 from the wind tunnel experiment. Among them, the z/b-value for
the STLKE model was 0.75, which was the closest to the value of 1.05 from the experiment,
followed by the RTLKE model. Moreover, the difference between the results from the other
three models and of the experiment were rather significant.
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Table 5. Location of contour line at Y = 0 (W).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of
−0.25 m/s in Z-direction
(low-wind-speed area)

0.45 0.45 0.45 0.75 0.65 1.05

Location of the contour line of 0.5
m/s in Z-direction

(high-wind-speed area)
2.80 2.70 2.75 2.75 2.75 2.70

For the contour line of the 0.5 m/s wind speed in the high-wind-speed area above
the building, the results from the five turbulence models demonstrated subtle differences
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compared with the wind tunnel experiment results, and the five simulated z/b-values were
all close to the value of 2.70 from the experiment.

3.2.2. Comparison of Wind Speeds on the Horizontal Plane

Figure 11 shows the contour plots of the X-velocity (U) at z/b = 0.125. Table 6 presents
the locations of the contour line z/b = 0.125 (U). For the contour line of the −0.5 m/s
wind speed in the low-wind-speed area behind the building, the simulated x/b-values
were all higher than the value of 1.40 from the wind tunnel experiment. Among them, the
x/b-value for the STLKE model was 1.98, which was the closest to the value of 1.40 from
the experiment, followed by that of the RTLKE model. The results of the other three models
were quite different from the experimental results.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 22 
 

Table 5. Location of contour line at Y = 0 (W). 

 AKNKE EBKE RKE STLKE RTLKE Wind Tunnel Experiment 

Location of the contour line of −0.25 m/s in Z-

direction (low-wind-speed area) 
0.45 0.45 0.45 0.75 0.65 1.05 

Location of the contour line of 0.5 m/s in Z-di-

rection (high-wind-speed area) 
2.80 2.70 2.75 2.75 2.75 2.70 

For the contour line of the 0.5 m/s wind speed in the high-wind-speed area above the 

building, the results from the five turbulence models demonstrated subtle differences 

compared with the wind tunnel experiment results, and the five simulated z/b-values 

were all close to the value of 2.70 from the experiment. 

3.2.2. Comparison of Wind Speeds on the Horizontal Plane 

Figure 11 shows the contour plots of the X-velocity (U) at z/b = 0.125. Table 6 presents 

the locations of the contour line z/b = 0.125 (U). For the contour line of the −0.5 m/s wind 

speed in the low-wind-speed area behind the building, the simulated x/b-values were all 

higher than the value of 1.40 from the wind tunnel experiment. Among them, the x/b-

value for the STLKE model was 1.98, which was the closest to the value of 1.40 from the 

experiment, followed by that of the RTLKE model. The results of the other three models 

were quite different from the experimental results. 

 

Figure 11. Contour plots of X-velocity (U) at z/b = 0.125. 

Table 6. Location of contour line at z/b = 0.125 (U). 

 AKNKE EBKE RKE STLKE RTLKE Wind Tunnel Experiment 

Location of the contour line of −0.5 m/s in X-

direction (low-wind-speed area) 
>3.5 2.90 2.94 1.98 2.25 1.40 
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Table 6. Location of contour line at z/b = 0.125 (U).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of
−0.5 m/s in X-direction
(low-wind-speed area)

>3.5 2.90 2.94 1.98 2.25 1.40

Location of the contour line of 3
m/s in Y-direction

(high-wind-speed area)
−1.23 −1.35 −1.35 −1.45 −1.35 −1.65

For the contour line of the 3 m/s wind speed in the high-wind-speed area on the side
of the building, the five simulated z/b-values were all higher than the value of −1.65 from
the experiment. Among them, the z/b-value for the STLKE model was −1.45, which was
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the closest to the value of −1.65 from the experiment, followed by the results of the EBKE
model, the RKE model, and the RTLKE model.

Figure 12 shows the contour plots of the Y-velocity (V) at z/b = 0.125. Table 7 presents
the locations of the contour line at z/b = 0.125 (V). For the contour line of the 0 m/s wind
speed in the low-wind-speed area behind the building, the x/b-value for the STLKE model
was 1.00 lower than the values for the other four models and lower than that from the
experiment; the x/b-value for the RTLKE model was 1.26, which was the closest to the
value of 1.30 from the experiment.
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Table 7. Location of contour line at z/b = 0.125 (V).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of 0
m/s in X-direction

(low-wind-speed area)
1.55 1.55 1.50 1.00 1.26 1.30

Location of the contour line of
−0.5 m/s in X-direction
(high-wind-speed area)

0.55 0.30 0.33 0.04 −0.10 −0.02

For the contour line of the −0.5 m/s wind speed in the high-wind-speed area on the
side of the building, the x/b-value for the STLKE model was 0.04, which was the closest to
the value of −0.02 from the experiment, followed by the results of the RTLKE model.

