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Abstract: Laryngectomees are individuals whose larynx has been surgically removed, usually due
to laryngeal cancer. The immediate consequence of this operation is that these individuals (laryn-
gectomees) are unable to speak. Esophageal speech (ES) remains the preferred alternative speaking
method for laryngectomees. However, compared to the laryngeal voice, ES is characterized by
low intelligibility and poor quality due to chaotic fundamental frequency F0, specific noises, and
low intensity. Our proposal to solve these problems is to take advantage of voice conversion as an
effective way to improve speech quality and intelligibility. To this end, we propose in this work a
novel esophageal–laryngeal voice conversion (VC) system based on a sequence-to-sequence (Seq2Seq)
model combined with an auditory attention mechanism. The originality of the proposed framework
is that it adopts an auditory attention technique in our model, which leads to more efficient and
adaptive feature mapping. In addition, our VC system does not require the classical DTW alignment
process during the learning phase, which avoids erroneous mappings and significantly reduces the
computational time. Moreover, to preserve the identity of the target speaker, the excitation and phase
coefficients are estimated by querying a binary search tree. In experiments, objective and subjective
tests confirmed that the proposed approach performs better even in some difficult cases in terms of
speech quality and intelligibility.

Keywords: esophageal speech; intelligibility; voice conversion; sequence-to-sequence; attention
mechanism; speech quality

1. Introduction

In extensive cancers of the larynx or hypopharynx (T3 and T4 tumors), total laryngec-
tomy remains the procedure of choice and the most reliable surgery for advanced laryngeal
cancers. After this surgery, the vocal cords are completely removed and the respiratory
tract is separated from the digestive tract. It is therefore essential to train laryngectomee
patients to speak with an alternate voice without the vocal cords. Several techniques [1,2]
exist that allow vocal rehabilitation through the acquisition of a substitute voice that is
learned with the help of a speech therapist or in a specialized rehabilitation center. Among
the well-known and widely used mechanisms, the esophageal voice remains the ideal
replacement for the laryngeal voice according to [3]. The principle of the esophageal speech
(ES) is based on the use of a pharyngo-oesophageal digestive segment as a neovibrator.
To produce this voice, it is necessary to introduce oral air into the top of the esophagus
and release it under control. Thus, as mentioned above, ES is the ideal substitute for
the laryngeal voice. However, and as expected, the quality and intelligibility of ES are
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influenced by the change in the mechanism of speech production. This change of course
affects the acoustic features of the esophageal voice, which are very different from those
of the laryngeal voice. Compared to normal speech, esophageal is characterized by poor
intelligibility and poor quality due to chaotic fundamental frequency, specific noises that
resemble belching, and low intensity.

All of these instabilities in the acoustic characteristics produce poor-quality sounds
that are difficult to understand.

Due to the extensive use of the esophageal voice by laryngectomees, this type of voice
has been the subject of numerous studies in the last few years. To our knowledge, the
existing approaches for ES quality improvements can be summarized into three categories:
approaches based on the transformation of acoustic features, such as formant synthesis [4],
comb filtering [5], and smoothing of acoustic parameters [6]; approaches based on statistical
techniques, where [7–9] have been carried out, and approaches based on the VC technique,
which allows for the transformation of the voice of a source speaker (laryngectomee) into
that of a target speaker (laryngeal) [10–16]. Although these approaches have of course
improved the estimation of the acoustic characteristics to reconstruct a converted signal
with better quality, the improvements in intelligibility and naturalness are still insufficient.
First, most previous studies deal primarily with transforming the spectral envelope and
F0 trajectories by simply adjusting them linearly in the logarithm field [5–7]. In addition,
since the acoustic models were constructed frame by frame, the duration of the converted
sequences was kept the same as that of the source sequences. However, the production of
human speech is a highly dynamic process, and the frame-by-frame assumption makes the
modeling ability of the conversion functions limited [17].

