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Abstract: Meat 4.0 refers to the application the fourth industrial revolution (Industry 4.0) technologies
in the meat sector. Industry 4.0 components, such as robotics, Internet of Things, Big Data, augmented
reality, cybersecurity, and blockchain, have recently transformed many industrial and manufacturing
sectors, including agri-food sectors, such as the meat industry. The need for digitalised and automated
solutions throughout the whole food supply chain has increased remarkably during the COVID-19
pandemic. This review will introduce the concept of Meat 4.0, highlight its main enablers, and
provide an updated overview of recent developments and applications of Industry 4.0 innovations
and advanced techniques in digital transformation and process automation of the meat industry.
A particular focus will be put on the role of Meat 4.0 enablers in meat processing, preservation
and analyses of quality, safety and authenticity. Our literature review shows that Industry 4.0 has
significant potential to improve the way meat is processed, preserved, and analysed, reduce food
waste and loss, develop safe meat products of high quality, and prevent meat fraud. Despite the
current challenges, growing literature shows that the meat sector can be highly automated using
smart technologies, such as robots and smart sensors based on spectroscopy and imaging technology.

Keywords: authenticity; automation; digitalisation; fourth industrial revolution; meat; quality;
robotics; safety; smart sensors; spectroscopy

1. Introduction

The world population is increasing rapidly and it is expected to hit approximately
10 billion people by the year 2050. Ensuring enough, safe, and sustainable food for all
of these people remains one of the key future challenges facing humanity, especially in
the current scenario of resource depletion, pandemics, and climate change [1–3]. Meat
production and consumption have increased over the past five decades and it is expected
that the meat production will continue increasing in order to meet the growing demand for
animal proteins [4,5]. However, due to their high perishability, various preservation and
processing methods have been traditionally applied to meat and meat products to maintain
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high quality and extend their shelf life [6,7]. On the other hand, a wide range of analytical
methods has been investigated over the years to characterize meat and meat products
in terms of quality, safety, and authenticity. Yet, many of the conventional preservation,
processing, and analytical methods are unable to cope with the well-known challenges
(e.g., short shelf life and large heterogeneity) faced by the meat industry, making it difficult
to preserve, process, and analyse these products [8–12].

In recent years, new innovations and the development of a new wave of advanced
technologies have revolutionized food systems and the food industry [13–15]. These
advancements have been accelerated by the advent of many emerging technologies under
the context of the fourth industrial revolution (called Industry 4.0 or IR 4.0), which has
digitally transformed many food manufacturing sectors, including the meat industry.
Indeed, as other industries, the meat industry has experienced a significant transformation
during the ongoing industrial revolution [5,16].

Before Industry 4.0, three industrial revolutions took place, allowing significant im-
provements and technological advances to be implemented in various agricultural and
industrial sectors. The first industrial revolution (IR 1.0) occurred in the late eighteenth
century, and was characterized by the transition from manual to mechanized work and
production, which were powered by steam. The second one (IR 2.0) dates back to the late
nineteenth century, and was marked by the first use of electrical power to create mass
production. The third industrial revolution (IR 3.0) began in the early 1970s with the arrival
of electronics and information technology, leading to automated production [17–19].

Industry 4.0 has become an interdisciplinary topic, involving a set of knowledge
and technologies related to physical, digital, and biological domains [20–22]. Although
no general agreement exists in the literature on the Industry 4.0 enablers, the most re-
ported technologies in the food industry are Artificial Intelligence (AI), Big Data (BD),
robotics, smart sensors, the Internet of Things (IoT), augmented reality, cybersecurity, and
blockchain [14,23,24]. The interest in Industry 4.0 has gained momentum recently, espe-
cially after 2015, which has been reflected by the increased number of publications (and the
corresponding citations) dealing with this topic, as can be noticed from Figure 1.
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This increased interest in Industry 4.0 can be explained by its ability to digitalize the
food industry by using smart interconnected technologies and web-based platforms [14].
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Several publications have indicated that Industry 4.0 and its technologies have the potential
to promote more automation and digitalization, leading to the concept of a smart factory,
with improved efficiency, higher food quality, reduced food loss, and reduced production
cost and time [5,25]. Moreover, worker shortages and other disruptions caused by the
COVID-19 pandemic have accelerated the move toward more automation and digitalization
over the last few years [15,26,27].

Many Industry 4.0 components, such as AI [25], BD [3], robotics [28,29], IoT [30], and
augmented reality (AR) [31], have been reviewed in recent years. In the meat industry, it was
reported that the application of AI decreases costs by optimizing operations and improves
profitability in meat processing plants [16]. An overview of recent developments and
advances in human–robot collaboration in the red meat industry was given by Romanov
et al. [32]. The application of AR in slaughterhouses seemingly increases the production
yield [33]. Recently, the application of Industry 4.0 technologies in seafood preservation,
processing, and analytical methods was also reviewed [23].

This review will report on recent advances and technological developments in the
meat industry focusing on Industry 4.0 technologies. The application of Industry 4.0
elements in meat preservation, processing, and analysis will be termed “Meat 4.0”. More
concretely, examples on the use of AI, BD, robotics, smart sensors, and blockchain, among
other Industry 4.0 components to ensure higher quality, safety, and traceability in the meat
industry, will be presented.

2. Principles of Industry 4.0 from Food Perspectives and Meat 4.0 Concept
2.1. Meat 4.0 Concept

After twenty-five decades of industrial advances, we are currently in the era of cyber-
physical systems, i.e., a computerized system in which functions are controlled or monitored
through computer-based algorithms [24]. Figure 2 shows the meat supply chain and the key
Industry 4.0 technologies that are being adopted at each actor level. There are technologies
such as cybersecurity and blockchain that are being implemented throughout the meat
supply chain. Therefore, the application of these Industry 4.0 technologies to the meat
supply chain can be termed as “Meat 4.0”.
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2.2. Food Industry 4.0 Enablers

This section will discuss each of the key technologies mentioned in with respect to the
meat sector.

2.2.1. Robotics and Automation

Industrial robots and automation make up an important component of Industry 4.0,
which could resolve some challenges in the food industry, such as the difficulty of obtaining
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adequate labour and reducing production time and processing costs [24]. Traditionally,
automating meat factories has been very challenging because of the huge initial costs
involved and carcasses coming in various sizes, making it hard for robots to maintain
consistency during cutting processes [29]. However, the advent of the COVID-19 pandemic
forced many meat factories to close down temporarily due to safety concerns among its
employees. Yet, at the same time, it accelerated their plans to automate the factories [27].
Processes such as cutting, deboning, and shredding of meats such as beef, lamb, pork,
and poultry, which were completely dependent on hand skills of the workforce, are now
carried out using robots and automation. Manufacturers have benefitted through decreased
cycle times and increased throughput. It means that meat products reach customers faster,
reducing spoilage and giving the products the best shelf life possible. Also, less human
contact with processes and products has reduced staff injuries and product contamination.
Figure 3 shows some robotics and automation within the meat sector.
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2.2.2. Big Data (BD)

BD is associated with unstructured data of different types, which are generated con-
tinuously at high speed and in large volumes. Furthermore, BD are characterized by
being data with high veracity and value [34]. In the meat supply chain, BD is generated
mainly through sensors. Concretely, these sensors generate data related to physiological
or behavioural parameters of livestock [35]. For instance, various data related to animal
behaviour such as resting, ruminating, feeding, and walking habits can be analysed, and
trends related to their health can be obtained [36]. BD can also provide supports with
feed and disease management. There is a great potential to utilize the BD to improve the
operational efficiency of the meat supply chain [3]. BD can also be used to predict out-
comes related to body weight, yield and production, creating new efficiencies and greater
economic benefits [37]. It can help in understanding the market and consumer trends and
develop new products and services [38].