Figure 13 shows contour plots of the X-velocity (U) at z/b = 1.25. Table 8 presents the
locations of the contour line at z/b = 1.25 (U). For the contour line of the 0 m/s wind speed
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in the low-wind-speed area behind the building, the x/b-value for the STLKE model was
1.46, which was the closest to the value of 1.45 from the experiment, followed by the EBKE
model, the RTLKE model, and the RKE model. The x/b-value for the AKNKE model was
2.15, which was much higher than the value from the experiment.
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Figure 13. Contour plots of X-velocity (U) at z/b = 1.25.

Table 8. Location of contour line at z/b = 1.25 (U).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of 0
m/s in X-direction

(low-wind-speed area)
2.15 1.57 1.80 1.46 1.63 1.45

Location of the contour line of 4.25
m/s in Y-direction

(high-wind-speed area)
−1.48 −1.65 −1.80 −1.84 −1.83 −1.80

For the contour line of the 4.25 m/s wind speed in the high-wind-speed area on the
side of the building, the z/b-values for the RKE model, the STLRE model, and the RTLKE
model were −1.80, −1.84, and −1.83, respectively, which were very close to the value of
−1.80 from the experiment. The z/b-value for the AKNKE model was −1.48, much higher
than the value from the experiment.

Figure 14 shows the contour plots of the Y-velocity (V) at z/b = 1.25. Table 9 presents
the locations of the contour line at z/b = 1.25 (V). For the contour line of the 0 m/s wind
speed in the low-wind-speed area behind the building, the x/b-value for the AKNKE
model was 1.62, which was the closet to the value of 1.60 from the experiment. The other
four simulated x/b-values were all much lower than the value from the experiment.
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Figure 14. Contour plots of Y-velocity (V) at z/b = 1.25.

Table 9. Location of contour line at z/b = 1.25 (V).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of 0
m/s in X-direction

(low-wind-speed area)
1.62 1.07 1.00 0.92 0.92 1.60

Location of the contour line of
−0.25 m/s in X-direction
(high-wind-speed area)

0.35 0.10 0.19 0.15 0.03 −0.07

For the contour line of the −0.25 m/s wind speed in the high-wind-speed area on
the side of the building, the x/b-value for the AKNKE model was 0.35, which was much
higher than the value for the other four models and the experiment. The x/b-values for the
other four models were all close to the value of −0.07 from the experiment. Among them,
the x/b-value for the RTLKE model was 0.03, which was the closest to the value from the
experiment.

Based on the cross-comparison of the wind speeds on the vertical and horizontal
planes (Tables 10 and 11), it was found that the STLKE model and the RTLKE model
performed better in the high-wind-speed areas than the others; the RTLKE model also
performed well in the low-wind-speed areas.
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Table 10. Comparison of wind speeds in the low wind-speed area.

Location Recommended Models Not-Recommended Models (Much Different from the Experiment)

X-velocity (Y = 0) STLKE, RTLKE RKE, EBKE, AKNKE

Z-velocity (Y = 0) STLKE, RTLKE RKE, EBKE, AKNKE

X-velocity
at z/b = 0.125 STLKE, RTLKE RKE, EBKE, AKNKE

Y-velocity
at z/b = 0.125 RTLKE STLKE, RKE, EBKE, AKNKE

X-velocity
at z/b = 1.25;

STLKE, RKE, RTLKE,
EBKE AKNKE

Y-velocity
at z/b = 1.25 AKNKE RKE, STLKE, RTLKE, EBKE

Total RTLKE

Table 11. Comparison of wind speeds in the high wind-speed area.

