
Citation: Kuo, J.-Y.; Lin, H.-C.; Wang,

P.-F.; Nie, Z.-G. A Feedback System

Supporting Students Approaching a

High-Level Programming Course.

Appl. Sci. 2022, 12, 7064. https://

doi.org/10.3390/app12147064

Academic Editor: Paolino Di Felice

Received: 18 June 2022

Accepted: 8 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Feedback System Supporting Students Approaching a
High-Level Programming Course
Jong-Yih Kuo 1,* , Hui-Chi Lin 1, Ping-Feng Wang 2 and Zhen-Gang Nie 3

1 Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 106344, Taiwan; huchlin@mail.ntut.edu.tw

2 Institute for Information Industry, Taipei 10622, Taiwan; pfwang@iii.org.tw
3 School of Information and Electronics Beijing, Institute of Technology, Beijing 100081, China;

zhengang.nie@bit.edu.cn
* Correspondence: jykuo@ntut.edu.tw

Abstract: This study analyzes the mistakes students are prone to make in programming and uses the
GDB and Valgrind tools to implement dynamic analysis techniques for their eventual application
to programs created by students. In the analysis process, spectral error localization technology is
used to strengthen the dynamic analysis to find errors more accurately. The analyzed results are
sorted and corresponding feedback is given to students in order for them to better understand the
content of errors when revising the program and classifying and counting the types of errors made.
This study sorts mistakes frequently made by students and topics in which students are likely to
make certain mistakes. The developed system was implemented in experiments including students
from a programming course who were divided into two groups, namely the experimental group and
the control group. A system for both groups of students to upload and submit assignments and a
code analysis and feedback improvement system were used. Students in the control group only used
the assignment uploading and submitting system for basic assignment uploading, verification, and
the comparison of test data. After the program was entered, declarative sentence disassembly and
dynamic slicing were suggested. Data were sent to GNU Debugger (GDB) and Valgrind for spectral
error location; the classification and recording of error types; and the interpretation of the number
of error lines, error types, and related variables. Feedback and a generated report were sent back to
the student interface to provide effective and useful feedback to the students in the experimental
group for them to revise their homework and record the types and number of errors they made in
that week’s homework in the database. The answers provided by the students to the questions were
recorded. The analysis of the pass rates of the students in the experimental and control groups for
each homework test aided the understanding of the differences in the learning success of the two
groups of students each week. The weekly pass rates and the numbers of measured errors in the
experimental group compared with in the control group were input into a distribution map to allow
us to better understand whether there was any positive correlation between the detected information,
feedback to the students, pass rates of the tests, and other related data. The system statistically
obtained feedback and the degree of improvement of homework programs; then, it distributed
specially designed questionnaires to all students to directly obtain and quantify their feedback and
perceived benefits of this system, thereby verifying the effectiveness of the system and its practicality.

Keywords: program analysis; automated debugging; fault localization; dynamic slicing; debug;
questionnaire; statistical analysis

1. Introduction

The ability to write programs has recently gained importance. Nearly 30 countries
have formulated policies in this regard, hoping to strengthen the information capabilities
of their citizens from an early age to improve the overall competitiveness of the country. In

Appl. Sci. 2022, 12, 7064. https://doi.org/10.3390/app12147064 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147064
https://doi.org/10.3390/app12147064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5723-2222
https://doi.org/10.3390/app12147064
https://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/12/14/7064?type=check_update&version=2

Appl. Sci. 2022, 12, 7064 2 of 30

2017, Japan proposed the “Future Investment Strategy 2017” and planned to incorporate
programming education into the curricula of the compulsory education stages of primary
and secondary schools from 2020 as well as further improve the digital teaching materials
and evaluation system [1]. The UK also incorporated programming into the curriculum
in 2014. There, children start to learn the basics of programming at the age of five, and by
the age of eleven they must have the ability to use two programming languages. Besides,
universities require at least half of the undeclared students to study programming within
five years before graduation to prepare to learn about and apply their knowledge to
artificial intelligence.

In a society heavily reliant on information and electronic devices, letting the public
understand the principles of program operation could help people to avoid being help-
less with respect to information technology (IT). However, not everyone knows how to
write programs, but with the aid of basic computational concepts, it is possible to think
about more diverse ways of using IT and the Internet. Students can also obtain better
logical thinking from correct programming education, thus enhancing their creativity and
preparing for solving many related problems in their future.

Learning programming is crucial, but only a few people know how to write programs
in the IT departments of universities; only rarely, one can write a system that can be
used. One of the problems is that students have too little practical experience, and writing
good, stable, and reliable programs requires time-consuming trial-and-error processes and
failure-related frustration. A good programming support platform is important to help
students overcome the obstacles of programming. Patil et al. [2], Paiva et al. [3], and Jung
et al. [4] reported that to reduce the development time or realize the submission of an
assignment in a given period, students/programmers widely use social media, especially
Google, to find recommendation systems that can suggest a program according to their
requirements. The efficient, accurate, and fast development of a code or an assignment
depends upon the accurate recommendation given by the system. Wrong recommendations
lead to inaccurate software/assignment development, as well as a wastage of time for the
student/programmer. Other approaches involve an assessment conducted by students
themselves against reference implementations, each with their own mutations, to assess
how many of the mutations students can identify in the tests; this naturally encourages
students to check their solutions more accurately, rather than have them develop an over-
reliance on auto graders [5]. Patil et al. [2] and Lucas et al. [6] proposed both multiple-choice
feedback in an online quiz system and the automated assessment of student programming
tasks. Using these systems, students can submit their programming assignments numerous
times before a deadline and obtain feedback for further improving their code or for fixing
mistakes, promoting just-in-time learning (Joan et al. [7]; Yana et al. [8]; Sychev et al. [9]).
These systems also allow instructors to save substantial time in terms of manually grading
programming assignments and to focus on the pedagogical design of courses.

Although previous research has contributed to the development of automatic feedback,
few studies have empirically explored designing formative feedback for programming
assignments. If there is only right or wrong evaluation feedback, students are under
pressure due to insufficient skills, improper time arrangement, low interest, and other
factors, and these pressures are important reasons why students find it difficult to learn
programming well. This research study analyzes the errors that students are prone to make
when writing programs in programming courses and uses the GDB and Valgrind tools to
implement dynamic analysis techniques for their eventual application to student-made
programs. Ways of providing good feedback and giving corresponding exercises can
significantly improve the success rate of students by giving them the chance to correct their
own programming mistakes as compared with only providing correct or wrong feedback.