2.2.3. Internet of Things

IoT is related to transferring data between interconnected computer devices and
machinery [24]. It consists of physical devices that collect data, a network that transmits
the collected data, and an application layer which includes IoT applications and services.
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Thus, IoT has favoured the spread of interconnected devices fostering an increase in the
employ of several smart IoT applications [39]. Moreover, IoT is widely applied in the
supply chain to enhance transparency and traceability [30]. The horsemeat scandal in
2013 was caused when several adulterated meat products were identified, resulting in the
public losing trust in them [40]. IoT-enabled wearable devices allow real-time monitoring
and tracking, employee safety, productivity, and food safety [41]. For instance, the use
of hyperspectral imaging systems in combination with IoT could help to monitor the
components/ingredients of food, thus improving food safety [42]. Some researchers used
IoT technology to reduce food waste in food processing factories [43,44].

2.2.4. Augmented Reality (AR)

Augmented reality allows to improve the visual perception of the real world [33].
The application of augmented reality to the carcasses cutting operation has resulted in
an increase in the production yield; however, the staff require training in order to benefit
fully from the efficiency and capability of the AR application rather than implementing
the standard procedure of verbal communication of instructions [33]. The AR platform,
called ARGA (Augmented Reality Grading App), enables faster, more consistent, and more
accurate meat grading while taking full advantage of the experience and capabilities of the
industry’s meat graders [45]. It is widely used in training of the staff as well as guiding
step-by-step maintenance or operating procedures [31].

2.2.5. Cybersecurity

Cybersecurity concerns the processes and availability of technologists with the needed
skills that protect information and computer technology systems, such as networks and
computers [24]. Cyberattacks have been steadily rising globally and affected several indus-
tries and manufacturing sectors, including businesses, schools, hospitals, governmental
websites, etc., [46]. Whenever a new technology is adopted or implemented into an in-
dustry, cybersecurity becomes a reason of great concern. For instance, JBS, who are one
of the largest meat processors in the United States, fell prey to cyberattacks resulting in
shortages [47]. Therefore, considering the scale and significance of this sector with regards
to food security, it is essential to ensure that meat supply chain IT systems are secured.

2.2.6. Blockchain

The meat supply chain has not been very efficient and has always been a cause of
concern when it comes to environmental sustainability [48]. JBS, the largest meat producer,
has been accused of deforestation of Amazonian forests for livestock grazing as well
as passing off these cattle as legitimate [49]. These issues triggered JBS to implement
blockchain technology to ensure traceability of its livestock and meat [50], since blockchain
consists of distributed, decentralized, digital ledgers supported by a network of multiple
computers. Thus, blockchain technology has the ability to provide market regulators and
consumers with increased levels of transparency and confidence in food quality and safety.
Several applications of blockchain technology in the meat sector have resulted in raising
consumer confidence through tracking technologies, tackling food fraud, non-tampering
of data, secure information storage and providing greater levels of trust in meat supply
chains [51].

2.2.7. Imaging Technology

Imaging technology is extensively employed in the supply chain to allow visual as-
sessment of foods on the processing line with minimal human intervention. Concretely,
these 4.0 techniques permit the integration of systems capable of “seeing” and reacting to
different situations based on previously defined parameters. In this way, once the optimum
quality criteria have been established for a product, the intelligent systems will be able
to act by making instant decisions in the processing line itself [52]. Various imaging tech-
nologies exist such as spectral imaging (also known as spectroscopic imaging or chemical
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imaging), near-infrared, X-ray imaging, digital and analogue image processing, and odour
imaging [53]. These methodologies consist of capturing images in real time, which are
displayed on computers and automatically analysed to generate control commands based
on the results obtained [54]. Spectral images are one of the most used imaging techniques,
among which hyper and multispectral images are distinguished. In the case of hyperspec-
tral images, they collect and process information from the entire electromagnetic spectrum
(wavelengths in near-ultraviolet, visible, and near-, mid- and far-infrared) as well as from
spatial surface. However, hyperspectral imaging direct use is limited by the extensive time
needed to process large volumes of data. For this reason, the selection of characteristic
wavelengths is made that allows the development of a multispectral imaging system [55,56].
For its part, near-infrared permits obtaining the spectrum of an object in the wavelength
range of 750 to 2500 nm. In this way, multispectral and near-infrared imaging can provide
qualitative and/or quantitative information from the interaction of electromagnetic waves
with food constituents.

3. Industry 4.0 Technologies Applied for Meat Processing and Preservation

The need for sustainable food systems calls for innovative plans that secure the global
food supply and minimize food losses and waste throughout the supply chain. Here,
the use of IR 4.0 technologies in the processing chain and during meat preservation is
of special importance as it could prevent food losses. Among the tools that could help
minimize waste and maintain adequate production are robotics and automation IR 4.0
systems, since they favour rapid processing by minimizing sources of contamination,
and therefore increasing the shelf life of the meat. However, on account of peculiarity
of animal carcasses and the locations obtained from them, robotization and automation
processes are a challenge for Meat 4.0. Despite this initial complexity, the development and
implementation of robotization and automation are of special interest because the slaughter
tasks and the secondary processing of the carcasses are labours that currently involve most
of the manual work, which is repetitive and must be done at high speed [32]. Although it is
true that in the case of slaughterhouses many processing operations (stunning, bleeding,
scalding, plucking, skinning, evisceration, splitting, and cooling) are already successfully
automated [57], in the secondary processing of meat, hardware and software must be
developed so that robots can offer a flexible, scalable, compact, and profitable alternative in
the production line [32].

Cutting and boning operations are among the most labour-intensive due to the skill
and sense required during processing. In this field, there are some automation systems that
use detection units based on vision scanners in order to define the path and depth of the
meat cuts in the primary and secondary meat processing stages (Table 1). On this matter, in
automation for cutting, the use of laser lines that allow 3D scanning is common. A very
prominent example of automation in the meat industry is the AiRA Robotics set, developed
by the Frontmatec Company for employ in the clean line of pork slaughterhouses. Among
this set, it is worth highlighting the presence of the robot designed to vacuum and remove
the plugs from the carcass rectum (AiRA RBD Bung Dropper); the aitch bone cutter (AiRA
RHC Aitch Bone Cutter); the breast and belly cutter (AiRA RBO Breast and Belly Opener);
the head clipper (AiRA RNC Neck Clipper); and the carcass splitter (AiRA Splitters). The
technology developed by Frontmatec has both the robot and saw combination (AiRA RPS-S
Splitter with Saw), as well as a robot and knife (AiRA RPS-H Splitter with Knives) and even
has a pair of robotic arms (AiRA RPS-D Dual Arm Splitter with Saw) [57]. Also in pork
meat, there are currently different IR 4.0 technologies that allow deboning (femur and tibia
removal) the back legs through robotic systems. Hamdas-RX [58] and SRDViand project [59]
are two of these IR 4.0 technologies, which allow deboning through X-ray and 3D images,
respectively, to calculate the cutting path to be followed by the robotic equipment.
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Table 1. Automation and robotization of the primary and secondary processing of various carcasses
in the meat industry.

