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Abstract: At present, the existing single-pixel position-scrambling technique is not sensitive to
the chaotic sequence used, and adjacent-pixel position scrambling has difficulty ensuring a good
scrambling effect and speed at the same time. In this paper, a stage-merging scrambling algorithm is
proposed, which combines the two-stage scrambling process and can complete the dual scrambling
of pixel position and pixel value at the same time. It not only improves the scrambling speed, but
also greatly improves the scrambling effects. Then, a complete image encryption and decryption
scheme was designed based on stage-merging bit scrambling combined with DNA coding. Security
analysis shows that the algorithm can resist various means of attack such as exhaustive attack and
differential attack. The research in this paper extends the existing bit-scrambling algorithms and is
suitable for practical applications.

Keywords: image encryption; stage-merging bit scrambling; Knuth shuffle algorithm; DNA coding;
Kent chaos; 2D logistic chaos

1. Introduction

With the advancement of technology and society, people’s demand for information has
exploded, and the channel of information exchange also tends to be transmitted through
the internet. As one of the main carriers of information transmission, digital images are
frequently used in sensitive fields such as personal life, medical care, and military affairs.
Due to the virtual and open nature of the internet, there is a risk of theft or tampering
during the transmission of digital images. Bit scrambling is an image-encryption method
that changes the pixel value by scrambling the bits of the pixel value. It has been paid
growing attention by scholars in recent years.

In 2014, Deng et al. [1] proposed an image-encryption algorithm with dual scrambling
of the pixel position and bit. The algorithm first scrambles the pixel position, then extracts
the eight decimal places of the chaotic value to generate a sorting index sequence, and
scrambles the 8 bits of each pixel value in turn. Since the algorithm uses the sum of the pixel
values as the connection between the chaotic sequence and the plain image, the correlation
is not strong. In 2016, Xie et al. [2] proposed a different bit-scrambling algorithm. After
the pixel position is scrambled, the pixel bits are scrambled by comparing the size of two
adjacent numbers in the chaotic sequence. If the former is greater than the latter, the first
4 bits and the last 4 bits of the current pixel value are exchanged; otherwise, the odd and
even bits are exchanged in turn. The algorithm uses three chaotic sequences, but only
one is associated with the sum of the pixel values of the plain image, while the other two
sequences are generated independently of the plain image, and the diffusion process only
uses forward diffusion, which is not secure. It has been deciphered in [3]. In 2018, the
authors of [4,5] proposed different position-scrambling methods, and the binary cycle shift
for each pixel value to achieve bit scrambling. The difference between them lies in the
addition of DNA coding, DNA replacement operations, and DNA decoding before positive
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diffusion. In 2020, Tian et al. [6] proposed a new multi-chaotic image-encryption algorithm
based on cyclic shift, which designed a new position-scrambling process and replaced
pixels by an index matrix obtained by chaotic sequence sorting. After that, a cyclic shift
and forward diffusion were carried out. Since the generation of the chaotic sequence of the
algorithm has no relationship with the plain image, the ability to resist differential attack
is weak.

The bit-scrambling algorithms mentioned above are different from each other, but
have a common point, that is, they all perform bit scrambling for a single pixel. In the
above algorithm, the proportion of 0 bit and 1 bit of a single pixel does not change before
and after bit scrambling, which also causes the bit-scrambling stage to be insensitive to
the chaotic sequences used. During decryption, except the bit-scrambling stage, the rough
outline of the plain image can be recognized from the decrypted image.

In response to this problem, Guo et al. [7] designed an image-encryption algorithm
based on adjacent-pixel bit scrambling in 2020. The algorithm first converts the image into
a one-dimensional sequence and performs global position scrambling, and then iterates
through the sequence, swapping the specific bits of adjacent pixels. It designs two exchange
methods, selects with a chaotic value of 0.5 as the threshold, and finally diffuses the pixel
value in both directions. The bit-scrambling stage of the algorithm is sensitive to chaotic
sequences, but the information entropy of the intermediate cipher image obtained by bit
scrambling is not ideal. In 2022, Niu et al. [8] proposed another adjacent-pixel bit scrambling
method, which uses a newly-designed fill curve to complete the position scrambling, and
uses an improved Joseph traversal to scramble the adjacent four pixels. The scrambling
effect is favorable, but the scrambling speed is slow. The diffusion process of the algorithm
described in [7,8] adopts forward and reverse diffusion, which is realized by the XOR of
the pixel value with the previous pixel value and the chaotic value in turn. This diffusion
method has been proven to create security problems, and attackers can obtain equivalent
keys by constructing special images [9,10].