In this study, we propose to develop a code debugging and feedback system to achieve
three objectives. (1) The system is designed to provide teachers with quick programming
assignments according to the teaching progress, automatically correct grading, and allow
teachers to provide more students with practical programming experience in one course,

Appl. Sci. 2022, 12, 7064 3 of 30

thus reducing the pressures of producing and grading a large number of programming tests
on teachers. (2) It is designed to be used by students to upload programming assignments
and quickly report errors in their programs. According to the logic, grammar, structure,
and algorithm used by students, as well as their programming abilities, various types of
useful feedback and revision directions can be automatically prompted, which can greatly
strengthen the programming design abilities and learning motivation of students, as well
as the overall learning effect. In this way, the goal of half of the college students learning
programming can be achieved. (3) Lastly, the system is designed to generate relatively
different types of programming questions according to the progress of the class, which
can provide teachers with quick and accurate programming exercises and can carry out
progressive learning according to the difficulty of the exercises.

In this paper, Section 2 presents the concepts and technologies used in this study,
Sections 3 and 4 present an analysis-based approach for fault detection and feedback, and
Section 5 presents the architecture of the system, experimental process, and results. Then,
the conclusions of this study are presented in Section 6.

2. Research Background
2.1. Control Flow Graph

The control flow graph [10,11] is a directed graph mainly used for static analysis and
can display all branches during the execution of programs; it contains if-then-else, while,
and do-while controls (Figure 1). It can easily encapsulate the information per each basic
block and can locate the inaccessible codes of a program.

Figure 1. Flowchart. From left to right: if-then-else and do-while controls.

2.2. Dynamic Dependence Graph

The dynamic dependence graph converts the results of dynamic slicing into graph-
ics [4]. Its advantage is that it makes it easy to find the for-or-while statement in dynamic
slicing and to iterate several times, and it clearly indicates the statements affected by each
iteration. A primary limitation of this graph is that if there are too many sentences in
dynamic slicing, it is complicated. A reduced dynamic dependence graph can be used to
simplify the dynamic dependence graph [12,13].

2.3. Spectrum-Based Fault Localization

Spectrum-based fault localization uses test cases and their corresponding code cover-
age to evaluate each program element to determine the possibility of errors in the program.
Spectrum-based fault localization was first applied in botanical studies by Jaccard [14]
in 1901. Since then, many researchers have used it in other fields (including software
debugging) and further improved it. In 2017, Tang et al. [15] compiled the currently
used spectrum-based fault localization technology, and in 2018, Javier et al. [16] selected

Appl. Sci. 2022, 12, 7064 4 of 30

4 methods with the best results from the existing 18 spectrum-based fault localization
methods. The ranking order of these methods was selected to be Kulczynski et al.’s [17],
Wong et al.’s [18], Ochiai et al.’s [19], and Janssen et al.’s [20] methods. Fault localization
techniques on real vs. artificial faults were compared and reported for the first time by
Pearson et al. [21]. It was found that techniques that localized artificial faults best did not
perform well on real faults. Xie et al. [22] proposed spectrum-based fault localization to
represent the effectiveness of the risk evaluation formula framework based on the concept
that the determinant of the effectiveness of a formula is the number of statements with risk
values higher than the risk value of the faulty statement. Xie et al. [23] demonstrated that
SBSE could be used to automatically design such a formula by recasting this as a problem
for genetic programming.

The system detects the wrong program and the program spectrum; records the path
of the program in the test; blocks the statement of the program, which is relatively active
when the test fails; and applies the formula to calculate each statement or program area in
the program. In the error probability score for the block, the higher the score is, the higher
the probability of an error is when the program is executed. Its formula usually contains:

1. Nf(e). The test successfully executes line e of the program, and the test result is the
number of failures;

2. Nf(e). The test does not execute line e of the program, and the test result is the number
of failures;

3. Ns(e). The test successfully executes the e-th line of the program, and the test result is
the number of successes;

4. Ns(e). The test does not execute line e of the program, and the test result is the number
of successes.

Using these factors, the formula is as follows:

Jaccard′s formula =
Nf(e)

Nf(e) + Nf(e) + Ns(e)
.

2.4. Program Slicing and Decomposition

Program slicing comprises two techniques, static slicing and dynamic slicing [24–26].
The static slicing proposed by Mark Weiser refers to selecting a specific variable V and
separating and testing the program statements that make it functional on the premise
that it does not affect the overall program behavior. It is often used in maintenance and
verification testing.

Taking Figure 2 as an example, the results of the static slicing of X, Z, and TOTAL are
shown in Figure 3.

Figure 2. Static slicing sample code.

Appl. Sci. 2022, 12, 7064 5 of 30

Figure 3. Result of static slicing of X, Z, and TOTAL.

Agrawal et al. presented the idea of dynamic slicing [27], which involves selecting
and slicing sentences that affect or change the content of variable V in the program, with
the aim of achieving slicing analysis more efficiently than with static slicing.

In Figure 4, the dynamic slicing path when variable N = 2 is {1, 2, 3, 4, 51, 61, 71,
81, 91, 62, 72, 82, 92, 63, 10}. Program decomposition [28] occurs because of the limited
effectiveness of program analysis, and the algorithms used by developers usually have fixed
signs to follow. Therefore, this algorithm is designed to statically decompose the program
into multiple tokens. The program is orderly decomposed into various components, by
which the designed module program disassembles, analyzes, and checks the relationships
between each semantic fragment.

Figure 4. Dynamic slicing sample code.

2.5. Software Testing Technique

A software testing technique is used to test cases or the software interface in various
aspects and the correctness of the execution surface of a specific function of the software. It
is generally divided into three techniques, white box, gray box, and black box [29].

White box testing performs corresponding tests on the structure of the code and its
logic. Since the internal code is in a visible state, it can improve the test efficiency and
coverage and ensure the quality of the algorithm by deleting unnecessary code blocks. The
disadvantage is that it consumes more human resources and time.