Moreover, temporal alignment is another problem when converting esophageal to
laryngeal speech. As feature alignment is necessary for VC systems, the Dynamic Time
Warping (DTW) algorithm [18] is most frequently used by researchers. This algorithm
makes it possible to align the characteristics using a dynamic programming algorithm
where the acoustic features are not taken into account, which may cause problems, espe-
cially for pathological alignments [19]. These aligned features are subsequently used in the
learning stage, to train the model, which may result in poor quality and intelligibility of
the converted speech. Thus, the results of the VCC2018 [20] and the VCC2020 [13] proved
that there is still much research to be done to improve the quality and naturalness of the
converted speech.

Recently, RNN-based Seq2Seq learning [21] has proven to be an outstanding technique
for mapping one sequence to another one, especially in the field of VC [22], text-to-speech
synthesis (TTS) [23], and natural language processing [24]. As far as we know, converting
spectral features using a Seq2Seq model with attention has been attempted for the first
time in [25]. However, in his work [26], the author mentioned that the proposed model
cannot use its own predictions to generate correct output predictions. A gated CNN-
based Seq2Seq spectrum conversion method has been proposed in [27]. Due to the lack
of an attention mechanism in their model, they still use the DTW algorithm to obtain
aligned feature sequences when preparing training data. The work [28] proposed a method
based on a Seq2Seq learning with attention and context preservation mechanism for voice
conversion tasks. In their method, taking into account the attention module and the context
preservation losses makes it possible to further stabilize the training procedure.

A recent method was proposed in [29] for the enhancement of whisper-to-normal
speech based on a Seq2Seq model. In this method, taking into account the attention
technique makes it possible to further stabilize the training procedure, outperforming the
conventional methods.

Nevertheless, significantly improving the intelligibility and the naturalness of the ES
by overcoming the previously cited problems remains challenging.

In this work, we propose a novel esophageal-to-laryngeal VC system based on a
Seq2Seq mapping model combined with an attention mechanism. Our work is inspired
by the latest work [29] and the first work [25]. The strength of the proposed method is
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that it can adaptively characterize the nonlinear mapping between features of the original
esophageal speech and its laryngeal counterpart. Additionally, our method does not require
any temporal alignment during the training phase, which avoids erroneous mappings and
significantly reduces the computing time. Furthermore, to preserve the identity of the
target speaker, the excitation and phase coefficients are estimated from the target training
space structured as a binary search tree.

The remainder of the paper is organized as follows. Section 2 presents the proposed
methods. Section 3 details the experimental setup. Section 4 presents the results and
discussion. Finally, a conclusion is given in Section 5.

2. Methods
2.1. System Overview

Figure 1 shows the framework of our proposed Seq2Seq esophageal-to-laryngeal
speech conversion. The conversion process is divided into two main phases: training
and conversion.

First is a training phase, during which the utterances pronounced by esophageal and
normal speakers, undergo a step of parameterization to extract efficient representations
of both signals. Then, a standard normal distribution is adopted to normalize spectral
features, and the mean and standard deviation are subsequently recorded. Next, the
spectral features of ES are sent to the encoder network for training. In this step, the encoder
outputs are pre-trained and a loss function is computed between the encoder output and the
representation of laryngeal speech. In the end, the decoder with an attention mechanism is
used to improve the quality and accuracy of the encoder outputs. Meanwhile, the encoder
and decoder networks train as a whole with an optimizer for each of them, and the error is
calculated and back-propagated frame-by-frame using a loss function.
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Figure 1. An overview of the proposed esophageal speech enhancement framework based on a
Seq2Seq model.
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In the conversion phase, cepstral coefficients are firstly extracted from each ES signal
and then normalized. Next, the trained Seq2Seq model is applied to convert only the first
cepstral packet (vocal tract feature vectors) from the source speaker into their approaching
target. After this, to preserve the identity of the target speaker, we propose to predict
cepstral excitation and phase coefficients from the target training space by using a KD-tree
algorithm [30]. The binary KD-tree is constructed with the cepstral frames of the laryngeal
vocal tract. Then, it is queried by the converted vocal tract ceptral vector obtained by the
Seq2Seq model in order to find an index indicating the nearest target vocal tract vector.
This index then serves as an index of the desired cepstral excitation and the desired phase
vector. Finally, the same converted vocal tract cepstral vectors are denormalized according
to the recorded mean and standard deviation. This denormalization is the reverse of the
normalization process with the recovery of the original shape, which is why we utilize
the recorded values. These denormalized vocal tract vectors are then used to synthesize
enhanced speech.