Carcass IR 4.0 Technology Application Reference

Pork AiRA RBD Bung Dropper a Remove plugs from rectum

[57]
AiRA RHC Aitch Bone Cutter a Cut aitch bone

AiRA RBO Breast and Belly Opener a Open belly, breast, and throat

AiRA RNC Neck Clipper a Clip head (without removing the
entire piece)

AiRA Splitters a Split the carcass
longitudinally

Hamdas-RX b Debone back legs [58]
SRDViand project Debone back legs [59]

Lamb SCOTT Automated Boning Room c Cut and debone certain parts [57]
Beef SRDViand project Cut half carcasses [59]

Chicken GRIBBOT Fillet breasts [60]
a www.frontmatec.com/en/pork-solutions/clean-line-chill-room/aira-robots (accessed on 23 June 2022); b www.
mayekawa.ca/mayekawaproduct/food/robotics/hamdas-rx/ (accessed on 23 June 2022); c www.scottautomation.
com/products/automated-boning-room (accessed on 23 June 2022).

Other similar robotic technologies are also available for lamb and beef carcasses. Thus,
in the case of lambs, we find the SCOTT Automated Boning Room, which is an intelligent
system that uses 3D scanners and X-rays to predict the best cutting route and achieve the
deboning of certain parts of the lamb, such as the back legs [57]. On the other hand, for
beef carcasses, there is the SRDViand project technology that allows to operate half carcasses.
Specifically, the SRDViand project has a vision system (currently operational) capable of
extracting information to count the ribs and identify the dorsal spine and a robotic arm that
makes the appropriate Z-cut [59,61]. The vision system (namely “eye-to-hand”) consists
of a camera and a projector that performs a 3D reconstruction by triangulation, through
which the ribs and the dorsal spine are counted and identified, respectively. Thus, the
cutting route is defined, and the hindquarters and forequarters are obtained. The path and
conditions followed for the cut (forward speed, blade movement, blade lateral support
on the bone, and blade angle) are readjusted from a theoretical path according to the
characteristics found in situ (flank thickness, fat quantity, textural variability, etc.).

As for poultry meat, presently the industries that process these products are the
most automated in the meat sector, since poultry have fewer variations between carcasses
compared to other larger animals. However, automation processes take place in the first
processing of poultry [62]. This fact, together with the high consumption of poultry
meat, means that the industry continues to constantly demand intelligent systems that
permit to increase the industry yield [57], especially in the second processing of poultry
(cutting and boning) [62]. In this context, some successful systems have been developed,
such as GRIBBOT, which is a chicken fillet-harvesting robot equipped with 3D vision, a
personalized designed gripper, and a carrier system to expose the breasts to the robotic
arm [60]. In this way, the GRIBOT combines a 3D vision algorithm that allows calculating
and locating the grip point on the breast for a suitable and fast (less than 4.75 s for a single
fillet) extraction of the fillets.

Despite the great advances in robotization and automation, on many occasions these
IR 4.0 technologies cannot be fully implemented in the meat industries due to biological
variations of the raw material, the specific needs of washing and disinfection of surfaces,
and/or economic viability on account of the high cost required for these technological
processes. Nevertheless, the current trend rejects continuing to implement systems based
on hard work performed by operators with the aim of providing a higher quality of work
and reducing pathologies associated with it (musculoskeletal disorders). For this reason,
technologies that combine human–robot collaboration are being investigated, creating the
so-called CoBots, which would represent a very useful tool in the meat industry [32]. In
addition, the use of CoBots would facilitate the inclusion of newly arrived operators since
it would permit them to obtain a step-by-step approach to processing, achieving their
training. In this field, the use of augmented virtual reality could improve the necessary
skills that would otherwise only be acquired with years of experience [63]. An example of

www.frontmatec.com/en/pork-solutions/clean-line-chill-room/aira-robots
www.mayekawa.ca/mayekawaproduct/food/robotics/hamdas-rx/
www.mayekawa.ca/mayekawaproduct/food/robotics/hamdas-rx/
www.scottautomation.com/products/automated-boning-room
www.scottautomation.com/products/automated-boning-room
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the use of augmented reality can be found in the work carried out by Bologna et al. [63].
They investigated the training of operators without the cost of the material and avoiding
possible risks for both equipment and personnel in real life, using Meta 2 glasses and the
Unity 3D and Visual Studio software. The platform employed incorporated a graphical
interface which included figures and terminology that provided the simulation of indus-
trial equipment. This could reduce the lack of trained labour that presently exists in the
meat sector.

On the other hand, IR 4.0 technologies must guarantee monitoring and be able to
perform measurements in real time throughout the food supply chain. To carry out this
monitoring in the meat industry, intelligent sensors must be used, which allow the moni-
toring and recording of the production line in real time. The sensors employed will depend
on the parameters that are monitored on the production chain. The most widely utilised
in food Industry 4.0 (and therefore the most applicable to the meat sector) are the optical
sensors based on spectroscopy, which can afford a real fingerprint of meat products. In this
way, the implementation of sensors in the food Industry 4.0 throughout the entire process
permits the meat factory to include rapid, real-time, and continuous control of parameters
as important as composition, nutritional quality, safety, and traceability of meat and meat
products (topics that will be covered in the next section) [24]. Likewise, the sensors could
allow the control of meat characteristics related to the production and the sustainability
of its processing since; for example, when a meat defect is identified in real time in the
production chain, action could be taken to obtain the appropriate product, that otherwise
could reach the supermarket shelves and be rejected by the consumer (favoring food waste).
Thus, the sensors, connected to various algorithms, are used to quickly capture and process
a multitude of data that permit the creation of summaries and action plans (e.g., removing
food that does not reach the required quality, return a product to a previous phase, etc.).
Thus, due to their usefulness, these devices have evolved, giving rise to miniaturized and
portable devices that are easy to implement in the meat industry [64].

In the case of the preservation of meat products, the use of smart sensors that can be
incorporated into smart packaging materials in the form of films, labels, or barcodes with
the aim of providing information on modifications in time and temperature, pH, humidity,
gas levels, chemical composition, microbial contamination, etc., can be highlighted [65]. An
example of these sensors applied to meat can be found as part of films in smart packaging.
These films are generally made from natural polymers such as proteins and carbohydrates,
which integrate the sensor itself into their matrix (generally also from a natural material,
namely anthocyanins, curcumin, etc.). Thus, this smart technology has allowed monitoring
the freshness of meats such as chicken [66–68], pork [69,70], beef [71,72] and lamb [73,74].
In this way, the sensors could help enhance the preservation of meat by being able to
detect even minimal or subtle changes during its storage. However, it should be borne
in mind that the natural materials used in smart packaging are still in the process of
development and must be studied to obtain suitable packaging/sensors (structure, colour,
resistance, etc.).

Parallel to sensors, IoT and blockchain technologies become essential tools to control
the monitored results with the advantage of being technologies that help maintain the
transparency of the results [75,76].

4. Industry 4.0 Technologies Applied for Meat Quality, Safety, and Authenticity

Currently, consumers are not only centred on the sensory attributes of food products,
but are increasingly demanding more nutritious, functional, minimally processed, low-
additive, safer, and more sustainable foods. Besides, consumers are becoming more aware
of the authenticity of nourishment and possible falsifications and counterfeits [77]. In this
context, the meat industry is highly affected, since meat is the main source of protein of
animal origin consumed by humans [78]. To satisfy these concerns, IR 4.0 has promising
potential to increment and favour the reliability, quality, safety, and authenticity of meat
and meat derivatives.
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4.1. Application of Industry 4.0 Technologies for Meat Quality

High quality is a key factor in today's hypercompetitive market [55]. Hence, predicting
quality attributes including chemical composition, physicochemical parameters (pH, colour,
water holding capacity, and texture) and sensory attributes of a meat product in the
processing line quickly and non-destructively is a major challenge [79].