Black box testing performs functional tests corresponding to the requirements. It only
needs to execute software, input or perform specific actions according to the requirements,

Appl. Sci. 2022, 12, 7064 6 of 30

and confirm that the output or feedback meets the user’s expectations. The advantage
is that it requires fewer human resources and less time, while the disadvantage is that it
cannot be implemented or tested in detail, unlike white box testing.

Gray box testing is a combination of the above two techniques. Certain parts of the
code are visible, and the tester conducts black box testing on the interface provided by the
developer in a way similar to that of the user.

2.6. Questionnaire Survey

Questionnaire surveys are mainly used to collect statistical information on a single/
single-field-related issue. They are used to collect and statistically analyze information
by targeting specific groups of applicants or by large-scale random sampling without
targeting specific groups. Online questionnaires or physical questionnaires can be used
for surveys. A questionnaire survey is an efficient way to obtain useful information. It
is broadly categorized into four types: open-ended questions, closed-ended questions,
sequencing questions, and matching questions [30].

3. Code Debugging Method Design
3.1. System Architecture Diagram

The proposed system is composed of three major subsystems (Figure 5). The dynamic
analysis subsystem can dynamically slice and localize the fault in the code. Based on the
theory of the program dependency graph, the dependency relationship of the program
code is analyzed, and the dependency relationship information is processed by the fault
classification subsystem. The fault classification subsystem performs fault classification
on the dependency information, compares it according to the existing implemented error
category rules, and processes the comparison result to generate a feedback file. The
questions assigned by the subject subsystem mark the sorted questions, such as arrays and
string processing. The system performs statistical analyses on the questions raised by the
students and merges them with the main question.

Figure 5. Monitoring model architecture.

3.2. Pre-Processing of Code Debugging

The debugging method in this study uses dynamic analysis and error location methods,
and the fault localization method is mainly based on code coverage. The system inputs a
series of test data according to the test case and covers different sentences. The system needs

Appl. Sci. 2022, 12, 7064 7 of 30

to filter two kinds of code upload statuses. In a first instance, the first uploaded program
fails to compile; because the failed program cannot be executed, it cannot be debugged
using dynamic analysis and fault localization methods. Thus, the second program must
pass the sample test. In the program uploading system, for each different question type,
two different sample test inputs and outputs are provided for the uploader to refer to. The
program needs to pass the example test before it can be debugged.

3.3. Program Dynamic Analysis

This research study uses the GNU Debugger and Valgrind tools to conduct further
analyses and generate feedback on the C language used by students in the classroom, as
well as dynamically analyze student-made programs for the types of errors that students
are prone to make. GDB can track the execution process of programs and can print out
the value and address of any variable. Valgrind mainly debugs the state of memory
configuration in the program. In addition, we establish rules for five common mistakes
and further explore whether the automatic feedback system can help students pay more
attention to the parts that can be easily overlooked before writing the program.

The following are the types of mistakes students tend to make:

1. An action that attempts to compare or assign a value to an uninitialized variable;
2. The wrong syntax is used for a specific function in the library;
3. The program outputs a segmentation fault error;
4. The array index value exceeds its bounds;
5. The program execution time exceeds expectations or does not break out of the loop.

Specifically, we address five common student errors in the following ways:

1. The system marks the uninitialized variable flag as a result of the program analysis
and prints the error type, the number of error lines, error content, and the variable
whose value has been subjected to an access attempt or has been accessed during
actual execution;

2. Even if students are successful with easier, sample test data, when dealing with more
rigorous, real test data, errors in the details of a student’s program can be detected.
The feedback message for students includes a reminder of the number of lines and
the correct use of the strcmp function;

3. During execution, if there is an attempt to access variable c, which is not assigned to
the memory address in the sequence, the title prints the error type, line number, and
error content of the segmentation fault;

4. When executing, it might happen that students do not consider the stop condition
of the loop on the periphery of the array, so there is no way to meet the input of the
operation test data. As a consequence, the index value of the array trying to access
the loop gradually increases and cannot be stopped, resulting in an error exceeding
the array boundary;

5. When dealing with more complex test data, students might enter a loop with imperfect
conditional judgment, which leads to program execution taking too long, which may
take up system performance. It is easy to see why student-made programs might
cause this.

These rules can be analyzed and expanded according to different courses, different
students’ assignments, and different levels of students. Therefore, this paper proposes a
rule-based system that can employ preliminary intelligence.

3.4. The Method of Analyzing Mistakes in the Program Process

This research study uses sockets to link the debugging system with the program
uploading system. The following are the solution implementation methods for the five
mistake types: (1) Use of an uninitialized variable: The system dynamically analyzes
the program and records the contents of all variables. When a variable is used and not
initialized, it is marked as a mistake and moved forward according to statement dynamic

Appl. Sci. 2022, 12, 7064 8 of 30

slicing to find the use path of the variable. (2) Array index out of bounds: The system
dynamically analyzes the program and records the initial space size of all arrays. When the
array is used, if it exceeds the initial space range, it is marked as a mistake. (3) Incorrect
use of the library: The system statically analyzes the program. When the user uses the
strcmp function, the expressed condition is == 1 or == −1, and it is marked as a mistake.
(4) Segmentation fault: The system dynamically analyzes the program and records the
memory address request. When an attempt is made to access a memory location that is not
allowed to be accessed, it is marked as a mistake. (5) Irrationally long execution time of
the program: The program execution time interval is too long when the analysis process
exceeds 15 s. The system checks whether the last execution state is an infinite loop, the
program is waiting for input data, or the format conversion of input data is wrong. If one
of the above three conditions is true, it is marked as a mistake.

4. Feedback Message Design and Debugging Method

This study uses dynamic slicing and fault location methods. After the student uploads
the program using the homework uploading system, the output is compared with the
designed test data, and it confirms whether the program can be sent to the program
analysis and feedback improvement system. If it does not meet the standard condition, the
results of the student’s program are instantly displayed on the student’s user interface. If
the analysis standard is met, the student’s program is sent into this system for dynamic
slicing. The system records all the statements in the program, disassembles all the variables,
and analyzes the variables one by one. The data dependency among variables is recorded,
integrated into variable data access objects, and stored in series by a dynamic array; then,
the array is transferred to the fault localization module.

