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Abstract: The Monte Carlo simulation is a popular statistical method to estimate the effect of uncer-
tainties on the solutions of nonlinear partial differential equations, but it requires a huge computa-
tional cost of the deterministic model, and the convergence may become slow. For this reason, we
developed the multi-fidelity Monte Carlo (MFMC) methods based on data-driven low-fidelity models
for uncertainty analysis of nonlinear partial differential equations. Firstly, the nonlinear partial
differential equations are transformed into ordinary differential equations (ODEs) by using finite
difference discretization or Fourier transformation. Then, the reduced dimension model and discrete
empirical interpolation method (DEIM) are coupled to construct effective nonlinear low-fidelity
models in ODEs system. Finally, the MFMC method is used to combine the output information of
the high-fidelity model and the low-fidelity models to give the optimal estimation of the statistics.
Experimental results of the nonlinear Schrodinger equation and the Burgers’ equation show that,
compared with the standard Monte Carlo method, the MFMC method based on the data-driven
low-fidelity model in this paper can improve the calculation efficiency significantly.

Keywords: uncertainty quantification; numerical solution of differential equations; multi-fidelity
Monte Carlo method; POD reducing dimension; DEIM

1. Introduction

Nonlinear partial differential equations are often used to describe mathematical models
of physical, mechanical and engineering problems. However, the complexity of the real
world and the limitations of people’s cognition, the mathematical models and numerical
calculation processes of partial differential equations have various sources of uncertainties,
such as uncertain parameters, initial and boundary conditions and a variety of model forms
in the same process [1]. In recent years, uncertainty quantification [2,3] has become an
emerging discipline in the aerospace and defense security industries, and it has attracted great
attention in many cutting-edge areas, including academia and engineering applications.

Among the common uncertainty quantification methods, the Monte Carlo (MC)
method is simple, easy to implement and robust [4]. However, the convergence speed
of MC method is slow, especially in the application for the uncertainty analysis of high-
dimensional problems of numerical methods for partial differential equations (e.g., finite
element, finite difference and the Laplace adomian decomposition method [5]), which limits
the application in some uncertainty quantification problems. Bonvin et al. [6] proposed a
type of MC variance reduction technique, which ameliorates the error partially. However,
there is no comprehensive consideration to reduce error, improve convergence speed and
optimize the computational cost. Ng and Willcox [7] first proposed a multi-fidelity Monte
Carlo method (MFMC) to estimate the mean using the control variate technique. They used
efficient low-fidelity models to reduce the computational cost of high-fidelity models in
uncertain optimization. Moreover, Peherstorfer et al. [8–11] extended the multi-fidelity
method by using a large number of low-fidelity models and optimized the model allocation
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according to its corresponding authenticity and cost. In addition, Fleeter et al. [12] proposed
a hybrid multi-fidelity method under a reasonable calculation cost, which improved the
accuracy of the uncertainty quantification of cardiovascular dynamics. Recently, uncertainty
quantification based on multi-fidelity Monte Carlo method has been successfully applied
in many fields, as can be seen in [13–19].

In this work, we aim to extend the application of MFMC to the field of nonlinear
partial differential equations, such as the nonlinear Schrodinger (NLS) equation and Burges’
equation, using some of the latest data-driven low-fidelity models, to improve the computa-
tional efficiency. As we know, in the framework of MFMC method, the high-fidelity models
are selected according to the type and parameter characteristics of the actual problems,
and the low-fidelity models are computationally cheap approximations of the underlying
high-fidelity models. In recent years, several different types of low-fidelity models, for
example, projection-based models [20–22], surrogate models [23], up-scaled models [24],
have been applied to the MFMC framework.