In the resynthesis step, the magnitude and phase spectra are used to create complex
spectra. Then, the enhanced speech is reconstructed by the short-term OLA-FFT (overlap-
add method), which consists of applying an inverse fast Fourier transform (IFFT) to the
complex spectra.

2.2. Feature Extraction and Normalization

In this article, we find it reasonable to consider the technique of cepstral analysis for
feature extraction because it allows us to separate excitation from the vocal tract. Thus, we
adopt Fourier cepstra at each frame that forms the input sequence X = [X1, . . . , Xn, . . . , XN ]
of the Seq2Seq model, where N defines the frame number of the ES signal.

The real Fourier cepstra of the esophageal and target speech are obtained by com-
puting the inverse Fourier transform (IFFT) of the logarithm of the magnitude short-time
spectra. The mathematical formula for the extraction of acoustic features is given by the
following equation:

C[n] = IFFT(Log|FFT(x[n] ∗ H[n])|) (1)

where H(n) is a normalized Hamming window [31] of length equal to 512 in this work.
For each time frame, the linguistic contents are encoded into a set of coefficients:

vocal tract cepstral vector as [vt0 . . . vt32], cepstral excitation as [ex33 . . . ex256], and phase
coefficients as [ph0 . . . ph256].

In the normalization step, we normalize the acoustic features in order to obtain a
standard normal distribution and to control the amplitude of the gradients during training.
For each component xi,n of index i at frame n, we subtract the mean and divide the result
by the standard deviation according to Formula (2).

x
′
i,n =

(xi,n − µi)

σi
(2)

where µi and σi are, respectively, the mean and the standard deviation (stdev) of the ith
component in all frames of the training sample. x

′
i,n represents the normalized vector.

2.3. Network Model

The proposed framework is a Seq2Seq model with an attention mechanism, consisting
of two main components: a stack of a bidirectional LSTM encoder and an LSTM decoder
based on an attention network. Figure 2 shows the overall network architecture of the
designed model.
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Figure 2. Structure of the proposed Seq2Seq model, where the attention layer is ignored for clarity.

Let X(s) = [x(s)1 , · · · x(s)Ns
] and Y(t) = [y(t)1 , · · · y(t)Nt

] represent sequences of cepstral
features of the ES and laryngeal speech of non-aligned parallel utterances, where Ns and
Nt denote the length (frame number) of the source and target sequences, respectively. Note
that these sequences do not necessarily have the same length (i.e., generally, Ns 6= Nt).

We consider a Seq2Seq framework that models the mapping relationship between X(s)

and X(t). As with most sequence-to-sequence models that were originally proposed by Cho
et al. for machine translation applications [31], our Seq2Seq model has an encoder–decoder
structure equipped with an attention mechanism.

The encoder network processes the input sequence of esophageal speech into a high-
dimensional feature space in order to facilitate the decoding process. Then, it compresses
and summarizes them into a fixed-length context vector, also called “hidden representation
h = [h1, . . . , ht, . . . , hNh ]”, which represents all the information concerning the source features:

h = Encoder(X(s); θencoder), (3)

where θencoder = [Wencoder, Uencoder, bencoder] are the parameters of the encoder model.
At each time step i, the decoder takes the output of the encoder, i.e., the hidden

representations ht, and the previously generated features yi−1 considered as inputs, and
applies its attention mechanism network and then progressively generates the current
enhanced output yi.

yi = Decoder(ht, yi−1; θdecoder), (4)

Note that, in the typical Seq2Seq framework, the last hidden layer is used as the
context vector once the entire sequence is fully encoded. However, in our case, the length of
the ES feature sequence is generally longer than that of the normal speech, so the ES feature
vectors of length Nx used to obtain the target feature vectors of length Ny are dynamically
changed at different time steps.

To model these various nonlinear mapping relationships more accurately, we adopt
an attention mechanism to obtain a self-adaptive context vector to adaptively estimate the
decoder output.