The GDB in the module first performs a path analysis on the contents of the array
and tries to compare whether there are faults that meet the filtered condition. If faults are
detected, the fault information is stored in the fault information data access object and
sent to the fault categorization module. If no faults are found, the dynamic array is sent
to Valgrind for analysis to see if any abnormal use of the memory or abnormal conditions
occur during the execution of the program. If so, the fault information is stored in the fault
information data access object and sent to the fault categorization module. If the fault is
still not found, the analysis is ended. When the fault information is passed to the fault
identification and categorization module, the fault information and known fault types are
distinguished and classified. After categorization is completed, the system retrieves the
specific variable in the variable data access object corresponding to the fault, and the fault
flag is sent to the result analysis and report production module. The module then stores the
fault variable and its cause in the database, stores the fault category in the database together
with the student ID, and classifies the completed fault. The feedback report message is
simplified for a better reading experience, and the numbers of program lines, fault variables,
and easy-to-read fault feedback reports are returned to the student user interface.

The faults that easily occur in programming learning are here categorized into five
types: the program execution time exceeds expectations or does not break out of the loop;
the wrong syntax is used for a specific function in the library; the array index value exceeds
its boundary; the program generates a segmentation fault; an attempt is made to compare
or assign a value to an uninitialized variable. The detected faults are classified, and a fault
report is generated and sent back to the user interface of the student, as shown in Figure 6.

The system shows information about the problem; the error problem statement is
visualized by the student, and the interface requires the student to pass all unit tests before
they can submit their answer.

Appl. Sci. 2022, 12, 7064 9 of 30

Figure 6. Feedback of array index out of bound.

5. The Solution Implementation Method
5.1. System Description

In programming courses, students often do not understand why their programs do
not pass a test. Although each student has a different programming style, the mistakes that
students make in programming are fundamentally the same, such as the array exceeding
the index or the use of uninitialized variables. Therefore, in this research study, we use
two mistake locating methods to classify mistakes in students’ programs and mark the
corresponding program problems. Students can be reminded in advance when making the
same mistakes in the future.

The proposed system analyzes the C programming language. Therefore, to avoid
adverse student attacks on the system, this system uses gVisor, open-source software by
Google, as the system’s Sandbox. gVisor implements more than 200 Linux System Calls in
the User Space to improve the system’s performance safety.

5.2. System Process

Figure 7 shows the system flow chart of the program debugging and feedback system.
After the students upload their program, the system compares the program with the test
data and sends the result to the debug filter. The system uses two debugging methods.
Then, the system stores the program’s debugging results in the database, classifies the
mistake results, marks the corresponding topics according to the classification, and sends
the results to the front-end system.

The error localization program in this study mainly performs spectral error localization
and dynamic slicing to identify the first five common errors explained as follows:

1. Dynamic analysis subsystem: The dynamic analysis subsystem corresponds to the
error location module. The error location module packages the variable relationship
in each line of statements into Variable DAO and concatenates objects with ArrayList
to form a set of dynamic dependency path structures:

1-1 Gcov. In the error location module, the Gcov tool is used to analyze the code
to obtain the code coverage, and the spectral error location is used to calculate

Appl. Sci. 2022, 12, 7064 10 of 30

the similarity coefficient according to the code coverage; finally, the similarity
coefficient is calculated. Data are stored in the array;

1-2 Valgrind. In the error location module, the Valgrind tool is both used to analyze
the code to obtain memory leaks and reports of illegal uses of memory and to
analyze the report content to locate the location of illegally used memory;

1-3 GDB. In the error location module, the GDB tool is used to analyze the code, track
the execution path of the program step by step, store the dependencies of each
line of statements, and store them in ArrayList;

1-4 Error location module. The error location module packages the similarity coef-
ficient, Valgrind report, and dependencies into ArrayList<VariableDAO> and
sends the object to the error identification module.

2. Error classification subsystem: The error classification subsystem corresponds to
the error identification module, the error classification and labeling module, and
the analysis result module. The error identification module identifies whether there
are common errors in the dynamic dependency path structure and retrieves the
wrong ones. The object is sent to the error classification and tag module, which
error-classifies and tags the question and code, converts the classified Variable DAO to
ErrorReportDAO, and sends the object to the analysis result module. Corresponding
feedback is given according to the type of classified data:

2-1 Error identification module. The error identification module identifies errors
according to the data transmitted by the error positioning module, compares the
dynamic analysis structure to see if there are any of the five potential types of
error rules, and sends the comparison results to the error classification and tag
module;

2-2 Error classification and marking module. The error classification and marking
module is classified according to the comparison results; different error rules are
classified into different error categories, and the Variable DAO identified as the
error is converted into ErrorReportDAO; finally, the object is sent to the analysis
result module;

2-3 Analysis result module. The analysis result module translates the error report
into format and content that are easy for users to understand and, finally, sends
the result to the uploading system through the socket.

3. Thematic question-setting subsystem: The thematic question-setting subsystem cor-
responds to the marking function in the error classification and marking module.
It marks different title-type labels for different program categories, and the error
classification subsystem generates questions according to the theme. The label of the
subsystem and different statistical reports are calculated:

3-1 Error classification and marking module. The topic-based question-setting sub-
system is mainly implemented for the marking function in the error classification
and marking module, which marks different programs according to the type of
questions marked by the teacher, so that the homework uploading system can
perform statistics for different question types and different error categories.

5.3. Program Experiment and Results

This research study took programs uploaded by the students of a programming course
over the past two years as examples of debugging, modified the feedback for debugging,
and re-uploaded the modified programs.

1. Debugging examples involving the use of an uninitialized variable

The use of an uninitialized variable means that the student used a variable without
initializing it when declaring the variable. The experimental process is reported below. The
subject of the experiment is shown in Figure 8 as an example.

Appl. Sci. 2022, 12, 7064 11 of 30

Figure 7. System flow chart.

Figure 8. Test question (1).

After uploading the sample program in response to this question in the experiment,
the test result is presented as shown in Figure 9.

From feedback report (1) in Figure 10, in test No. 129, an uninitialized variable sign
was used code in lines 35 and 51 of the code, and error content was observed in line 19 of
the code. The variable sign had been declared, but the definition of code line 21 of the
code had not been executed, so the execution of code lines 35 and 51 of the code used the
definition of code line 19. Figure 11 below is an example of such a program (program (1)).

Appl. Sci. 2022, 12, 7064 12 of 30

Figure 9. Test result (1).