From this perspective, IR 4.0 technologies can be particularly beneficial in ensuring
food quality, since methods using image techniques have been studied for the determination
of different quality parameters (e.g., colour, texture and texture-related features, flavour,
and freshness) with good results in different meat matrices [80–84].

Specifically in meat, the use of hyperspectral images has been extensively investigated
for the prediction of many parameters related to its quality (Table 2). This imaging technol-
ogy encompasses a computer with appropriate software, a spectrograph, a camera, and
an illumination unit [85]. Thus, spatial and spectral information of the meat is obtained
simultaneously, which forms three-dimensional (3D) data cubes that allow objects to be
detected, identified, and quantified in more detailed images (two-dimensional (2D) data
matrix). After a previous pre-treatment of these acquired data to reduce noise and redun-
dant information and the selection of the image region of interest (ROI), the information
is processed with multivariate analysis (principal component analysis (PCA), partial least
squares regression (PLSR), stepwise regression, correlation co-efficient, artificial neural
network (ANN), successive projection algorithm, etc.) with the purpose of original data
modelling for classification or regression [80,86].

One example of this advancement was the work carried out by Cucha et al. [81],
in which they successfully developed a technology based on hyperspectral imaging to
determine the quality of pork fat (in terms of fatty acid content). Concretely, these authors
related textural information with intramuscular fat content obtained through the traditional
gas chromatography (GC) technique. Thus, using a PLSR algorithm, they concluded that
texture features from hyperspectral images could be used to rapidly predict intramuscular
fat without the need for tedious traditional techniques. Similarly, Craige et al. [82] success-
fully employed hyperspectral imaging to predict intramuscular fat content and fatty acid
composition of lamb meat. Additionally, methods for detecting marbling (which is related
to sensory quality) through hyperspectral images in beef have also been developed [87,88].

Table 2. Application of hyperspectral imaging for meat quality prediction.

Meat/Meat Product Predetermined Quality Parameters Reference

Beef Marbling level [87,88]
Colour (L*, a*, b*), texture (shear force) [89]

Colour, pH, texture (tenderness) [90]
Microwaved beef Colour (L*, a*), moisture [83]

Chicken Colour (L*, a*, b*), pH [84]
Texture (springiness) [91]

TBARS [92]
Lamb Fatty acid content, chemical composition, pH [82]

Colour, texture (GLCM), drip loss [93]
Pork Intramuscular fat (fatty acid composition) [81]

Colour (L*), pH, drip loss [94]
Texture (tenderness) [95]

TVB-N [96,97]
Pork sausages Colour (L*, a*, b*) [98,99]

L*: Lightness; a*: Redness; b*: Yellowness; TBARS: Thiobarbituric acid-reactive substances; GLCM: Gray level
co-occurrence matrix; TVB-N: Total volatile basic nitrogen.

Hyperspectral imaging has also been used to predict the colour of various meat prod-
ucts during their processing because porphyrins of some pigments can absorb energy
at particular wavebands during electromagnetic radiation [83,89]. An example is pork
sausages, where this IR 4.0 technology has been used to predict the colouration associated
with the employ of different casings [98,99]. Similarly, hyperspectral images have been
utilised to determine the influence of microwave treatment on beef colour parameters,
allowing monitoring of the changes linked with heating [83]. For this, a typical pushbroom
hyperspectral imaging system (308–1105 nm) was employed and spectral information was
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extracted from each image obtained in the range of 400–1000 nm (after an adequate cali-
bration of the camera). Thus, quantitative prediction models (Savitzky–Golay-regression
coefficients-multiple linear regressions (SG-RC-MLR) model) were established which al-
lowed eight optimal wavelengths to be related to the values of a*, permitting visualization
of dynamic colour changes during heating through distribution maps [83]. Similarly, other
studies have focused on the prediction of colour in fresh pork [94], beef [89], lamb [93], and
chicken [84] meat with the aim of characterizing this important quality attribute.

Texture has also been another quality attribute widely monitored by imaging technolo-
gies [100]. In this way, hyperspectral imaging techniques are currently being utilised to
predict meat structure and its texture attributes (juiciness, tenderness, hardness, gumminess,
springiness, chewiness, etc.) in different types of meat such as chicken [91], beef [89,90],
lamb [93], and pork [95]. For example, in chicken, Xiong et al. [91] employed a hyperspec-
tral imaging system (400–1000 nm) and a PLSR and ANN for textural model calibration.
Subsequently, they selected 10 optimal wavelengths through the successful projections
algorithm (SPA) and established optimized SPA-PLSR and SPA-ANN models. Since SPA-
PLSR showed better results, Xiong et al. [91] developed an image processing algorithm
that allowed obtaining maps for chicken meat that permitted visualizing springiness pa-
rameter. Similarly in beef, hyperspectral imaging technology was also employed. Thus,
ElMasry et al. [90] developed an image processing algorithm to visualize the texture after
the selection of 15 different wavelengths through PLSR (starting from the initial region
900–1700 nm). For their part, Wu et al. [89] utilised a hyperspectral imaging system
(400–1100 nm) to capture hyperspectral scattering images of beef steak. Thus, they estab-
lished a multilinear regression (MLR) model to predict meat tenderness after selecting the
appropriate wavelengths through stepwise regression.

Moreover, hyperspectral imaging has been used to evaluate other parameters related
to the texture, such as the water holding capacity, drip loss, and the level of marbling
already mentioned previously [87,88,93,94]. Even other parameters related to meat quality
such as pH and the chemical composition (moisture, protein, and fat) have been predicted in
various meat matrices [82–84,93,94] due to the characteristic absorption bands possessed by
the functional groups of the meat constituents (C–H, N–H, O–H, and S–H). Thus, spectral
imaging systems (400–1700) permit meat properties to be evaluated, mainly using linear
regression algorithms (PLSR and MLR) [80].

In addition to the above attributes, imaging techniques can be applied to predict
freshness indices of meat. In this way, methodologies that use hyperspectral imaging
have been developed in order to foretell the content of certain substances related to meat
spoilage, such as the total volatile basic nitrogen (TVB-N) and the thiobarbituric acid-
reactive substances (TBARS), which are related to the degradation of proteins and the
oxidation of lipids, respectively. Specifically, these prediction tools have been used in
determining the freshness of pork [96,97] and chicken [92]. Specifically, in cured pork meat,
Yang et al. [97] developed simplified models for monitoring TVB-N based on a system of
hyperspectral images in the spectral range of 400–1000 nm. For this, they initially elaborated
calibration models using PLSR and least-squares support vector machines (LS-SVM), which
were later simplified with the selection of 9 wavelengths (using the regression coefficient
for it). Subsequently, Yang et al. [97] evidenced the suitability of the MLR model, which
allowed the mapping of TVB-N content in cured pork slices. For their part, Li et al. [96]
predicted the TVB-N using a hyperspectral imaging and colorimetric sensors array system
for data acquisition and processing with the utilization of an efficient back-propagation
adaptive boosting (BP-AdaBoost) algorithm for data fusion and modelling. Xiong et al. [92]
used a hyperspectral imaging system and selected 10 optimal wavelengths through SPA
(located in the 400–1000 nm spectral range), to establish a simplified SPA-PLSR model
for chicken freshness prediction. Finally, these authors developed an image algorithm for
displaying TBARS values on distribution maps.