2.3.1. Bidirectional-LSTM-Based Encoder

Due to the long sequences to model and the large number of time steps during training,
we used a bidirectional encoder to better understand the time dependencies between the
two ends of the sequences. There, our encoder network consists of three layers: a linear
layer and two Bidirectional Long Short-Term Memory (BiLSTM) layers, which are arranged
incrementally, as shown in Figure 2.

As the LSTM architecture shows in Figure 3, three gates control the data flow: an input
gate and a forget gate, where the information is stored or vanished from the memory cell ct,
which are represented by it and ft, at the tth time step, respectively; and an output gate
denoted by ot, which controls the output state (also called the “hidden state”) (ht). The
LSTM propagation is formulated as follows:
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it = σ(Wixt + Uiht−1 + bi) (5)

ft = σ(W f xt + U f ht−1 + b f ) (6)

ot = σ(Woxt + Uoht−1 + bo) (7)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (8)

ht = ot � tanh(ct) (9)

where xt is the input vector at the tth time step, ct is the current long-term memory
cell, σ() is the sigmoid function, � represents the element-wise multiplication, and W∗
(i.e., Wi, W f , Wo, Wc) are the model parameters that map from input dimension to hidden
dimension, while U∗ maps from the previous hidden dimension to the current hidden
dimension.

Figure 3. Internal structure of the LSTM unit [32].

After processing, each BiLSTM time step t will generate two hidden states:

ht = [
−→
ht ,
←−
ht ] (10)

where
−→
ht is the forward LSTM network vector, which produces the high-dimensional

features of the input signal, and
←−
ht is the backward or inverse LSTM network output vector,

given, respectively, by Formulas (11) and (12).

−→
ht =

−−−→
LSTM(ht−1, xt, ct−1) (11)

←−
ht =

←−−−
LSTM(ht+1, xt, ct+1) (12)

2.3.2. Attention Mechanism-Based Decoder

Based on the hidden representation h of the encoder explained in the section above,
we have redesigned the decoder that can predict the output cepstral features.

In the conventional Seq2Seq framework, the decoder adopts the output cell state ct
of the last hidden layer as its context vector. However, for esophageal speech conversion,
the length of the normal feature sequence is always shorter than that of the esophageal
feature sequence. In this kind of sequence, we can observe a lot of singularities, i.e.,
different ES phonemes can be linked to more than one phoneme at different positions of
the target speech.

To cope with this problem, an attention mechanism is adopted, which more efficiently
models these different nonlinear relationships. Therefore, this attention mechanism allows
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for greater flexibility and corrects the alignment by adaptively estimating the decoder
output through the constructed self-adaptive context vector.

In our proposed framework, we suggest that the current state of the decoder is fully
connected to all hidden states of the encoder, and each hidden state has a different effect
on the estimation of the decoder’s current state. Therefore, to estimate the current self-
adaptive context of the decoder, all backward and forward hidden states of the encoder are
considered simultaneously.

Our designed decoder is illustrated in Figure 4, with step = 1 for clarity.

Figure 4. Illustration of attention layer, where ai,j = attention weight, ci = context vector,
si = attention target state, and

⊕
= concatenation.

At each ith decoder step, the attention output (context vector) ci is computed using a
weighted linear combination of the encoder’s hidden states, as shown in Figure 4.

ci =
j=N

∑
j=1

αijhj, (13)

where hj represents the encoder’s hidden state at position j, αij are the attention weights as
shown by Formula (14).

αij =
exp (scoreij)

∑N
j=1 exp (scoreij)

(14)

scoreij is the attention score, which calculates the similarity between the encoder’s hidden
state and the previous cell state of the decoder, computed according to Formula (15).

scoreij = att ((si−1, hj); θattention) (15)

where att is a feed-forward neural network (FFN) that produces the alignment scores
between hj and the previous state of the decoder’s output si−1. θattention are the trainable
parameters of the model.

Once the context vector ci is produced, the decoder model takes this context vector,
the previous decoder hidden state si−1, and the input ŷi to generate the current decoder
hidden state si.

si = LSTM ((si−1, ŷi, ci); θdecoder) (16)

The concatenation of the last context vector ci and the output of decoding LSTMs si is
linearly projected to produce the cepstrum output of the decoder network.