Location Recommended Models Not-Recommended Models (Much Different from the Experiment)

X-velocity (Y = 0) All

Z-velocity (Y = 0) All

X-velocity
at z/b = 0.125

STLKE, EBKE, RKE,
RTLKE, AKNKE

Y-velocity
at z/b = 0.125 STLKE, RTLKE RKE, EBKE, AKNKE

X-velocity
at z/b = 1.25;

STLKE, RTLKE, RKE,
EBKE AKNKE

Y-velocity
at z/b = 1.25

STLKE, RTLKE, EBKE,
RKE AKNKE

Total STLKE, RTLKE EBKE, RKE, AKNKE

3.3. Comparison of Turbulent Kinetic Energy
3.3.1. Comparison of Turbulent Kinetic Energy at Y = 0

Figure 15 shows the contour plots of the turbulent kinetic energy at Y = 0. Table 12
presents the locations of the contour line at Y = 0. Judging from the 0.5 contour line in the
low-wind-speed area, the x/b-value for the STLKE model was 0.65, which was the closest
to the value of 0.77 from the experiment, followed by the results from the AKNKE model
and the RTLKE model. The x/b-value for the RKE model was higher than 3.5, which had
large deviations in comparison with the experimental values.

Table 12. Location of contour line at Y = 0 (turbulent kinetic energy).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of 0.5 in
X-direction (low-wind-speed area) 0.90 2.05 >3.5 0.65 1.60 0.77

Location of the contour line of 1 in
Z-direction (high-wind-speed area) _ _ _ 2.25 _ 2.30
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By comparing the 1.0 contour lines of the simulation results and the wind tunnel
experiment results in the high-wind-speed area, the z/b-value for the STLKE model was
2.25, which was quite close to the value of 2.30 from the experiment, while the other four
models had large gaps with respect to the experimental results.

3.3.2. Comparison of Turbulent Kinetic Energy at z/b = 0.125

Figure 16 shows the contour plots of the turbulent kinetic energy at z/b = 0.125.
Table 13 presents the locations of the contour line at z/b = 0.125. From the 0.5 contour line
in the low-wind-speed area, the x/b-value for the STLKE model was 0.55, which was the
closest to the value of 0.70 from the experiment, followed by the values for the RTLKE
model and the EBKE model, while the x/b-value for the AKNKE model was 1.75, which
was much higher than the value from the experiment.
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Table 13. Location of contour line at z/b = 0.125 (turbulent kinetic energy).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of 0.5 in
X-direction (low-wind-speed area) 1.75 1.50 - 0.55 1.47 0.70

Location of the contour line of 1 in
Y-direction (high-wind-speed area) - −0.54 - −0.65 −0.48 −1.02

Based on the comparison of the 1 contour line in the high-wind-speed area between
the simulation results and the wind tunnel experiment results, the z/b-value for the STLKE
model was−0.65, which was the closest to the value of−1.02 from the experiment, followed
by the results of the EBKE model and the RTLKE model, while the other two models had
large gaps with respect to the experimental results.

3.3.3. Comparison of Turbulent Kinetic Energy at z/b = 1.25

Figure 17 shows the contour plots of the turbulent kinetic energy at z/b = 1.25. Table 14
presents the locations of the contour line at z/b = 1.25. Judging from the 0.75 contour line
in the low-wind-speed area, the x/b-value for the STLKE model was 0.88, which was quite
close to the value of 0.87 from the experiment, followed by the results of the EBKE model
and RTLKE model, while the values for the AKNKE model and the RKE model were quite
different from those from the experiment.
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Table 14. Location of contour line at z/b = 1.25 (turbulent kinetic energy).

AKNKE EBKE RKE STLKE RTLKE Wind Tunnel
Experiment

Location of the contour line of 0.75 in
X-direction (low-wind-speed area) 2.61 1.74 2.10 0.88 1.70 0.87

Location of the contour line of 1 in
Y-direction (high-wind-speed area) −0.75 −0.70 −0.70 −0.90 - −1.22

Based on the comparison of the 1 contour line in the high-wind-speed area between
the simulation results and the wind tunnel experiment results, the z/b-value for the STLKE
model was−0.90, which was the closest to the value of−1.22 from the experiment, followed
by the values for the AKNKE model, the EBKE model, and the RKE model, while the value
for the RTLKE model was quite different from that from the experiment.

Based on the comparison of the turbulent kinetic energies on the vertical and horizontal
planes (Tables 15 and 16), the RTLKE model and the STLKE model performed better in the
low-wind-speed area. In the high-wind-speed area, the STLKE model performed better
than the other models.

Table 15. Comparison of turbulent kinetic energy in low wind-speed area.

Location Recommended Models Not-Recommended Models (Much Different from the Experiment)

Y = 0 STLKE, AKNKE, RTLKE RKE, EBKE,

z/b = 0.125 STLKE, AKNKE, RTLKE EBKE, RKE

z/b = 1.25 STLKE, RTLKE, EBKE RKE, AKNKE

Total STLKE, RTLKE RKE, EBKE, AKNKE
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Table 16. Comparison of turbulent kinetic energy in high wind-speed area.