On the other hand, as can be deduced from hyperspectral imaging technology, the
acquisition and possession of previous data plays a fundamental role in the elaboration
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of predictive models that are robust. That is why BD could provide advances in meat
quality, since the creation of meaningful data resources is essential for the derivation of
solid predictive models and rigorous validation tests that help predict different parameters
of meat quality [101].

Moreover, other IR 4.0 technologies are being used in the search for new solutions
and innovations for meat quality inspection. Thus, Almqvist et al. [102] investigated
the remote post mortem veterinary inspection of pigs using AR. Concretely, the authors
used a remote two-way video communication where they only needed a non-veterinary
technician who carried a smartphone and a wireless headset that allowed communication
between the veterinarian and the technician. The remote control tests were carried out at a
large-scale pig slaughter plant where standard on-site inspections were also carried out
for later comparison. Thus, it was observed that the remote inspection using AR showed a
high level of agreement with respect to the standard inspection (located between 75% and
92% for vague findings and subjective decisions and clear, easily distinguished findings,
respectively). Additionally, these findings may represent a way to reduce the inspection
costs in small slaughterhouses established in remote places without reducing the quality of
the carcasses produced, since it avoids the displacement of veterinarians.

4.2. Application of Industry 4.0 Technologies for Meat Safety

Food safety is one of the key areas of the food market and today it is being challenged
by the global dimensions of supply chains [103]. At the same time, there is a growing
concern about the health aspects of meat and its derivatives by consumers, who often
have limited confidence in the safety of certain meat products [104]. For these reasons, the
application of new IR 4.0 tools to control and guarantee the meat safety is fundamental
in the development of the food industry, thus averting foodborne illness and outbreaks
because of microbiological deterioration and contaminations [55]. Table 3 shows some of
the applications of IR 4.0 technologies in the meat industry (or their potential use in this
sector) aimed at improving food safety.

From the start of animal slaughter to obtaining the portion of meat or the final meat
product that reaches the consumer, a multitude of tasks are carried out (skinning, plucking,
eviscerating, boning, cutting, mixing, resting, stuffing, etc.). These operations expose the
meat to environmental contamination and to contamination related to human handling
since traditionally all processes were conducted by humans. In this field, robotization
and automation allow meat and meat products to be obtained with less human contact,
which greatly favours the reduction of the microbial load [59]. In addition, robotization
and automation favour a higher processing speed [60], thus reducing the chances of
contamination. In this way, microbiological risks are reduced with the implementation of
robots and automation systems, increasing the safety of meat and meat products [29].

Although to a lesser extent than for meat quality estimation, hyperspectral imaging
technology is also a potential tool in safety prediction as it can be used to determine con-
taminations and detect microbial growth [55]. Specifically, this methodology has been
widely studied in poultry meat since it is an IR 4.0 tool that permits the elimination of faecal
material contaminated carcasses [105], thus preventing the proliferation of bacteria such as
Salmonella, Campylobacter, and Escherichia coli. Furthermore, in poultry products, microbial
contaminations related to foodborne illnesses (such as Enterobacteriaceae, Salmonella, Campy-
lobacter, Escherichia coli, and Pseudomonas) can be predicted with the use of hyperspectral
imaging [106–111]. In the case of other meat matrices, hyperspectral images have also been
employed in order to predict microbial contamination in real time. For example, Achata
et al. [112] developed a prediction model (based on PLSR) to determine the total viable
count (TVC) in beef, while Zhou et al. [113] proposed a model for Pseudomonas fluorescens
prediction in pork (based on Baranyi model in combination with the Ratkowsky square-root
model and the Huang model in combination with the Ratkowsky square-root model). In
the case of TVC prediction, this is done mainly using wavelengths around 596 nm, which
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are related to the oxyhaemoglobin absorption bands [114], meanwhile the differentiation of
bacterial species is based on the different absorption spectra shown between them [115].

In the field of food safety, the topic of allergies also acquires special interest since
around 8% of children and 5% of adults around the world have some type of clinically
proven food allergy [116]. Considering the circumstances, the use of IR 4.0 technologies
can favour the exhaustive control of a product in industries and/or provide valuable
information that allows allergic people to be warned. In this field, there are different IR
4.0 technologies that permit allergens to be revealed, such as those created by Tellspec
Inc. (Toronto, ON, Canada), and Nima Lab (San Francisco, CA, USA) in 2014 and 2016,
respectively. In the case of Tellspec Inc., it has launched a scanner based on reflective
near-infrared (NIR) spectroscopy which reveals allergenic substances in food by using a
low-power laser that analyses the reflected light waves with the help of a unique cloud-
based algorithm and a simple smartphone app [117]. For their part, the company Nima Lab
created a portable sensor that allows the amount of gluten in a food to be simply quantified.
Concretely, this portable sensor was developed by adapting antibody-based chemistry
employed for allergen detection and consists of a scanner, a capsule where the foodstuff is
introduced and an application where the results are displayed and collected [42].

Table 3. Application and possible applications of IR 4.0 technologies for meat safety.

Meat/Meat Product IR 4.0
Technology

Predetermined Safety
Parameters/Security

Improvement
Reference

Possible application Robotization and
automatization

Reduce human handling and
processing time [29]

Beef HSI TVC [112]
Pork HSI Pseudomonas fluorescens [113]

Chicken HSI Fecal matter [105]
HSI TVC [108]
MSI TVC, Pseudomonas spp. [107]
HSI Enterobacteriaceae [111]
HIS Enterobacteriaceae and

Pseudomonas spp. [110]
HSI Pseudomonas spp. [109]

Chicken products MSI TVC, Pseudomonas spp. [107]
Possible application NIR Allergens [117]
Possible application Portable sensor Gluten [118]

Sausages IoT
Monitoring of CCP, security
assurance, and traceability

during processing
[75]

Possible application IoT, BD, and RFID Improved traceability and
consumer confidence [76]

HSI: Hyperspectral imaging; TVC: Total viable count; MSI: Multispectral imaging; NIR: Reflective near-infrared:
IoT: Internet of Things; CCP: Critical control points; BD: Big Data; RFID: Radio frequency identification.

Another important reason for issues related to food safety is the incomplete, opaque,
and asymmetric information that reaches the consumer about certain food products. To
solve these problems, it is essential to establish a reasonable and reliable traceability
system that guarantees food safety, the integrity of information, and restores trust between
consumers and the market, in addition to optimizing the structure data storage. In this
area, systems based on IoT, blockchain, and BD provide ideas and methods to solve these
problems that are so present in traditional traceability systems. Specifically, the application
of IoT technology could efficiently control the appearance of incidents related to meat safety,
since it permits incidents and sources of danger to be identified in real time and more
precisely. This is possible because the IoT platform interacts with the existing smart physical
objects in the production chain and allows the status and any information associated with
said smart devices to be consulted, being able to act accordingly [75]. For its part, the use
of BD helps to guarantee the authenticity of the data of the food companies [76].

4.3. Application of Industry 4.0 Technologies for Meat Authenticity

Meat and meat derivatives have certain intrinsic (specie, breed, sex, etc.) and ex-
trinsic (geographical origin, production system, food supplied, processing techniques,
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etc.) characteristics that on many occasions are exploited for commercial purposes. For
instance, certain breeds tend to present some qualities that are more appreciated by the
consumer (see autochthonous breeds vs. commercial breeds). Identically, some farming
systems (extensive vs. intensive), feeding (natural vs. commercial feed) or processing
(traditional/artisanal vs. industrial) affect the perception and preference of consumers.
Considering these circumstances, the ability to determine the authenticity of meat is a basic
pillar to prevent food fraud, which continues to represent a health, ethical, religious, and
economic danger to modern society [119]. Authentication can be defined as the facts to
establish or confirm the authenticity of food, that is, the acts that lead to determining that
the claims made about the meat are reliable [120]. In this context, IR 4.0 technologies in the
meat industry are shown as a valuable tool to detect and reduce different types of food
fraud (Table 4).