Thus, the decoder output is calculated according to the previous Equation (16) as:

ŷi+1 = f c (si, ci) (17)

where f c is a fully connected FFN that allows mapping of the hidden dimension to the
output dimension.
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2.4. Loss Function

During training, the entire model was trained by the Mean Squared Error (MSE) loss
function, which is calculated between the predicted and target cepstral vectors to evaluate
their similarity. The formula is as follows:

MSEloss(θ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (18)

where ŷi and yi are the ith dimensions of the predicted and the target cepstral vectors,
respectively. θ is the model parameters, and N is the total sample number. The decoder
is optimized step by step, i.e., for each step, the loss is back-propagated to calculate the
gradients of the weight parameters; then, the encoder and decoder optimizers sequentially
update their own parameters. During training, the network processes speech utterances
in batch style to make the calculated gradient more stable. Furthermore, the model is
optimized via back-propagation using an L1 and L2 loss. The training is repeated for
several epochs until convergence.

3. Experiments
3.1. Speech Datasets

For the experiments, we used our ES datasets. The recording of esophageal voices and
the storage of the acoustic data were carried out at Loria laboratory in Nancy, France.

We recorded 289 phonetically balanced sentences spoken by two male French laryngec-
tomees (PC and MH). We also recorded the same sentences spoken by a non-laryngectomee
(AL), a French speaker. The audio signals were all sampled at 16 kHz and directly stored
in wave files. Each file contained a single sentence and lasted between 3 and 5 s. Thus, in
total, the data collected included 867 acoustic data files.

We utilized two pairs of parallel corpora (source and target speakers) for the training
and evaluation of the proposed approach, namely PC and MH as source speakers and AL
as the target speaker.

• PC (ES male) and AL (NS male)
• MH (ES male) and AL (NS male)

Note that we have trained our Seq2Seq mapping model for each pair of speakers,
independently.

3.2. Experimental Setups

In this work, the two parallel corpora have been separated into 100 pairs of utterances
for training, 20 pairs of utterances for validation, and 22 pairs of utterances for testing. We
used the cepstrum analysis to obtain the Fourier cepstra of each utterance.

First, a normalized Hamming window H(n) of length 512 is used to obtain the short-
term temporal signals, from which the cepstral coefficients are extracted. Then, to obtain
the logarithmic Fourier magnitude spectrum, a fast Fourier transformation (FFT) is applied
to the 512 windowed temporal signals, followed by the calculation of the logarithm of the
modulus of the complex spectrum obtained by FFT. The inverse fast Fourier transform of the
logarithmic magnitude spectrum makes it possible to extract the real logarithmic cepstrum.

As already detailed in Section 2.2, for each frame, the first 33 coefficients represent the
cepstral vector related to the vocal tract; the next 224 define the cepstral vector related to
the excitation signal, and the phase spectrum was determined by the 257 phase coefficients.

Our model is an LSTM encoder–decoder based on an attention mechanism. The
encoder consists of 2 BiLSTM layers as follows: a forward LSTM, which receives the input
sequence in order (from x1 to xN), and a backward LSTM, which receives the same sequence
in reverse order (from xN to x1). Each layer contains 128 hidden units. The decoder is
another LSTM network combined with local attention and consists of a single decoder
LSTM layer with 256 hidden units. The latter is randomly initialized by the final state of the
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BiLSTM encoder to maintain long-term memory. The dense layer is a fully connected feed-
forward network (FFN) that has equal input dimensionality. This dense layer produces the
alignment scores between the encoder’s hidden states and the previous decoder’s hidden
states.

The model was trained using the Adam optimizer [33] with a batch size of 32 for
500 epochs. The MSE loss function is used and the dropout regularization has also been
adopted to avoid overfitting. The learning rate is initialized at 10−3. In our implementation,
we use the NVIDIA GTX 1050 with CUDA of 10.1. The process is stopped when the
validation loss does not refine for 10 epochs.