Here, for the NLS equation, inspired by Ref. [19], the proper orthogonal decomposition
(POD) method [22,25,26] coupled with discrete empirical interpolation method (DEIM) [27–30]
is used to construct an optimal low fidelity model, which can deal with the complexity of
higher order nonlinear terms of the NLS equation. Otherwise, for Burgers’ equation, we
attempt to construct another kind of the low-fidelity model by using the operator reduction
(OR) method [31–33], combined with DEIM for the parameterized Burgers’ equation. In
particular, the quality of MFMC approach based on data-driven low-fidelity models is
determined by its Pearson correlation coefficient relative to the high-fidelity model. Even
if the accuracy of the data-driven low-fidelity models cannot be guaranteed, our MFMC
estimator is unbiased for the output statistics of the high-fidelity models.

This paper is organized as follows. In Section 2, the MFMC algorithm and how to
construct low-fidelity models are introduced. In Section 3, the MFMC method is used
to solve the NLS equation with initial value uncertainty and the Burgers’ equation with
parameter uncertainty, and the numerical results are compared with those calculated by
the standard MC method. Conclusions are presented in Section 4.

2. Multi-Fidelity Monte Carlo Method

In this section, we first present the estimation models of MC method, and then describe
the framework of MFMC. Then, we discuss how to construct appropriate and effective
low-fidelity models of nonlinear partial differential equations.

2.1. Monte Carlo Method

Let d ∈ N and define the input domain D ∈ Rd and the output domain Y ∈ R.
Suppose the function is f : D → Y , that maps an input z ∈ D to an output y ∈ Y. Let ω
be the sample space and Z : ω → D a random variable with range D ⊂ Rd. Independent
and identically distributed realizations of Z are denoted as z1, . . . , zm ∈ D, where m ∈ N.
We consider the k models f (1), . . . , f (k) for i = 1, . . . , k. The high-fidelity model denoted as
f (1) and lower-fidelity models are f (2), . . . , f (k) with k ∈ N. The variance Var[ f (i)(Z)] of
f (i)(Z) is denoted as:

σ2
i = Var[ f (i)(Z)], (1)

The Monte Carlo method draws m independent and identical distribution sample
z1, . . . , zm ∈ D of Z and the estimated expectation of MC estimation is:

y(i)m =
1
m

m

∑
j=1

f (i)(zj), (2)
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The MC estimator y(i)m is an unbiased estimator of E
[

f (i)(Z)
]
. If the variance σ2

i ∈ R,

then the mean-square error (MSE) of the estimator y(i)m with respect to E
[

f (i)(Z)
]

is given
by the estimator variance

e(y(i)m ) = E
[
(E[ f (i)(Z)]− y(i)m )

2]
=

σ2
i

m
(3)

2.2. Multi-Fidelity Monte Carlo Method
2.2.1. Control Variables in Multi-Fidelity Estimation

The multi-fidelity method takes the random variable f (2)(Z), . . . , f (k)(Z) generated by
the low-fidelity models f (2), . . . , f (k) as the control variable, to estimate the statistics of the
random variable f (1)(Z) of the high-fidelity model f (1). Let the number of model calculations
m = [m1, . . . , mk]

T ∈ Nk be a vector with integer components 0 < m1 ≤ . . . ≤ mk and

z1, . . . , zmk ∈ D, (4)

so let mk be independent and identically distributed realizations of the random variable Z.
For i = 1, . . . , k, evaluate model f (i) at the mi realizations z1, . . . , zmi of (4) to obtain

f (i)(z1), . . . , f (i)(zmi ),

The component mi of m is the number of calculations of model f (i) for i = 1, . . . , k. Derive
the Monte Carlo estimate y(i)mi as in (2) from the mi model evaluations f (i)(z1), . . . , f (i)(zmi )

for i = 1, . . . , k. Additionally, the Monte Carlo estimate y(i)mi−1 computed from the mi−1 model
evaluations f (i)(z1), . . . , f (i)(zmi−1) for i = 2, . . . , k. The high-fidelity model expectation
estimation is s = E[ f (1)(Z)]. The MFMC estimate ŝ of s is then

ŝ = y(1)m1
+

k

∑
i=2

αi(y(i)mi
− y(i)mi−1

), (5)

where α2, . . . , αk ∈ R are control variable coefficients and y(i)mi is the Monte Carlo estimate
using model i and the first mi the number of calculations of model in the MFMC approach.
The estimator (5) of MFMC is to correct the estimation of high-fidelity by using the sum
of difference estimation of low-fidelity models. It can be seen from (5) that the estimation
of MFMC method depends on number of model calculations m ∈ Nk and coefficients
α2, . . . , αk ∈ R. In [8] (lemma3.1) show that the MFMC estimator is an unbiased estimator
of s.