According to Figure 4, test No. 129 was not passed. The feedback report is as shown
in Figure 10.

Figure 10. Feedback report (1).

In the example program in Figure 11, as the program did not meet the condition of
code line 20, line 21 was definitely not executed, and the content of code line 19 was used
in code in lines 35, 42, and 51. In this experiment, after initializing the variable sign to 0
and re-uploading it to the system, the program successfully passed all tests, as shown in
Figure 12.

2. Array index out of bounds

When an array of fixed size is declared, an unknown space is accessed if subsequent
use exceeds the size of the array. The subject of the experiment is shown in Figure 13 as
an example.

The test result after uploading the sample program in response to this question is
shown in Figure 14.

The feedback report in Figure 15 shows that all four test failures had the same cause.
Figure 15 only shows the feedback content of test No. 11.

Appl. Sci. 2022, 12, 7064 13 of 30

Figure 11. Example program (1).

Figure 12. Test result after modifying program (1).

Figure 13. Test question (2).

Appl. Sci. 2022, 12, 7064 14 of 30

Figure 14. Test result (2).

Figure 15. Feedback report (2).

The feedback report shows that in test No. 11 the array with index values of 0~60 code
in lines 35, 54, 56, and 75 of the code exceeded the boundary, while the code in line 93
exceeded the 0~121 boundary. Figures 16 and 17 below show the example code.

In label (c) of Figure 16, the array was declared with MAX in code lines 28 and 51 of
the code, where MAX is the macro in the third line of the code in label (a). Its value was 61,
but the index value started from 61 when the array was used in the code in lines 35 and 75.
In this experiment, the conditional expressions in lines 34 and 74 of the code were modified
to i < MAX − 1. Similarly, line 82 of the code in label (a) of Figure 17 declared a 61*2 array,
but the line started with the index value of 122 in line 93. The initialization of line 92 of the
code was changed to i = 2*MAX − 1.

In label (c) of Figure 16, arrays a and b in lines 54 and 56 of the code are parameters.
Line 100 of the code in Figure 17b declared arrays a and b, and the code in lines 106, 111,
117, and 123 passed by having a and b as parameters. Obviously, the same problem as
above was also found in lines 54 and 56. The initializations of lines 53 and 55 of the code in
label (c) of Figure 16 were changed to lenA = MAX − 1 and lenB = MAX − 1. All error lines
in the error feedback report in Figure 15 were identified and uploaded again as shown in
Figure 18.

Appl. Sci. 2022, 12, 7064 15 of 30

Figure 16. Example program (2), (a) Source code macro definition, (b) when the current value in the
array indexed starts at 61, (c) The declaration of an array with MAX as the size, (d) When the current
value in the array indexed starts at 61.

3. Incorrect use of the library

In different environments or versions, when using certain libraries, their usage and
return values can be different. If students do not understand the usage of the library in
detail before using it, it can lead to unexpected results. This experiment took the strcmp()
function in string.h as an example. The subject of the experiment is shown as an example
in Figure 19.

After uploading the sample program in response to the question in this experiment,
the system reported that line 118 of the code was incorrect and prompted the correct way
to use strcmp, as shown in Figure 20.

As shown in Figure 21, the strcmp function was used in line 118, and the condition
expression = 1. The return result was 1 when executed in the Windows environment,
but the return value was the difference between the ASCII codes of two-character of
two-character strings when executed in the Ubuntu environment; for details, refer to the
previous publication [15]. In this experiment, after uploading the sample program in

Appl. Sci. 2022, 12, 7064 16 of 30

response to this question, the system reported that code line 118 incorrectly used strcmp,
and prompted the correct way to use strcmp; the result is shown in Figure 22.

Figure 17. Example program (3), (a) Line 82 variable declares array size is 61*2, (b) Line 100 declares
the arrays a and b and passes them as parameters on lines 106, 111, 117, 123.

Figure 18. Test result after modifying program (2).

Appl. Sci. 2022, 12, 7064 17 of 30

Figure 19. Test question (3).

Figure 20. Test result (3).

Figure 21. Example program (4).

4. Segmentation Fault

This fault occurs when the pointer points to the unallocated memory space and reads
it or writes on it. The subject of the experiment is shown in Figure 23 as an example.

Appl. Sci. 2022, 12, 7064 18 of 30

Figure 22. Test result after modifying program (3).

Figure 23. Test question (4).

After uploading the sample program in response to this question in the experiment,
the test result is shown in Figure 24.

Figure 24. Test result (4).

Figure 24 shows that all tests failed. The feedback report is shown in Figure 25.

Appl. Sci. 2022, 12, 7064 19 of 30

Figure 25. Feedback report (4).

According to the feedback report, there was a segmentation fault in variable r in line
111 of the code. Figure 26 below shows the relevant parts of the code.

As shown in label (b) of Figure 26, the pch index array in line 261 of the code pointed
to the ch two-dimensional array, and the getpass function was called to take pch as a
parameter in line 270 of the code. In label (c) of Figure 26, a segmentation fault occurred in
line 111 of the code, indicating that the line pointed to unallocated space. According to the
previous information, index array r pointed to an array of size 10*10. Then, it affected code
line 111 by checking the control and data flow of the code. In the conditional formula of
line 110, program 0 ≥ x − 1 was wrong. This error caused index r in line 110 of the code to
point to space x < 0. Line 110 of the code was modified to if (9 ≥ y + 1 && 0 ≤ x - 1), and
the sample program was re-uploaded. The program shown in Figure 27 passed all tests.

5. Irrationally long execution time of the program

This means that the program does not end within a defined period. Among at least
three situations where the program does not end, the first one is that the program has an
infinite loop, which means that the program cannot exit during the loop; the second is
that the program stays in the state of waiting for an input; the last situation is that the
input format is incorrectly converted. The above conditions mean that the user has not yet
understood the question requirements in detail. The subject of the experiment is shown in
Figure 28 as an example.

The test result after uploading the sample program in response to this question in the
experiment is shown in Figure 29.

In the test shown in Figure 30, the program in the loop of line 25 was wrong and
prompted the last executed program code, for example, as shown in Figure 31.

Test 96, shown in Figure 29, failed. The feedback report is shown in Figure 30.