Regarding fraud related to breed, origin, breeding systems, feeding, and processing
techniques, these can be avoided using technologies such as IoT and blockchain, since
both allow exhaustive monitoring of traceability during the entire food chain [24,121].
Furthermore, IoT allows the implementation of various useful sensors (such as temperature,
humidity, oil, salt, metal, colour, pH, and viscosity sensors) in determining food fraud
through the Raspberry pi that controls the system sensors and the ZigBee module used
to transfer the results [122]. Due to this, the increase of consumer confidence in the meat
industry can be favoured since these technologies increment transparency [123].

Finally, one of the most common frauds in meat industry is the total or partial substitu-
tion of high-value meat by poor meat or offal or by including proteins from various origins
to lower costs. On this matter, imaging technologies have been identified as successful
tools to determine adulteration in minced beef [124–127], chicken [106,128], lamb [129], and
pork [130]. In general, these technologies (i.e., hyperspectral imaging and laser induced
breakdown spectroscopy) made it possible to develop prediction models to determine
different percentages of adulteration in meat. To do this, different samples of pure and
adulterated meat (in different concentrations) are used. The images obtained from the
samples were acquired and calibrated (using different mathematical tools such as PLSR,
regression coefficients, random forest, support vector machines, etc.) with the aim of
obtaining simplified models capable of predicting meat adulteration [124,127,131].

Table 4. Applications and possible applications of IR 4.0 technologies for meat authenticity.

Meat/Meat Product IR 4.0
Technology

Main Advancements in
Meat Authenticity Reference

Beef IoT
Tracking of the animal (breed,
origin, feeding, etc.) and of the

processing of the product
[121]

Blockchain Ensure traceability and improve
consumer confidence [123]

Minced beef HSI Chicken meat detection [126]
MSI Horsemeat detection [124]
HSI Pork meat detection [125]
LIBS Offal detection [127]

Minced chicken HSI Carrageenan detection [128]
Minced lamb HSI Pork meat detection [129]
Minced pork HSI Offal detection [130]
Fat mixture RS Differentiation between beef tallow,

pork lard, chicken fat, and duck oil [132]

IoT: Internet of Things; HSI: Hyperspectral imaging; MSI: Multispectral imaging; LIBS: Laser induced breakdown
spectroscopy; RS: Raman spectroscopy.

5. Future Perspectives and Conclusions

In the current era, the meat industry faces great challenges related to the efficient and
sustainable production of food and the generation of quality and safe foodstuffs with proven
authenticity. These challenges must be addressed optimally to meet consumer demand
and improve their confidence in the meat sector. Against this background, this review
demonstrated by examining the literature results that the appearance and implementation
of 4.0 technologies (such as automation and robotization, Internet of things (IoT), Big Data
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(BD), Augmented Reality (AR), blockchain, imaging technologies and smart sensors) in
the meat industry are presented as effective tools in the reliability, quality, safety, and
authenticity of meat and meat products, as they provide substantial innovative solutions,
resulting in improved global health, climate, environment, and economy.

However, these new technologies are still under development to improve their imple-
mentation in the meat sector, since on many occasions such implantation can be difficult
due to the intrinsic characteristics of the meat and meat products, and also due to the
complexity of the technologies themselves (both hardware and software). Moreover, these
technologies currently imply a high implementation cost, which can be difficult to assume
by many companies in the meat sector. For this reason, research must continue both to
improve the available technologies and to reduce the costs of their implementation.
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23. Hassoun, A.; Siddiqui, S.A.; Smaoui, S.; Ucak, İ.; Arshad, R.N.; Garcia-Oliveira, P.; Prieto, M.A.; Aït-Kaddour, A.; Perestrelo,

R.; Câmara, J.S.; et al. Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Appl. Sci. 2022,
12, 1703. [CrossRef]

24. Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.J.; Biancolillo, A.; Cropotova, J.; Galanakis,
C.M.; Jambrak, A.R.; et al. The Fourth Industrial Revolution in the Food Industry—Part I: Industry 4.0 Technologies. Crit. Rev.
Food Sci. Nutr. 2022, 1–17. [CrossRef]

25. Ramirez-Asis, E.; Vilchez-Carcamo, J.; Thakar, C.M.; Phasinam, K.; Kassanuk, T.; Naved, M. A Review on Role of Artificial
Intelligence in Food Processing and Manufacturing Industry. Mater. Today Proc. 2022, 51, 2462–2465. [CrossRef]

26. Radu, E.; Ghinea, C.N.; Mihalache, S, .; Sârbu, R. Sustainability in the Meat Processing Industry and the Impact of the COVID-19
Crisis on the Food Business in Romania. In Proceedings of the 7th BASIQ International Conference on New Trends in Sustainable
Business and Consumption, Foggia, Italy, 3–5 June 2021; pp. 425–430.

27. Weersink, A.; von Massow, M.; Bannon, N.; Ifft, J.; Maples, J.; McEwan, K.; McKendree, M.G.S.; Nicholson, C.; Novakovic, A.;
Rangarajan, A.; et al. COVID-19 and the Agri-Food System in the United States and Canada. Agric. Syst. 2021, 188, 103039.
[CrossRef]

28. Rose, D.C.; Lyon, J.; de Boon, A.; Hanheide, M.; Pearson, S. Responsible Development of Autonomous Robotics in Agriculture.
Nat. Food 2021, 2, 306–309. [CrossRef]

29. Duong, L.N.K.; Al-Fadhli, M.; Jagtap, S.; Bader, F.; Martindale, W.; Swainson, M.; Paoli, A. A Review of Robotics and Autonomous
Systems in the Food Industry: From the Supply Chains Perspective. Trends Food Sci. Technol. 2020, 106, 355–364. [CrossRef]

30. Jagtap, S.; Duong, L.; Trollman, H.; Bader, F.; Garcia-Garcia, G.; Skouteris, G.; Li, J.; Pathare, P.; Martindale, W.; Swainson, M.; et al.
IoT Technologies in the Food Supply Chain. In Food Technology Disruptions; Galanakis, C.M., Ed.; Academic Press: Cambridge,
MA, USA, 2021; pp. 175–211, ISBN 9780128214701.

31. Jagtap, S.; Saxena, P.; Salonitis, K. Food 4.0: Implementation of the Augmented Reality Systems in the Food Industry. Procedia
CIRP 2021, 104, 1137–1142. [CrossRef]

32. Romanov, D.; Korostynska, O.; Lekang, O.I.; Mason, A. Towards Human-Robot Collaboration in Meat Processing: Challenges
and Possibilities. J. Food Eng. 2022, 331, 111117. [CrossRef]

33. Christensen, L.B.; Engell-Nørregård, M.P. Augmented Reality in the Slaughterhouse—A Future Operation Facility? Cogent Food
Agric. 2016, 2, 1188678. [CrossRef]

34. Reda, O.; Sassi, I.; Zellou, A.; Anter, S. Towards a Data Quality Assessment in Big Data. In Proceedings of the 13th International
Conference on Intelligent Systems: Theories and Applications, Rabat, Morocco, 23–24 September 2020; pp. 91–96.