Consider the Monte Carlo estimates of y(l)mi and y(t)mj with 1 ≤ i, j, l, t ≤ k, the variance
Var[ŝ] of the MFMC estimator ŝ is:

Var[ŝ] =
σ2

1
m1

+
k

∑
i=2

(
1

mi−1
− 1

mi
)(α2

i σ2
i − 2αiρ1,iσ1σi), (6)

where ρ2
1,i > 0 is the Pearson correlation coefficient of random variables f (1)(Z) and f (i)(Z)

for i = 2, . . . , k. The Pearson correlation coefficient is ρij =
Cov[ f (i)(Z), f (j)(Z)]

σiσj
.

2.2.2. Multi-Fidelity Monte Carlo Framework

The MSE of MFMC method is estimated by the number of model calculations m and
the coefficients α2, . . . , αk, and the cost p ∈ R+ of estimation ŝ is equal to the calculated
budget. Since e(ŝ) = Var[ŝ], it is sufficient to minimize the variance Var[ŝ] of the MFMC
estimator. Therefore, the objective of the MFMC method is to minimize the variance of
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multi-fidelity estimation ŝ under a given computational budget p∗ ∈ R+, which can be
achieved by solving of the optimization problem:

arg min
m∈Rk ,α2, ...,αk∈R

Var[ŝ]

s.tmi−1 −mi ≤ 0
−m1 ≤ 0
wTm = p

(7)

where the control variable coefficients α2, . . . , αk ∈ R and the number of model calculations
m1, . . . , mk are variables The inequality constraints mi−1 − mi ≤ 0 for i = 2, . . . , k and
−m1 ≤ 0 ensure 0 < m1 ≤ m2 ≤, . . . ,≤ mk. Note that we will show m∗1 > 0 for the optimal
m∗1 and therefore m∗ ∈ Rk

+. The equality constraint wTm = p guarantees that the cost of the
corresponding MFMC estimator is equal to the computation budget p ∈ R+. Peherstorf
et al. [8] proved that the optimization problem in Equation (7) has unique approximate
optimal solution under certain conditions of the high-fidelity and low-fidelity models. Let
the k models f (1), . . . , f (k) satisfy |ρ1,1| > . . . >

∣∣ρ1,k
∣∣ and the costs w1, . . . , wk satisfy the

ratios wi−1
wi

>
ρ2

1,i−1−ρ2
1,i

ρ2
1,i−ρ2

1,i+1
, for i = 2, . . . , k. The optimal control variable coefficients are:

α∗ i =
ρ1,iσ1

σi
, i = 2, . . . , k (8)

The optimal numbers of model calculations are:

m1
∗ =

p
wTr∗

, mi
∗ = m1

∗ri
∗ (9)

where r∗ = [r1
∗, . . . , rk

∗]T ∈ Rk
+, ri

∗ =

√
w1(ρ

2
1,i−ρ2

1,i+1)

wi(1−ρ2
1,2)

, and p ∈ R+ is the calculation budget.