Appl. Sci. 2022, 12, 7064 20 of 30

Figure 26. Example program (5), (a) define a 10*10 Gobang disk, (b) Describe the pch pointer array
points to the ch two-dimensional array, the getpass function is called with pch as the parameter,
(c) describe ‘Segmentation Fault’ indicates that the line points to an unconfigured space.

Figure 27. Test result after modifying program (4).

Appl. Sci. 2022, 12, 7064 21 of 30

Figure 28. Test question (5).

Figure 29. Test result (5).

The comparison between the sample program and the error feedback report shows that
the program continuously executed lines from 25 to 39, which contained many conditional
expressions. According to the conditional expression and the requirements of the test
questions in Figure 28, the bottom-line question requirements in the test questions in
Figure 28 were not written in the sample program. In line 32, the following requirements
were met: (1) the total number of points was less than the player or (2) the total number of
points was less than 8 (including 8 points), but the essential part of the test question was
not processed. Our experiment accomplished this requirement as shown in Figure 32.

This experiment defined the is End variable to meet the needs of the problem and
initialized the variable to false. In line 33 of the code in Figure 32, an if statement was
added to determine whether player B wanted to obtain another card or not; if false, player
B could ask for another card; if true, then line 38 of the code was executed, indicating that

Appl. Sci. 2022, 12, 7064 22 of 30

no cards would be requested afterward. In this experiment, the modified sample program
was re-uploaded. The program passed all tests as shown in Figure 33.

Figure 30. Feedback report (5).

Figure 31. Example program (6).

Appl. Sci. 2022, 12, 7064 23 of 30

Figure 32. Modified sample program.

Figure 33. Test result after modifying program (5).

6. Experiment
6.1. System Information

The system used in this study used GDB and Valgrind to assist in analyzing the
errors generated by the program, and further analyses and feedback were conducted by

Appl. Sci. 2022, 12, 7064 24 of 30

students using the C language. The students in the experimental group used the homework
uploading system and the improved system (the system in this study) to obtain debugging
feedback, while the students in the control group only used the homework uploading
system for general assignment uploading. Students in the experimental group could see
the feedback given by the improved system in the homework uploading system.

6.2. Results and Comparison of Statistical Analyses

In the system interface, we recorded each log of the code being executed, and following
the results of each unit test, the participant ran a unit test. The study was conducted by
randomly selecting the experimental group and the control group. The results obtained
after the students uploaded the assignments were used for final analyses and statistics. The
results included passing the test, failing the test, and the minus sign (indicating no upload
result), as shown in Figure 34.

Figure 34. Results of the students’ programming assignments.

The students who did not answer after the deadline for homework submission or were
deleted by the system due to plagiarism could not participate in the statistical analysis
of this experiment as they formed a sample that did not meet the statistical inclusion
conditions.

This study used Excel to perform data-related statistics and analyses. The difficulty
of each week’s homework consisted of the introduction of a keyword of the C language
and its application. Teaching and practice were carried out stepwise. Figure 35 shows
a statistical analysis of the number of questions answered by students in a single week.
Right and wrong features were used to count the correctness of the answers of the students
who answered each question during the week. Among them, weights were used to make
the data more inclined to the results of analyses and statistics when a normal number of
students finished the assignments:

Pass rate(A) =
pass amounts of each question(R)

(pass amounts of each questions(R) + fail amounts of each question(W))
(1)

Appl. Sci. 2022, 12, 7064 25 of 30

where A is the accuracy, R is the right amount, and W is the wrong amount.

Pass rate growth(%) =
the pass rate of the experimental group(%)

the pass rate of the control group(%)
− 100% (2)

Figure 35. Statistical analyses of the number of questions answered by students in a single week.

By counting the sum of the number of students passing or failing the tests each week,
excluding the students who plagiarized their work and those who did not submit the
assignments, the correct-answer rate of the test was calculated on a weekly basis as shown
in Figure 35.

We evaluated whether students could effectively understand the code correction
prompt provided by the error message through the feedback error message generated by
the system after uploading the assignment, make corrections or deletions to fix the errors,
and then re-upload and submit the assignment. The average total pass rate of each week’s
assignments was calculated based on the total numbers of tests passed and failed for each
question during the week and the weight of each question. Fault detection recorded the
analysis and the number of classifiable errors measured in the code of the students in the
experimental group; we observed changes in the relationship between the pass rate and
the fault rate of each week’s assignments (fault detection formed a special dataset in the
experimental group only), as shown in Figure 36.

Figure 36. Correct-answer rate and average pass rate for assignments each week.

This study also recorded the total pass rate, the total number of questions, the weekly
pass rate, the average number of students who answered each question, and other related
data to facilitate the grasp of various variables in the statistics and reduce the deviation
value after estimations, as shown in Figure 37.

Figure 37. Total pass rate and various data analyzed in the above-mentioned assessments.

Appl. Sci. 2022, 12, 7064 26 of 30

As shown in Figure 38, the pass rates (including weights) of each week of the ex-
perimental group and the control group were used to compare and prepare a line chart
to understand the difference in the pass rates of the two groups when progressing from
simple to more complex course contents. The learning effectiveness of the students in
the experimental group was found to be stable, and the pass rate was better than that of
students in the control group most weeks.

Figure 38. Line chart showing the weekly pass rate of the students.

As shown in Figure 39, the total pass rates (including weights) of the experimental
group and the control group for each week were used to compare and record the changes
in long-term cumulative question pass rates. We did not compare the difficulty of each
week’s questions but analyzed them statistically based on the cumulative method of each
week’s questions to understand the impact of the students’ weekly answers on the overall
pass rate. Figure 39 shows the difference in the learning effectiveness of the two groups of
students each week.

As shown in Figure 40, the number of fault feedbacks obtained from the experimental
group data and the pass-rate growth were used to calculate the ratio of the feedback given to
the experimental group compared to the control group and prepare a scatter chart to obtain
a trend showing the relationship between the two; in this chart, the trend shows a positive
correlation. According to Figure 40, the number of students in the experimental group who
triggered false detections and received feedback during the week was directly proportional
to the growth of the pass rate of the experimental group compared to the control group,
indicating that the number of false reports detected and the feedback provided to students
affected the students’ assignment performance, and the impact was found to be positive,
thereby indicating an improvement of the learning efficiency. (See Equation (2)).

Appl. Sci. 2022, 12, 7064 27 of 30

Figure 39. Line chart presenting the weekly pass rates of the students.