35. Jin, C.; Bouzembrak, Y.; Zhou, J.; Liang, Q.; van den Bulk, L.M.; Gavai, A.; Liu, N.; van den Heuvel, L.J.; Hoenderdaal, W.; Marvin,
H.J.P. Big Data in Food Safety—A Review. Curr. Opin. Food Sci. 2020, 36, 24–32. [CrossRef]

36. Debauche, O.; Elmoulat, M.; Mahmoudi, S.; Bindelle, J.; Lebeau, F. Farm Animals’ Behaviors and Welfare Analysis with Ia
Algorithms: A Review. Rev. D’intelligence Artif. 2021, 35, 243–253. [CrossRef]

37. Neethirajan, S. The Role of Sensors, Big Data and Machine Learning in Modern Animal Farming. Sens. Bio-Sens. Res. 2020,
29, 100367. [CrossRef]

38. Jagtap, S.; Duong, L.N.K. Improving the New Product Development Using Big Data: A Case Study of a Food Company. Br. Food J.
2019, 121, 2835–2848. [CrossRef]

39. Khalil, R.A.; Saeed, N.; Masood, M.; Fard, Y.M.; Alouini, M.S.; Al-Naffouri, T.Y. Deep Learning in the Industrial Internet of Things:
Potentials, Challenges, and Emerging Applications. IEEE Internet Things J. 2021, 8, 11016–11040. [CrossRef]

40. Munekata, P.E.S.; Domínguez, R.; Pateiro, M.; Lorenzo, J.M. Introduction to Food Fraud. In Food Toxicology and Forensics; Galanakis,
C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–30, ISBN 9780128223604.

http://doi.org/10.1016/j.tifs.2021.02.002
http://doi.org/10.1093/af/vfac017
http://doi.org/10.5539/jfr.v9n5p42
http://doi.org/10.3390/agronomy11122526
http://doi.org/10.1080/10408398.2020.1863328
http://doi.org/10.1108/IJOPM-08-2019-788
http://doi.org/10.1038/nnano.2015.286
http://doi.org/10.3390/app12031703
http://doi.org/10.1080/10408398.2022.2034735
http://doi.org/10.1016/j.matpr.2021.11.616
http://doi.org/10.1016/j.agsy.2020.103039
http://doi.org/10.1038/s43016-021-00287-9
http://doi.org/10.1016/j.tifs.2020.10.028
http://doi.org/10.1016/j.procir.2021.11.191
http://doi.org/10.1016/j.jfoodeng.2022.111117
http://doi.org/10.1080/23311932.2016.1188678
http://doi.org/10.1016/j.cofs.2020.11.006
http://doi.org/10.18280/ria.350308
http://doi.org/10.1016/j.sbsr.2020.100367
http://doi.org/10.1108/BFJ-02-2019-0097
http://doi.org/10.1109/JIOT.2021.3051414


Appl. Sci. 2022, 12, 6986 16 of 19

41. Gaur, B.; Shukla, V.K.; Verma, A. Strengthening People Analytics through Wearable IOT Device for Real-Time Data Collection. In
Proceedings of the International Conference on Automation, Computational and Technology Management (ICACTM), London,
UK, 24–26 April 2019; pp. 555–560.

42. Saheed, S.; Charlene, P.; Taofeeq, G.; Mamosa, N. Food Scanners: Applications in the Food Industry. In Food Science and Technology:
Trends and Future Prospects; Ijabadeniyi, O.A., Ed.; De Gruyter: Berlin, Germany, 2020; pp. 447–466.

43. Jagtap, S.; Bhatt, C.; Thik, J.; Rahimifard, S. Monitoring Potato Waste in Food Manufacturing Using Image Processing and Internet
of Things Approach. Sustainability 2019, 11, 3173. [CrossRef]

44. Jagtap, S.; Rahimifard, S. The Digitisation of Food Manufacturing to Reduce Waste—Case Study of a Ready Meal Factory. Waste
Manag. 2019, 87, 387–397. [CrossRef] [PubMed]

45. Writer, S. Augmented Reality Helps Lead Quality in Australian Meat Industry. Available online: https://www.foodmag.com.au/
augmented-reality-helps-lead-quality-australian-meat-industry/ (accessed on 18 May 2022).

46. Halouzka, K.; Burita, L.; Kozak, P. Overview of Cyber Threats in Central European Countries. In Proceedings of the 2021
Communication and Information Technologies Conference Proceedings (KIT), Vysoke Tatry, Slovakia, 13–15 October 2021.

47. Orton, E. Get Ready for Cyber-Attacks on Global Food Supplies. Available online: https://www.wired.co.uk/article/cyber-
security-global-food-supply (accessed on 18 May 2022).

48. Golini, R.; Moretto, A.; Caniato, F.; Caridi, M.; Kalchschmidt, M. Developing Sustainability in the Italian Meat Supply Chain: An
Empirical Investigation. Int. J. Prod. Res. 2017, 55, 1183–1209. [CrossRef]

49. Boadle, A. Brazil’s JBS Accused of Violating Amazon Rainforest Protection Laws. Available online: https://www.reuters.com/
article/us-brazil-environment-cattle-idUSKBN1722O1 (accessed on 18 May 2022).

50. Harris, B. Brazil’s JBS Turns to Blockchain to Shine Light on Amazon Cattle Supply. Available online: https://www.ft.com/
content/3a083fdf-7887-4229-b088-01180a0043fb (accessed on 18 May 2022).

51. Tian, F. An Agri-Food Supply Chain Traceability System for China Based on RFID & Blockchain Technology. In Proceedings of
the 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016.

52. Hasnan, N.Z.N.; Yusoff, Y.M. Short Review: Application Areas of Industry 4.0 Technologies in Food Processing Sector. In
Proceedings of the 2018 IEEE 16th Student Conference on Research and Development, Selangor, Malaysia, 26–28 November 2018.

53. Tan, W.K.; Husin, Z.; Yasruddin, M.L.; Ismail, M.A.H. Recent Technology for Food and Beverage Quality Assessment: A Review.
J. Food Sci. Technol. 2022, 2022, 1–14. [CrossRef]

54. Buckenhueskes, H.J. Quality Improvement and Fermentation Control in Vegetables. In Advances in Fermented Foods and Beverages;
Holzapfel, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 515–539.

55. Pu, H.; Kamruzzaman, M.; Sun, D.W. Selection of Feature Wavelengths for Developing Multispectral Imaging Systems for Quality,
Safety and Authenticity of Muscle Foods—A Review. Trends Food Sci. Technol. 2015, 45, 86–104. [CrossRef]

56. Fan, K.J.; Su, W.H. Applications of Fluorescence Spectroscopy, RGB-and Multispectral Imaging for Quality Determinations of
White Meat: A Review. Biosensors 2022, 12, 76. [CrossRef]

57. de Medeiros, I.M.; From, P.J.; Mason, A. Robotisation and Intelligent Systems in Abattoirs. Trends Food Sci. Technol. 2021, 108,
214–222. [CrossRef]

58. Toyoshima, K.; Umino, T.; Matsumoto, K.; Goto, O.; Kimura, K. Development of Automatic Deboning Robot for Pork Thigh.
Technical Report. Available online: https://www.jsme.or.jp/jsme/uploads/2016/11/awardn13-2.pdf (accessed on 31 May 2022).

59. Matthieu, A.; Franck, S.; Laurent, S.; Kévin, S.; Grigore, G.; Youcef, M. Robotic Solutions for Meat Cutting and Handling. In
Proceedings of the European Workshop on Deformable Object Manipulation, Lyon, France, 20 March 2014.