The global minimum solution of Equation (7) is
(
m∗, α∗2 , . . . , α∗k

)
. The MFMC framework

is shown in Figure 1. Using the number of model calculations m∗ and the coefficients
α∗2 , . . . , α∗k , the MSE e(ŝ∗) of the multi-fidelity estimation ŝ∗ is

e(ŝ∗) =
σ2

1
p

(
k

∑
i=1

√
wi(ρ

2
1,i − ρ2

1,i+1)

)2

(10)
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Since the cost of MC estimate y(1)m is p = mw1, m is the numbers of model calculations
and w1 is the input calculation cost. The MSE of the MC estimator y(1)m is rewritten as:

e(y(1)m ) =
σ2

1
m

=
σ2

1
p

ω1 (11)

If we compare the MSE of the MFMC with the MSE of the standard MC estimator, it
holds that e(ŝ∗) < e(y(1)m ), if and only if

k

∑
i=1

√
wi
w1

(ρ2
1,i − ρ2

1,i+1) < 1 (12)

The low-fidelity models lead to a MFMC estimator with a smaller MSE than the MSE
of the standard MC estimator with the same budget p.

2.3. Data-Driven Low-Fidelity Models of Nonlinear Partial Differential Equations

The uncertainty analysis framework of MFMC estimation needs to combine the output
information of high-fidelity model and low-fidelity models to accelerate the estimation of
statistics. In this paper, based on the data-driven low-fidelity models, the nonlinear partial
differential equation is converted into ODEs system according to the type and parameter
characteristics of the actual problem equations. Then, the reduced dimension model and
DEIM are coupled to construct effective nonlinear low-fidelity models in ODEs system.

First, the nonlinear partial differential equations are transformed into ordinary differ-
ential equations in numerical simulation of partial differential equations. We can use the
finite difference discretization or Fourier transformation to obtain the following nonlinear
ordinary differential equations:

d
dt

y(t) = Ay(t) + F(y(t)) + B(u(t)), (13)

where t ∈ [0, T] is time, y(t) = [y1(t), . . . , yN(t)]
T ∈ RN is the state vector or solution of

the initial condition y(0) = y0 ∈ RN . The operator A ∈ RN×N is the approximate matrix of
linear space differential operator. The matrix B ∈ RN×p is the input matrix, and F is the
nonlinear function calculated on the y(t) component with F = [F1(y1(t)), . . . , FN(yN(t))]

T .

2.3.1. POD Coupled with DEIM

Consider a set of snapshots {y(t1), . . . , y(tM)} ∈ RN and the corresponding snapshot
matrix Y = [y(t1), . . . , y(tM)] ∈ RN×M. Let V = [v1, . . . , vn] ∈ RN×n be the POD basis in n
dimensional space. The POD basis vector V ∈ RN×n of the matrix V is the n largest left
singular vectors of the matrix Y. The POD reduced-order system is obtained by Galerkin
projection [22,26]:

d
dt

ỹ(t) = Ãỹ(t) + VTF(Vỹ(t)) + B̃(u(t)), (14)

where the reduced operator is Ã = VT
n AVn ∈ Rn×n, the reduced input operator is

B̃ = VT
n B ∈ Rn×p and state vector is y(t) = Vỹ(t).

We use POD method to construct low-fidelity models. Although the dimension
of solving complex systems can be reduced, the complexity of higher order nonlinear
terms may be as challenging as the original equation. DEIM [30,33] provides an effective
calculation method for evaluating nonlinear terms.

Select m ∈ N vectors as columns stored in DEIM as base vector U ∈ RN×m. The
nonlinear terms are approximately F(y(t)) = Uc(t), where U = [t1, . . . , tm] and c(t) are
the corresponding coefficient vectors. Then DEIM selects m pairs of different interpola-
tion points p1, . . . , pm ∈ {1, . . . , N} and assumes that DEIM interpolation point matrix
P = [ep1 , . . . , epm ] ∈ RN×m, where ei ∈ {0, 1}N is the i-th standard unit vector. The co-
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efficient vector c(t) can be uniquely determined by PTF(y(t)) = PTUc(t). The DEIM
interpolation points of nonlinear function F are composed of tuples (U, P) defined by
DEIM basis U and DEIM interpolation point matrix P. The DEIM approximate of nonlinear
function F is estimated at the state vector y(t) as:

F(y(t)) ≈ U(PTU)
−1

PTF(y(t)), (15)

By coupling POD (14) and DEIM (15), the POD-DEIM low-fidelity models are:

Ãỹ(t) + VTF(U(PTU)
−1

PTF(y(t))) + B̃(u(t)) = 0. (16)

2.3.2. Operator Reduction

Another strategy of constructing the low-fidelity models is operator reduction [22,31].
We first construct a reduced space from trajectories of the full-model states, and the orig-
inal operator is replaced by the reduced operator to construct the low-fidelity models of
nonlinear partial differential equations. Let Vn ∈ RN×n be a matrix composed of the
first n ∈ N POD basis vectors. The projection state of the full-model state y(t) ∈ RN is
ŷ(t) = VT

n y(t). Let Y(t) = [y1 (t), . . . , yK(t)]
T ∈ RK×N be the trajectory and the input

matrix be U(t) = [u (t), . . . , uK(t)]
T ∈ RK×p. Consider the time step t1, . . . , tK with time

step δt. For j = 1, . . . , K, let
.
ŷj ∈ Rn be the approximation of the derivative d

dt ŷ(tj) of

the projection state ŷ(tj) at time tj that converges to d
dt ŷ(tj) under L2 norm when δt→ 0 .

Suppose approximates the operators A ∈ RN×N , B ∈ RN×p and F ∈ RN×s by the reduced
operators Â ∈ Rn×n, B̂ ∈ Rn×p and F̂ ∈ Rn×s. The reduction operators satisfy the equation:

.
ŷj = Âŷj + F̂ŷj + B̂uj, j = 1, . . . , K, (17)

We define the reduced operators Â ∈ Rn×n, B̂ ∈ Rn×p and F̂ ∈ Rn×s as the solution of
the optimization problem.

minimize
Â∈Rn×n ,B̂∈Rn×p ,F̂∈Rn×s

K
Σ

j=1
‖

.
ŷj − Âyj − F̂ŷj − B̂uj‖

2

2
. (18)

Let D = [Ŷ, U, Ŷ(1), . . . , Ŷ(n)
] ∈ RK×(n+p+s) be the data matrix, where Ŷ is the projec-

tion trajectory, U is the input matrix, we define the matrix by using the finite difference

scheme
.
ŷj =

ŷj−ŷj−1
δt , j = 1, . . . , K,

R = [
.
ŷ1, . . . ,

.
ŷK]

T
∈ RK×n, (19)

The final optimization problem (18) is transformed into the least-square problem with
the data matrix D and the matrix O:

minimize
O∈Rn×(n+p+s)

‖DOT−R‖2
F, (20)

The solution is O = [Â, B̂, F̂] ∈ Rn×(n+p+s).

3. Numerical Results

In this section, we give two numerical examples of nonlinear partial differential equa-
tions, using MFMC with data-driven low-fidelity models and the initial value uncertainty of
NLS equation and the parameter uncertainty of Burgers’ equation are studied, respectively.
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3.1. Uncertainty Analysis of NLS Equation with Initial Value
3.1.1. Estimate Analysis

NLS equation is a basic equation in quantum mechanics [33,34]. It can be used
to describe the propagation phenomena and principles of optical solitons in fibers, the
propagation of optical pulses in dispersion and nonlinear media and the motion of su-
perconducting electrons in electromagnetic fields. We consider the NLS nonlinear partial
differential equation: {

i ∂u
∂t +

1
2

∂2u
∂x2 + u|u|2 = 0

u(x, 0) = u0(x)
(21)

where u is a complex number function. Let Ω = (−20, 20) be the spatial domain and the
time be t ∈ [0, 2π] ⊂ R. We assume that the initial value is an uncertain input variable.
In the NLS equation, the initial condition satisfies u0(x) = N∗sech(x) + Z, N = 2 is the
double soliton order, x ∈ Ω is the propagation distance and Z obeys the normal distribution
for the uncertainty analysis. Rewriting (21) by Fourier transformation, gives the set of
differential equations

∂û
∂t

= − i
2

k2û + i|̂u|2u (22)

where − i
2 k2û is linear term and i|̂u|2u is nonlinear term.