To compare our experiments, we adopted five kinds of systems based on esophageal-
to-laryngeal VC, which are JD-GMM, DNN, LSTM, BiLSTM, and Seq2Seq with an attention
mechanism. For training the JD-GMM, DNN, LSTM, and BiLSTM models, we used the
DTW algorithm to time-align the parallel speech corpora. Note that to properly compare
the performance, we took models with similar parameters. Thus, as a typical statistical
approach, JD-GMM and DNN are considered as references. These methods are described
as follows:

• JD-GMM: the Joint Density GMM-based VC system was implemented based on the
Sprocket toolkit introduced in VCC2018 [20] and considered as a baseline system. All
the source and target parameters are directly estimated from the conversion function
by the expectation-maximization (EM) algorithm. The source (xn) and target (yn)
vectors previously aligned by the DTW algorithm are concatenated together into an
extended vector zn = [xn, yn]′ and then the GMM parameters that model the joint
probability density are estimated.

• DNN: the DNN-based VC system was implemented based on the approach of [10].
The number of units at each layer is chosen in order to ensure the best network
performance. The ReLU (Rectified Linear Unit) activation function was used for its
good performance [34], the dropout was set to 0.5, the learning rate was 0.001, the
batch size was 32, and the training epoch was set to 500. For synthesis, an overlap-add
method was adopted to reconstruct the waveform of the estimated enhanced speech.

• LSTM and BiLSTM: the LSTM and BiLSTM-based esophageal-to-laryngeal speech
conversion models were implemented without an attention mechanism. For LSTM, the
network architecture contained two hidden stacked LSTM layers and a fully connected
output layer. For BiLSTM, we used 128 hidden units for each forward and backward
encoder layer, and a single LSTM layer with 256 hidden units for the decoder. This
architecture aims to progressively create a higher-dimensional feature space from one
layer to another, to attempt to more easily represent the speaker’s information. For
training the BiLSTM model, the back-propagation through time (BPTT) algorithm was
adopted. Both models have been trained for around 500 epochs, with a lot size of
32 and a dropout of 0.3, until the early stop condition was reached.

3.3. Objective Performance Measures

To compare the voice quality performance of the proposed speech enhancement
methods and the baseline methods, we adopted four objective measures in the temporal,
frequency, and perceptual domains.

1. Cepstral distance (CD): This is used to evaluate the cepstral distance between the
converted and target frames. We evaluated the source (ES-SRC) and the different
types of converted stimuli, which is calculated as:

CD[dB] =
10

Mlog10 ∑
(Ĉ,C)

√√√√2
D

∑
i=1

(Ĉi − Ci)2, (19)
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where Ĉi and Ci represent the ith component of the aligned converted and target
cepstral vectors, respectively. D is the dimension of the cepstral vectors and M is the
number of (Ĉ, C) couples.

2. Perceptual Evaluation of Speech Quality (PESQ): referred to by the ITU-T recommen-
dation in the P.862 standard [35]. PESQ is a suitable means to evaluate the subjective
voice quality of codecs (waveform and CELP-like encoders) and end-to-end measure-
ments [36]. The range for the PESQ score is between −0.5 and 4.5.

3. Short-Time Objective Intelligibility (STOI): this is a function that compares the tem-
poral envelopes of normal and converted speech in segments of short duration us-
ing a correlation coefficient. A greater STOI value indicates better intelligibility of
enhanced speech.

4. Segmental Signal to Noise Ratio (segSNR): it defines the average of SNRs computed
from aligned converted and target cepstra and was determined by Equation (20).

segSNR =
10
M ∑

(Ĉ,C)

log10
∑N−1

i=0 C2
i

∑N−1
i=0 (Ĉi − Ci)2

(20)

where Ĉi and Ci are, respectively, the ith component of the aligned converted and
target cepstral vectors. N (512) is the cepstrum length.

4. Results and Discussion

Audio samples from this work are depicted at the demo link: https://techtech-
solution.com/Kadria/seq2seq-ES-enhancement.php (accessed on 10 June 2022).