60. Misimi, E.; Øye, E.R.; Eilertsen, A.; Mathiassen, J.R.; Åsebø, O.B.; Gjerstad, T.; Buljo, J.; Skotheim, Ø. GRIBBOT—Robotic 3D
Vision-Guided Harvesting of Chicken Fillets. Comput. Electron. Agric. 2016, 121, 84–100. [CrossRef]

61. Guire, G.; Stephan, F.; Lemoine, E.; Sabourin, L.; Gogu, G. Strategies for Robotization of Beef Carcass Primal Cutting. In
Proceedings of the 55th International Congress of Meat Science and Technology (ICoMST), Copenhagen, Denmark, 16–21 August
2009; p. PS307.

62. McMurray, G. Robotics and Automation in the Poultry Industry: Current Technology and Future Trends. In Robotics and
Automation in the Food Industry: Current and Future Technologies; Caldwell, D.G., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands,
2013; pp. 329–353, ISBN 9781845698010.

63. Bologna, J.K.; Garcia, C.A.; Ortiz, A.; Ayala, P.X.; Garcia, M.V. An Augmented Reality Platform for Training in the Industrial
Context. IFAC-PapersOnLine 2020, 53, 197–202. [CrossRef]

64. McVey, C.; Elliott, C.T.; Cannavan, A.; Kelly, S.D.; Petchkongkaew, A.; Haughey, S.A. Portable Spectroscopy for High Throughput
Food Authenticity Screening: Advancements in Technology and Integration into Digital Traceability Systems. Trends Food Sci.
Technol. 2021, 118, 777–790. [CrossRef]

65. Cheng, H.; Xu, H.; McClements, D.J.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent Advances in Intelligent Food Packaging
Materials: Principles, Preparation and Applications. Food Chem. 2022, 375, 131738. [CrossRef]

66. Franco, M.R.; da Cunha, L.R.; Bianchi, R.F. Janus Principle Applied to Food Safety: An Active Two-Faced Indicator Label for
Tracking Meat Freshness. Sens. Actuators B Chem. 2021, 333, 129466. [CrossRef]

67. Shavisi, N.; Shahbazi, Y. Chitosan-Gum Arabic Nanofiber Mats Encapsulated with PH-Sensitive Rosa Damascena Anthocyanins
for Freshness Monitoring of Chicken Fillets. Food Packag. Shelf Life 2022, 32, 100827. [CrossRef]

http://doi.org/10.3390/su11113173
http://doi.org/10.1016/j.wasman.2019.02.017
http://www.ncbi.nlm.nih.gov/pubmed/31109539
https://www.foodmag.com.au/augmented-reality-helps-lead-quality-australian-meat-industry/
https://www.foodmag.com.au/augmented-reality-helps-lead-quality-australian-meat-industry/
https://www.wired.co.uk/article/cyber-security-global-food-supply
https://www.wired.co.uk/article/cyber-security-global-food-supply
http://doi.org/10.1080/00207543.2016.1234724
https://www.reuters.com/article/us-brazil-environment-cattle-idUSKBN1722O1
https://www.reuters.com/article/us-brazil-environment-cattle-idUSKBN1722O1
https://www.ft.com/content/3a083fdf-7887-4229-b088-01180a0043fb
https://www.ft.com/content/3a083fdf-7887-4229-b088-01180a0043fb
http://doi.org/10.1007/s13197-022-05439-8
http://doi.org/10.1016/j.tifs.2015.05.006
http://doi.org/10.3390/bios12020076
http://doi.org/10.1016/j.tifs.2020.11.005
https://www.jsme.or.jp/jsme/uploads/2016/11/awardn13-2.pdf
http://doi.org/10.1016/j.compag.2015.11.021
http://doi.org/10.1016/j.ifacol.2020.11.032
http://doi.org/10.1016/j.tifs.2021.11.003
http://doi.org/10.1016/j.foodchem.2021.131738
http://doi.org/10.1016/j.snb.2021.129466
http://doi.org/10.1016/j.fpsl.2022.100827


Appl. Sci. 2022, 12, 6986 17 of 19

68. Yildiz, E.; Sumnu, G.; Kahyaoglu, L.N. Monitoring Freshness of Chicken Breast by Using Natural Halochromic Curcumin Loaded
Chitosan/PEO Nanofibers as an Intelligent Package. Int. J. Biol. Macromol. 2021, 170, 437–446. [CrossRef]

69. Guo, M.; Wang, H.; Wang, Q.; Chen, M.; Li, L.; Li, X.; Jiang, S. Intelligent Double-Layer Fiber Mats with High Colorimetric
Response Sensitivity for Food Freshness Monitoring and Preservation. Food Hydrocoll. 2020, 101, 105468. [CrossRef]

70. Quan, Z.; He, H.; Zhou, H.; Liang, Y.; Wang, L.; Tian, S.; Zhu, H.; Wang, S. Designing an Intelligent Nanofiber Ratiometric
Fluorescent Sensor Sensitive to Biogenic Amines for Detecting the Freshness of Shrimp and Pork. Sens. Actuators B Chem. 2021,
333, 129535. [CrossRef]

71. Guo, Z.; Ge, X.; Li, W.; Yang, L.; Han, L.; Yu, Q. Active-Intelligent Film Based on Pectin from Watermelon Peel Containing Beetroot
Extract to Monitor the Freshness of Packaged Chilled Beef. Food Hydrocoll. 2021, 119, 106751. [CrossRef]

72. Lee, E.J.; Shin, H.S. Development of a Freshness Indicator for Monitoring the Quality of Beef during Storage. Food Sci. Biotechnol.
2019, 28, 1899–1906. [CrossRef] [PubMed]

73. Esfahani, A.; Mohammadi Nafchi, A.; Baghaei, H.; Nouri, L. Fabrication and Characterization of a Smart Film Based on Cassava
Starch and Pomegranate Peel Powder for Monitoring Lamb Meat Freshness. Food Sci. Nutr. 2022. [CrossRef]

74. Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G.J.; Priyadarshi, R.; Rhim, J.W. PH-Responsive Color
Indicator Films Based on Methylcellulose/Chitosan Nanofiber and Barberry Anthocyanins for Real-Time Monitoring of Meat
Freshness. Int. J. Biol. Macromol. 2021, 166, 741–750. [CrossRef] [PubMed]

75. Hu, T.; Zheng, M.; Zhu, L. Research Application of the Internet of Things Monitor Platform in Meat Processing Industry. In
Proceedings of the International Conference on Human-Centric Computing 2011 and Embedded and Multimedia Computing 2011; Springer:
Dordrecht, The Netherlands, 2011; Volume 102, pp. 165–172.

76. Zheng, M.; Zhang, S.; Zhang, Y.; Hu, B. Construct Food Safety Traceability System for People’s Health under the Internet of
Things and Big Data. IEEE Access 2021, 9, 70571–70583. [CrossRef]

77. Saeed, F.; Afzaal, M.; Hussain, M.; Tufail, T. Advances in Assessing Product Quality. In Food Losses, Sustainable Postharvest and
Food Technologies; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–218.

78. Oganyan, N.G. Metrological Aspects of the Safety and Quality of Meat Products. J. Phys. Conf. Ser. 2022, 2192, 012022. [CrossRef]
79. Taheri-Garavand, A.; Fatahi, S.; Omid, M.; Makino, Y. Meat Quality Evaluation Based on Computer Vision Technique: A Review.

Meat Sci. 2019, 156, 183–195. [CrossRef]
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