To investigate the performance of our multi-fidelity estimation method based on
data-driven low-fidelity models. We use the fourth- and fifth-order Runge–Kutta method
to solve Equation (22), and the numerical solutions of NLS Equation are regarded as the
high-fidelity model f (1). The data-driven low-fidelity model of NLS equation is used to
reduce the dimension for the numerical solutions by POD method and select three POD
basis functions. Then, DEIM is used to reduce the dimension of higher order nonlinear
terms and we obtain a type of the low-fidelity model f (2). Table 1 shows the information
for calculating these models with 1000 samples.

Table 1. Number of samples per model, coefficients and costs for NLS equation.

Models α ω m

High-fidelity (FD) f (1) 1 480 204
Low-fidelity (POD + DEIM) f (2) 0.2082 3 698

We show the Pearson correlation coefficients and variances of the high- and low-fidelity
models for NLS equation in Table 2. The two statistics are estimated using 100 evaluations
of the high-fidelity and low-fidelity model. We can see that the low-fidelity model is
highly correlated with a correlation coefficient of 0.9989. Note that the correlation is high
enough and the low-fidelity model is cheap enough for the multi-fidelity estimator to
be worthwhile.

Table 2. The Pearson correlation coefficient and variances of high- and low-fidelity models for
NLS equation.

Models ρi σ2
i

High-fidelity (FD) f (1) 1 214.1663
Low-fidelity (POD + DEIM) f (2) 0.9989 214.3100

We are interested in the expectation E[ f (Z)] of the NLS equation if the initial value is
uncertain. We choose the sample output function is f (Z) =

∫
Ω ‖u(x, T; u0(Z))‖dx and the

time is T = π. The Monte Carlo estimate y(1)m of E[ f (1)(Z)] is computed from n = 1× 103

realizations and is used to estimate the MSE. We use the high-fidelity and the low-fidelity
models listed in Table 1 to estimates the mean, variance and sensitivity index of output
function for the NLS equation.
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We compare the MC and MFMC expectation estimators in terms of their MSE that is
estimated from 20 replicates as

ê =
1

20

20

∑
i=1

(E[ f (1)(Z)]− ŝi)
2 (23)

where E[ f (1)(Z)] is the reference expectation estimator and ŝi is either an MFMC estimator
(10) or an MC estimator (11). The reference expectation E[ f (1)(Z)] is computed from
n = 1× 103 samples and we obtain E[ f (1)(Z)] = 450.1967.

Figure 2 reports the estimated MSE (23) of the standard MC estimators and the MFMC
estimators of budgets from p = 103 to 105. Compared with the standard MC method, the
MSE of our MFMC method is smaller. That is, the MFMC method can be significantly
better than the standard MC. The multi-fidelity method based on data-driven low-fidelity
model has the same convergence speed as the MC method. Under the same budget 105,
MSE estimated by the MFMC method is about 30 times lower than the MC method. For
the same convergence rate, this means that the speed of the MC estimation is increased by
30 times. In other words, the MSE estimation of MFMC is 0.1 when the calculation budget
is 300, but the budget of MC is 9000 with the same value of MSE.
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Figure 2. The budgets of estimated MSE for the standard MC and MFMC estimators range from
p = 103 to 105.

To further study the stability of the MFMC method, Figure 3a shows that the MSE of
the standard MC and MFMC estimator changes with runtime when the numbers of samples
are 100, 500 and 1000. We can see, with the increase of running time, that MSE decreases
under different sample numbers, indicating that MFMC is stable in the time evolution
direction. On the other hand, the MSE of the MFMC is estimated by the number of model
evaluations m and the coefficients α2, . . . , αk, while the number of model evaluations m and
coefficients α are determined by the sample correlation coefficients and sample variances.
Table 3 give the sample correlation coefficients computed from 100, 500 and 1000 samples.
When the number of samples increases, the sample correlation coefficients change only
slightly. Table 4 list the sample variance calculated by the same samples as before. Since
calculating coefficients α, only the sample variance ratios σ1/σi, i = 1, 2 affect the value
of coefficients. When increasing the samples 100 to 500, the ratios σ1/σi also change very
little. Hence, the disturbance of sample variances and sample correlation coefficients has
minimal effect on MSE estimated by MFMC method. Figure 3b reports the proportion plot
of the number of model calculations m for MFMC estimator when the sample numbers are
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100, 500 and 1000. As the number of samples increases, the change of percentage is small,
and it is confirmed that small perturbations in the sample estimates lead to small changes
in the number of model evaluations m.
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Table 3. Comparison of correlation coefficient using 100, 500 and 1000 samples, respectively.