4.1. Objective Evaluations

1. Comparison between baseline and proposed methods: objective evaluations were
first performed to compare the performance of CD, PESQ, STOI, and segSNR of the
proposed and reference methods introduced above.
Tables 1 and 2 summarize the objective assessment results of source esophageal speech
ES-SRC, and enhanced speech obtained by JD-GMM, DNN, LSTM, BiLSTM, and
Seq2Seq-based methods. First, we can see that the cepstral vectors of ES-SRC are very
different from those of laryngeal speech (target). Then, since the JD-GMM is a linear
model and has a poor ability to model nonlinear relationships, its performance in
converting ES to laryngeal voice is poorer than all other methods. Compared to the
DNN model, the LSTM and BiLSTM models have better inter-frame characterization
capability because the LSTM networks can take advantage of the relationship between
long-distance frames.
As indicated in Table 1, the BiLSTM model achieved better conversion performance
than the GMM, DNN, and LSTM methods. This is because we adopt the BiLSTM
model in our proposed Seq2Seq since it is adequate to characterize the difference
between ES and its laryngeal speech counterpart. Note that the Seq2Seq-based method
has a similar inter-frame characterization ability to the BiLSTM. However, our pro-
posed method adopts the principle of the attention mechanism to accomplish an
adaptive mapping between parallel sequences of esophageal and laryngeal speech.
Compared to the BiLSTM model, our proposed method has improvements in CD,
PESQ, STOI, and segSNR.

2. Comparison between different variants: in this experiment, we compared our pro-
posed model based on a BiLSTM encoder–decoder network with three variants of
this model:

• (V1) Keeping the BiLSTM encoder but excluding the attention mechanism;
• (V2) Replacing the BiLSTM encoder by an LSTM of 256 hidden units and

keeping attention;
• (V3) Using the LSTM network but excluding attention.

https://techtech-solution.com/Kadria/seq2seq-ES-enhancement.php
https://techtech-solution.com/Kadria/seq2seq-ES-enhancement.php
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Table 3 lists the evaluation results. The proposed method outperforms the three
other variants, with a larger PESQ score and lower CD value. In addition, adding
the attention mechanism seems to have little effect on encoder–decoder networks
based on LSTM. This explains that the hidden state~hi generated by an LSTM network
only considers the information in X≤i; consequently, the attention mechanism will be
inefficient due to insufficient information in the source hidden states. Moreover, the
proposed method exceeds its variant without attention in terms of PESQ and STOI,
which indicates that the incorporation of the attention mechanism would improve the
performance of the VC system.

Table 1. Results of the objective assessment of the reference and proposed methods on the PC speaker
esophageal corpus test set.

MODELS CD Value PESQ Score STOI Score segSNR Value

ES-SRC 9.408 2.407 0.606 2.981
JD-GMM 8.795 2.102 0.518 9.706

DNN 8.257 2.570 0.544 10.099
LSTM 8.009 2.808 0.624 10.915

BiLSTM 7.311 2.914 0.641 11.943
Seq2Seq 6.836 2.994 0.733 12.854

Table 2. Results of the objective assessment of the reference and proposed methods on the MH
speaker esophageal corpus test set.

MODELS CD Value PESQ Score STOI Score segSNR Value

ES-SRC 9.153 2.381 0.597 2.999
JD-GMM 8.861 2.179 0.513 9.741

DNN 8.405 2.619 0.581 10.305
LSTM 7.910 2.805 0.624 11.083

BiLSTM 7.127 2.903 0.633 11.977
Seq2Seq 6.605 3.002 0.775 12.901

Table 3. Performance comparison between different variants on the PC speaker esophageal corpus
test set.

VARIANTS CD Value PESQ Score STOI Score segSNR Value

BiLSTM+Attention 6.994 2.933 0.718 12.407
BiLSTM 7.311 2.914 0.641 11.943

LSTM+Attention 7.826 2.871 0.639 11.866
LSTM 8.009 2.808 0.624 10.915

4.2. Subjective Evaluations

In addition to the objective measurements, subjective listening tests were performed
to evaluate the perceptual quality of our enhanced speech samples in terms of intelligibility
and speech quality. The most frequently subjective tests were conducted.

For both tests, each participant evaluated the voice quality of twenty-two sentences
(11 different test utterances spoken by 2 different pairs of speakers) from each of the
previous types of voice. All tests were carried out under the same conditions and based on
the same principle.