Figure 40. Scatter chart to detect faults and pass-rate growth.

Appl. Sci. 2022, 12, 7064 28 of 30

6.3. Comparison with Other Studies

Table 1 presents a comparison of the experimental results of this study and those ob-
tained by previous, related studies. The five different program feedback systems proposed
in this study are better than other previously proposed methods; in addition to the basic
test pass and fail, code coverage, and real-time feedback prompt part of program feedback,
this research study also adds program analysis and error localization. Before analysis, the
system checks each student’s program. The declarative sentence is recorded in the file,
and the specific test data that cause the error are entered again and tested. The program
is first tested with the originally set test data, and the program fails its tests if the system
fails to compile the sample test data provided to the students; these two situations are
excluded. After obtaining the coverage of the test and code, the error is located, and the
results of debugging are used in GDB and Valgrind to perform dynamic analyses. After
the error category is detected, it is labeled and transferred to the database for records, and
simultaneously, its corresponding text message is sent back to the homework submission
system, which is displayed in the student’s error inspection report interface.

Table 1. Comparison of the findings of this study with those observed in other studies.

Code Error Feedback Method This Paper Lucas et al. [6] Joan et al. [7]

Test failure vs. test pass Yes Yes Yes
Code coverage Yes Yes Yes

Feedback analysis interface Yes Yes No
Program analysis and program

error location Yes Yes No

Feedback message after debug
feedback function Yes No No

6.4. Questionnaire Survey Statistics

According to Figure 41, half of the students who filled out the questionnaire received
non-output fault feedback. Those who did not receive this feedback could only trigger
the system feedback when their program did not meet the input conditions, which led
to the extension of the execution time. By assessing the satisfaction statistics, the overall
satisfaction degree of the students who completed the paper for the improvement of
the system’s work correction speed was found to be 1.03, which indicates a degree of
partial satisfaction.

Figure 41. Student questionnaire survey results.

Appl. Sci. 2022, 12, 7064 29 of 30

7. Conclusions

This study proposes the use of the GDB and Valgrind tools to implement dynamic
slicing by integrating them with spectral error localization technology. The similarity
coefficient of the error localization analysis of the program was used to improve the
performance of dynamic slicing, and the data flow and control flow were analyzed after
slicing to obtain the results. Then, a dynamic dependency graph of the analyzed results was
prepared. The system then analyzed whether there were common errors in the program
according to the dynamic dependency graph and sorted the feedback information based
on the analysis results to provide students with the direction to follow for modifying their
program to correct the errors.

Most of the automatic correction systems on the market usually only provide simple
information such as test failures, test passes, and compilation errors as feedback for pro-
grams uploaded by students. This simple information is often not very helpful for students
attempting to successfully debug their programs. The sample questions mentioned in this
study showed the correctness and incorrectness of the uploaded programs, located the
specific error condition, and provided corresponding feedback. In addition, the study uti-
lized group experiments to give students appropriate feedback; moreover, we used various
data, statistical analyses, and a questionnaire specially designed for students to understand
the difference in the progress of two groups of students as well as the effectiveness and
practicality of the system.

Finally, here we provide evidence that implementing the problem solutions proposed
in this study can be effective in helping students who often struggle with coding. We
believe that tools that help to reduce this cognitive load can aid teaching assistants in
helping students to learn more effectively.

Author Contributions: Conceptualization, J.-Y.K., P.-F.W. and H.-C.L.; methodology, J.-Y.K., P.-F.W.
and H.-C.L.; software, J.-Y.K. and H.-C.L.; validation, J.-Y.K. and H.-C.L.; writing—original draft
preparation, J.-Y.K. and H.-C.L.; writing—review and editing, J.-Y.K., H.-C.L. and Z.-G.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by [National Taipei University of Technology- Beijing Institute of
Technology Joint Research Program] grant number [NTUT-BIT-108-01].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, I.-L. Research and Analysis of International Digital Skills Training Strategies. 2017. Available online: https://ws.ndc.gov.

tw/001/administrator/10/relfile/0/11615/7d9e04a0-977e-4c0a-9248-3fb953c4572b.pdf (accessed on 10 June 2022).
2. Patil, S.; Bhosale, M.; Kamble, R. Program Recommendation System for Students or Coder through View Histories and Feedback

Systems. In Proceedings of the 2020 International Conference on Smart Innovations in Design, Environment, Management,
Planning, and Computing (ICSIDEMPC), Aurangabad, India, 30–31 October 2020; pp. 185–187.

3. Paiva, J.C.; Queirós, R.; Leal, J.P.; Swacha, J.; Miernik, F. Managing Gamified Programming Courses with the FGPE Platform.
Information 2022, 13, 45. [CrossRef]

4. Jung, E.; Lim, R.; Kim, D. A Schema-Based Instructional Design Model for Self-Paced Learning Environments. Educ. Sci. 2022,
12, 271. [CrossRef]

5. Baniassad, E.; Zamprogno, L.; Hall, B.; Holmes, R. STOP THE (AUTOGRADER) INSANITY: Regression Penalties to Deter
Autograder Overreliance. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (SIGCSE ’21),
Virtual Event, 13–20 March 2021; pp. 1062–1068.

6. Zamprogno, L.; Holmes, R.; Baniassad, E. Nudging student learning strategies using formative feedback in automatically graded
assessments. In Proceedings of the 2020 ACM SIGPLAN Symposium on SPLASH-E (SPLASH-E 2020), Virtual, 20 November 2020;
pp. 1–11.

https://ws.ndc.gov.tw/001/administrator/10/relfile/0/11615/7d9e04a0-977e-4c0a-9248-3fb953c4572b.pdf
https://ws.ndc.gov.tw/001/administrator/10/relfile/0/11615/7d9e04a0-977e-4c0a-9248-3fb953c4572b.pdf
http://doi.org/10.3390/info13020045
http://doi.org/10.3390/educsci12040271

Appl. Sci. 2022, 12, 7064 30 of 30

7. Marquès, J.M.; Calvet, L.; Arguedas, M.; Daradoumis, T.; Mor, E. Using a Notification, Recommendation and Monitoring System
to Improve Interaction in an Automated Assessment Tool: An Analysis of Students’ Perceptions. Int. J. Hum.–Comput. Interact.
2022, 38, 351–370. [CrossRef]

8. Malysheva, Y.; Kelleher, C. Assisting Teaching Assistants with Automatic Code Corrections. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (CHI ’22), New Orleans, LA, USA, 29 April 2022–5 May 2022; pp. 1–18.