Location Recommended Models Not-Recommended Models (Much Different from the Experiment)

Y = 0 STLKE RTLKE, RKE, AKNKE, EBKE

z/b = 0.125 STLKE, EBKE, RTLKE RKE, AKNKE

z/b = 1.25 STLKE, EBKE, RKE RTLKE, AKNKE

STLKE RTLKE, RKE, AKNKE, EBKE

4. Discussion

This research study shed light on the accuracy of CFD simulations. Previous research
showed that the SKE model had some shortcomings in reproducing the low-speed-wind
regions behind buildings, but modified k-ε models could improve these. In this study, vari-
ous modified SKE models and RKE models (applied with the wall function, the damping
function, etc.) were used to compare their efficiency, and the results were validated by
comparing them to wind tunnel experiment results. It was found from this research study
that: (a) There was a difference in wind speed between the experiment results and CFD
predictions in the contour plots of the Y-velocity (V) at z/b = 0.125 (Figure 10). (b) There
was also a difference in the turbulent kinetic energy between the experiment results and
CFD predictions in the contour plots of the turbulent kinetic energy at z/b = 1.25. The
study showed that using polyhedral meshes, the modified k-εmodels could improve the
accuracy of the simulations but could still not perfectly match the wind tunnel experiment
results. The approach to optimize the closure coefficients of the RANS turbulence model or
the method of coupling multiple models could improve the accuracy of CFD simulations,
but they are difficult to be applied in engineering design because this approach requires
engineers to master more professional knowledge of fluid dynamics. It is hoped that the
existing models can be further modified based on these research findings and finally lead
to a more accurate and more convenient toolkit for engineers.

Having said the above, the modified k-εmodels are still widely used for design and
analysis purposes in many engineering applications due to their low computational cost
and data storage requirement. It was found from this study that:

(a) In the low-wind-speed area, the STLKE model and the RTLKE model could predict
turbulence kinetic energy in a more accurate way. The RTLKE model also performed
well in predicting the wind speed on the vertical and horizontal planes. The RTLKE
model could be used for simulations in research studies of low wind-speed areas to
predict the size of the static-wind areas around high-rise buildings, the diffusion time
of pollutants around buildings, etc.

(b) In the high-wind-speed area, the STLKE model and the RTLKE model could accurately
predict wind speed. Between them, the STLKE model performed better in simulating
the turbulence kinetic energy. Therefore, the STLKE model is recommended to be
used for simulations in research studies of high wind-speed areas (e.g., windward
side) of high-rise buildings to predict the damage of high wind speed to the area
around buildings during a typhoon, the maximum wind-speed area around high-rise
buildings, etc.

Wind speed is considered important in current high-rise building designs. However,
there is a lack of relevant guidelines or tools that could help designers predict outdoor wind
environment. It is, therefore, hoped that findings from this research study supplement
some existing building design guidance.

5. Conclusions

This paper simulated the wind flow around a high-rise building using different k-ε
turbulence models with a polyhedral mesh system. The accuracy of the simulation results
was evaluated against the AIJ wind tunnel experiment results. It was concluded that:
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(1) Under polyhedral mesh conditions, the modified k-e models applied with the wall
function and the damping function improved the accuracy of the simulations but
could still not perfectly match the wind tunnel experiment results. The correction of
the models (e.g., optimizing the closure coefficients of the RANS turbulence model)
needs to be further studied in order to significantly improve the accuracy of CFD
simulations.

(2) In the low-wind-speed area, the simulation results of the RTLKE model were the
closest to the experimental results of the wind tunnels. In the high-wind-speed area,
the simulation results of the STLKE model were the closest to the experimental results
of the wind tunnels. So, these two models are recommended to be used for the
simulation of wind around high-rise buildings under different circumstances.

(3) In practice, it is recommended to use the STLKE model to explore high-wind-speed
areas around high-rise buildings (e.g., the high-wind-speed areas around buildings
during a typhoon, the maximum wind speed area around high-rise buildings, etc.). It
is recommended to use the RTLKE model to explore low-wind-speed areas around
high-rise buildings (e.g., the size of the static-wind area around high-rise buildings,
the diffusion time of pollutants around buildings, etc.).

Supplementary Materials: The source files of numerical simulation can be downloaded at: https:
//pan.quark.cn/s/92ac5a356278.
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