Models 100 Samples 500 Samples 1000 Samples

High-fidelity (FD) f (1) 1.0000 1.0000 1.0000
Low-fidelity (POD + DEIM) f (2) 0.1904 0.1968 0.2082

Table 4. Comparison of sample variances by 100, 500 and 1000 samples, respectively.

Models 100 Samples 500 Samples 1000 Samples

High-fidelity (FD) f (1) 212.3323 218.7528 232.9878
Low-fidelity (POD + DEIM) f (2) 317.5544 336.1835 337.2713

Ratios (σ1/σ2)/% 0.6686 0.6507 0.6908

3.1.2. Sensitivity Analysis

In uncertainty quantification analysis, another concern is the sensitivity for initial
value of random input to output variation. We use the Sobol index [35–37] to analyze
the contribution of each input variable to the output variance. Figure 4 displays the
main and total sensitivities box plots of the estimators repeated 100 times under different
computational budgets. We note that the MFMC estimator can accurately predict the
contribution of each input variable compared with the standard MC estimator. When the
low-fidelity model is used, the sensitivity index of the estimator decreases, and the variance
of the estimator is also reduced.
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3.2. Parameter Uncertainty Analysis of Burgers’ Equation
3.2.1. Estimate Analysis

Let Ω = [0, 1] ⊂ R be the spatial domain and the time be t ∈ [0, 1] ⊂ R. We consider
the Burgers’ partial differential equation [25,38]:{

∂x
∂t + x ∂x

∂ω − µ ∂2x
∂ω2 = 0

x0(µ) = 0
, (24)

where x is the state at spatial coordinate ω ∈ Ω, and µ is the input uncertainty parameter,
which obeys the uniform distribution in the domain [0.1, 1] for uncertainty analysis. The
boundary conditions are x(0, t;µ) = 1 and x(1, t;µ) = −1 for t : [0, 1] ⊂ R. We use the
finite difference method to discretize the Burgers’ Equation (24) in an iso-spacing grid
with 129 points of the spatial domain Ω. We obtain parameterized nonlinear ordinary
differential equations:

d
dt

y(t; µ) = A(µ)y(t; µ) + F(µ)y(t : µ) + B(µ)u(t) (25)



Appl. Sci. 2022, 12, 7045 11 of 15

where A(µ) ∈ RN×N is the operator of Burgers’ equation linear term, F(µ) ∈ RN×N(N+1)/2

is the operator corresponding to the nonlinear term, and B(µ) ∈ RN×P is the operator of
boundary condition.

To develop a multi-fidelity estimator based on the data-driven low-fidelity model
of nonlinear partial differential equations. The numerical solutions of Equation (24) are
used as a high-fidelity model f (1). Then, the data-driven low-fidelity models are obtained
by using operator reduction coupled with DEIM. Two types of low-fidelity models are
constructed, respectively. The values of random parameter space for one of the low-fidelity
model f (2) are calculated by DEIM of high fidelity models. We construct other reduction
model from 129 to 20 dimensions by using the operator reduction of the full-model. The
value of random parameter space is calculated by DEIM for reduction model, and we
obtain the low-fidelity model f (3). The information of each multi-fidelity model, calculated
using 20,000 samples, is reported in Table 4.