1. MOS test (Mean Opinion Score): used to evaluate the speech quality and intelligibility
of the resynthesized voice. In this experiment, a group of fifteen auditors (five males
and ten females) listened to a set of sample utterances and judged them independently,
one by one, according to a rating scale of perceived quality. This scale ranged from (1)
for the poorest quality to (5) for excellent quality, ((2) poor, (3) average, and (4) good
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quality)). The average score awarded, therefore, constituted the MOS, which indicated
the intelligibility and the quality of the enhanced speech.
For these tests, we conducted an opinion test for intelligibility and another opinion
test for naturalness. Five sets of comparative experiments were evaluated by fifteen
auditors.

• ES-SRC: source esophageal speech;
• JD-GMM: conversion system based on a joint density Gaussian mixture model;
• DNN: conversion system based on feed-forward DNN model;
• BiLSTM: conversion system based on Bidirectional LSTM model;
• Seq2Seq: conversion system based on sequence to sequence with attention mech-

anism model.

Figures 5 and 6 show the MOS values on intelligibility and speech quality using
different conversion methods.
From both figures, we can see that the method based on GMM has the lower per-
formance when compared with all the other methods, and this method has a high
refusal rate by the laryngectomees. The LSTM method achieved almost similar intel-
ligibility and naturalness when compared with the BiLSTM method, which in turn
outperformed the DNN-based method, with a slight improvement. On the other
hand, we can clearly notice that the converted speech using our method achieves the
highest MOS in both tests. Thus, considering the average MOS of each approach, it is
obvious that listeners prefer the samples obtained by our proposed method due to its
effectiveness in improving the intelligibility and naturalness of ES.

Figure 5. MOS on intelligibility test results with 95% confidence interval.

2. ABX preference test: this is a test to identify the similarity between enhanced and
target sequences. In this evaluation, we presented to fifteen listeners a series of
three speech samples: A, B, and X, respectively, as the source, target, and enhanced
speech sample. We asked each listener to judge by a score the degree of closeness
of enhanced sample X to the two other samples A and B. No preference (NP) could
be selected in the event that the listener could not distinguish between two types
of voice. Thus, we carried out four series of experiments: GMM with our method
(Seq2Seq+Attention mechanism), DNN with our method, BiLSTM+Attention with
our method, and Seq2Seq without attention with our method.
Figure 7 summarizes the results of the ABX test. The first two bars indicate that our
model behaves much better than GMM and DNN. The third bar shows that our model
works at similar levels with a BiLSTM+Attention. From the fourth bar, we can see that
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our method performs much better when attention is applied and the speech generated
by our approach is of better quality than that obtained by the other three methods. It is
therefore clear that the inclusion of the attention mechanism increases the robustness
of the model.

Figure 6. MOS on naturalness test results with 95% confidence interval.

Figure 7. ABX preference test results for baseline and proposed methods. NP means no preference.

Some samples obtained from this work are depicted at the following demo link:
https://techtech-solution.com/Kadria/seq2seq-ES-enhancement.php (accessed on 10 June
2022).

5. Conclusions

This paper presents a VC system for enhancing ES. A Seq2Seq mapping framework
combined with an attention mechanism was proposed for esophageal-to-laryngeal VC. The
proposed Seq2Seq method has a similar inter-frame characterization ability to the BiLSTM-
based model. Unlike existing ES enhancement models, our method adopts the principle of
the attention mechanism to accomplish an adaptive mapping between parallel sequences
of esophageal and laryngeal features. It can also be used for laryngeal speech conversion.
To preserve the identity of the target speaker, the excitation and phase coefficients are

https://techtech-solution.com/Kadria/seq2seq-ES-enhancement.php
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estimated from the target learning space structured in the form of a binary search tree
queried by the vocal tract coefficients previously predicted by the Seq2Seq model. At the
resynthesis level, we applied the OLA-FFT recovery method. The experimental results
show that our proposed method brings significant improvements and achieves better
objective and subjective performance, even in some difficult cases. Indeed, it outperforms
the reference systems based on GMM and DNN in terms of naturalness and intelligibility.
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