9. Sychev, O. Write a Line: Tests with Answer Templates and String Completion Hints for Self-Learning in a CS1 Course. In Pro-
ceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET), Pittsburgh, PA, USA, 22–24 May 2022; pp. 265–276. [CrossRef]

10. Allen, F.E.; Cocke, J. A program data flow analysis procedure. Commun. ACM 1976, 19, 137. [CrossRef]
11. Allen, F.E. Control flow analysis. ACM Silgan Not. 1970, 5, 1–19. [CrossRef]
12. Ferrante, J.; Ottenstein, K.J.; Warren, J.D. The program dependence graph and its use in optimization. ACM Trans. Program. Lang.

Syst. 1987, 9, 319–349. [CrossRef]
13. Naish, L.; Lee, H.J.; Ramamohanarao, K. A model for spectra-based software diagnosis. ACM Trans. Softw. Eng. Methodol. 2011,

20, 1–32. [CrossRef]
14. Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaud. Sci. 1901, 37,

547–579.
15. Tang, C.M.; Chan, W.K.; Yu, Y.T. Theoretical, Weak and Strong Accuracy Graphs of Spectrum-based Fault Localization Formulas.

In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference, Turin, Italy, 4–8 July 2017;
pp. 78–83.

16. Troya, J.; Segura, S.; Parejo, J.A.; Ruiz-Cortés, A. Spectrum-Based Fault Localization in Model Transformations. ACM Trans. Softw.
Eng. Methodol. 2018, 27, 13.1–13.50. [CrossRef]

17. Kulczynski, S. Die Pflanzenassoziationen der Pieninen. Bulletin International de l’Academie Polonaise des Sciences et des Lettres: Classe
des Sciences Mathematiques et Naturelles, B (Sciences Naturelles) 1927, 2, 57–203.

18. Wong, W.E.; Debroy, V.; Gao, R.; Li, Y. The DStar method for effective software fault localization. IEEE Trans. Reliab. 2013, 63,
290–308. [CrossRef]

19. Ochiai, A. Zoogeographic studies on the soleoid fishes found in Japan and its neighboring regions. Bull. Jpn. Soc. Sci. Fish. 1957,
22, 526–530. [CrossRef]

20. Janssen, T.; Abreu, R.; van Gemund, A.J. Zoltar: A toolset for automatic fault localization. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, Auckland, New Zealand, 16–20 November 2009; pp. 662–664.

21. Pearson, S.; Campos, J.; Just, R.; Fraser, G.; Abreu, R.; Ernst, M.D.; Pang, D.; Keller, B. Evaluating and Improving Fault Localization.
In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), Buenos Aires, Argentina,
20–28 May 2017; pp. 609–620.

22. Xie, X.; Chen, T.; Kuo, F.-C.; Xu, B. A theoretical analysis of the risk evaluation formulas for spectrum-based fault localization.
ACM Trans. Softw. Eng. Methodol. 2013, 22, 1–40. [CrossRef]

23. Xie, X.Y.; Kuo, F.C.; Chen, T.Y.; Yoo, S.; Harman, M. Provably optimal and human-competitive results in subset for spectrum
based fault localization. In Proceedings of the International Symposium on Search Based Software Engineering, SSBSE 2013,
St. Petersburg, Russia, 24–26 August 2013; Volume 8084.

24. Weiser, M. Programmers use slices when debugging. Commun. ACM 1982, 25, 446–452. [CrossRef]
25. Weiser, M. Program slicing. IEEE Trans. Softw. Eng. 1984, 4, 352–357. [CrossRef]
26. Negi, G.; Elias, E.; Kohli, R.; Bibhu, V. Reliability analysis of test cases for program slicing. In Proceedings of the 2016 International

Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), Greater Noida, India, 3–5 February 2016;
pp. 36–40.

27. Agrawal, H.; Joseph, R. Horgan, Dynamic program slicing. ACM SIGPlan Not. 1990, 25, 246–256. [CrossRef]
28. Al-Fedaghi, S. Computer Program Decomposition and Dynamic/Behavioral Modeling. IJCSNS Int. J. Comput. Sci. Netw. Secur.

2020, 20, 152–163.
29. Henard, C.; Papadakis, M.; Harman, M.; Jia, Y.; Traon, Y.L. Comparing White-Box and Black-Box Test Prioritizationd. In Proceed-

ings of the 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22 May 2016;
pp. 523–534.

30. Borodin, A.V.; Zavyalova, Y.V. An Ontology-Based Semantic Design of the Survey Questionnaires. In Proceedings of the 2016
19th Conference of Open Innovations Association (FRUCT), Jyvaskyla, Finland, 7–11 November 2016; pp. 10–15.

http://doi.org/10.1080/10447318.2021.1938400
http://doi.org/10.1109/ICSE-SEET55299.2022.9794157
http://doi.org/10.1145/360018.360025
http://doi.org/10.1145/390013.808479
http://doi.org/10.1145/24039.24041
http://doi.org/10.1145/2000791.2000795
http://doi.org/10.1145/3241744
http://doi.org/10.1109/TR.2013.2285319
http://doi.org/10.2331/suisan.22.526
http://doi.org/10.1145/2522920.2522924
http://doi.org/10.1145/358557.358577
http://doi.org/10.1109/TSE.1984.5010248
http://doi.org/10.1145/93548.93576

	Introduction
	Research Background
	Control Flow Graph
	Dynamic Dependence Graph
	Spectrum-Based Fault Localization
	Program Slicing and Decomposition
	Software Testing Technique
	Questionnaire Survey

	Code Debugging Method Design
	System Architecture Diagram
	Pre-Processing of Code Debugging
	Program Dynamic Analysis
	The Method of Analyzing Mistakes in the Program Process

	Feedback Message Design and Debugging Method
	The Solution Implementation Method
	System Description
	System Process
	Program Experiment and Results

	Experiment
	System Information
	Results and Comparison of Statistical Analyses
	Comparison with Other Studies
	Questionnaire Survey Statistics

	Conclusions
	References