In the uncertainty quantification analysis of nonlinear partial differential equation, we
are interested in the expected E[ f (µ)] of random parameter. The sample output function
is f (µ) =

∫ 1
0 x(w, T; µ)dw, and the time is T = 0.5. The MC estimate y(1)m of E[ f (1)(µ)] is

computed from n = 2× 104 and is used to estimate the MSE. The MC method is compared
with the MFMC estimator under the given calculation budgets. It is hoped that the optimal
MFMC method can obtain satisfactory estimation. We use the high-fidelity and the low-
fidelity models as shown in Table 5 to estimates the mean, variance and sensitivity of
output function for the Burgers’ equation, where the low-fidelity models use the operator
reduction method and the DEIM for the parameterization Burgers’ equation.

Table 5. Number of samples per model, coefficients and costs for Burgers’ equation.

Models α ω m

High-fidelity (FD) f (1) 1 385 2597
Low-fidelity (DEIM) f (2) 0.0233 0.001 8475

Low-fidelity (OR + DEIM) f (3) 0.0221 1× 10−4 11,784

αωm High-fidelity (FD) f (1)Low− fidelity (DEIM) f (2)Low− fidelity (OR + DEIM)
f (3)1× 10−4 The high-fidelity model f (1), low-fidelity models f (2) and f (3) are divided
into three groups for comparative study. Figure 5 displays the estimated MSE (23) of those
three models, respectively. The MSE of the MFMC estimator achieves a speedup of up to
two orders of magnitude compared to the standard MC estimator. In the three numerical
experiments, when the cost is 106, the MSEs estimated by the multi-fidelity models are
1.3844× 10−5, 1.3648× 10−5 and 3.4297× 10−6 in sequence. Therefore, the MSE of the
models are further decreased when the calculation budget for output function expectation
is increased.

Compared with the standard MC method, under the same computational budget, the
MFMC can be superior to the MC for each statistical quantity. Figure 6 shows the relative
share of each model in the total number of samples. The shares of the models vary by
orders of magnitude between the high-fidelity and low-fidelity models, reflecting their
correlations and costs. It should be noted that the relative share of the model is not related
to the calculation budget p, because all components of m are linearly proportional to p.
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3.2.2. Sensitivity Analysis

To further analyze the parameter uncertainty law of Burgers’ equation, the sensitivity
of the parameter is studied. Figure 7 reports the standard MC and MFMC estimator,
respectively, in p = 102 and p = 104 computational budget, repeated 100 times estimates
of the main sensitivity and total sensitivity box plots. It is worth noting that compared
with the standard MC estimation, the sensitivity index of the MFMC method estimator
decreases and the estimated variance is also reduced. Therefore, in all cases, compared
with the standard MC estimation, the multi-fidelity estimation has smaller variance with
the budget increases. When the true value of the sensitivity index is closer to zero, the
variance of the estimator is similar as the order of sensitivity magnitudes.
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4. Conclusions

We developed the MFMC based on the data-driven low-fidelity models of nonlinear
partial differential equations in order to solve the problem of high computational cost in
the uncertainty quantification of numerical solutions. The main strategy is that the reduced
dimension model and DEIM are coupled to construct effective nonlinear low-fidelity models
in ODEs system. Our method combined the output information of high-fidelity models
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and low-fidelity models to speed up the estimation of statistics, so that the calculation cost
is lower and the MSE is smaller.

The presented MFMC approach is used to calculate the statistical information, includ-
ing mean, variance and sensitivity for the NLS equation with the initial value uncertainty
and Burgers′ equation with parameter uncertainty. The results shows that the MFMC
estimation with the data-driven low-fidelity models can effectively reduce the MSE and
predict the output statistics well under the condition of multiple numbers of sample points
for nonlinear partial differential equations. It provides a good solution for solving the
uncertainty quantification problem of multivariate in physics, mechanics and engineering
technologies. However, it should be pointed out that the key point of MFMC method
is the necessity of having suitable low-fidelity models for our high-fidelity models. For
an unknown complex system, how to construct an appropriate low-fidelity model needs
further research and discussion.
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