It can be seen from the above analysis that single-pixel bit scrambling is less sensitive
to the chaotic sequence used, and adjacent-pixel bit scrambling suffers from difficulties
ensuring a good scrambling effect and speed at the same time. Additionally, these two
scrambling processes are divided into two stages of position scrambling and bit scrambling.
The two stages are executed serially. It would be considered an improvement to this process
to increase the scrambling speed. In this regard, this paper proposes a stage-merging
scrambling method. Compared with the two-stage scrambling process, this method merges
the two stages and can simultaneously complete the double scrambling of pixel position
and pixel value. While the scrambling effect is excellent, the scrambling time is shortened.

2. Materials and Methods
2.1. Chaotic System
2.1.1. Kent Chaos

Kent chaos is a one-dimensional chaotic system whose equations of motion are as
follows [1]:

xn+1 =

{ xn
a , 0 < xn ≤ a

1−xn
1−a , a < xn < 1

(1)

where a is the control parameter and x is the state variable.
Figure 1 shows the bifurcation diagram of Kent chaos. When the parameter value is

0 < a < 1 and the initial value is 0 < x1 < 1, Kent chaos is in a chaotic state.

2.1.2. Calculating 2D Logistic Chaos

The equation of motion of two-dimensional logistic chaos is as follows [11]:{
xn+1 = u1xn(1− xn) + λ1y2

n
yn+1 = u2yn(1− yn) + λ2(x2

n + xnyn)
(2)
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where u1, u2, λ1, and λ2 are control parameters, xn and yn are state variables. When the
parameter values are 2.75 < u1 ≤ 3.4, 2.75 < u2 ≤ 3.45, 0.15 < λ1 ≤ 0.21, 0.13 < λ2 ≤ 0.15,
and the initial values are 0 < x1 ≤ 1, 0 < y1 ≤ 1, 2D logistic chaos is in a chaotic state.
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Figure 1. Bifurcation diagram of Kent chaos.

The parameters are set to u2 = 3.1, λ1 = 0.18, λ2 = 0.14, the initial values are set to
x1 = 0.123, y1 = 0.567 to draw the bifurcation diagram of the system, and then u1 = 3.0
is set to draw the attractor phase diagram, as shown in Figures 2 and 3 respectively. The
chaotic sequences are randomly distributed in the value interval, and there are fewer
period-doubling bifurcations. The chaotic characteristics are outstanding.
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Figure 2. Bifurcation diagram of 2D logistic chaos (a) u1 and x; (b) u1 and y.

2.2. Knuth Shuffle Algorithm

The Knuth shuffle algorithm [12] can realize in-situ shuffling when the length of the
array is known. It only needs one traversal to randomly shuffle the elements in the array,
and its time complexity is O(n). Since there is no need to open up additional space, the
space complexity is only O(1). The shuffle process is as follows:

(1) Enter data, numbered 1 ∼ n;
(2) Randomly generate an integer k1 in the range 1 ∼ n, and exchange k1 and n;
(3) Randomly generate an integer k2 in the range 1 ∼ n− 1, and exchange k2 and n− 1;
(4) Randomly generate an integer ki in the range 1 ∼ n− i + 1, and exchange ki and

n− i + 1;
(5) Continue until i = n− 1, the shuffle process is complete.
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The Knuth shuffle algorithm divides the array into two parts: the head and the tail,
which store the unprocessed data and the processed data respectively. Each time, one datum
is randomly selected from the unprocessed data and exchanged to the tail of the array
without opening up additional storage space. This shuffle process is mainly divided into
two processes: card selection and card exchange. Take step (4) as an example, card selection
corresponds to the process of generating an integer ki, and card exchange corresponds to
the process of exchanging ki and n− i + 1. The algorithm in this paper redesigns the card
selection and card exchange processes, and uses improved card selection as the selection
strategy for bit-scrambled pixels. In the improved card exchange, the selected three pixels
are bit scrambled each time.

2.3. DNA Coding

DNA molecules contain different nitrogenous bases, namely adenine (A), guanine
(G), cytosine (C), and thymine (T). The bases A and T, C and G have a one-to-one corre-
spondence [13]. In binary, 00 and 11, 01 and 10 also have a one-to-one correspondence.
When using bases for coding, there are a total of 24 coding rules, of which only 8 rules
satisfy the complementation mechanism of bases, as shown in Table 1. There are also
addition, subtraction, and XOR operations in binary between DNA codes. Table 2 shows
the operation rules corresponding to the second encoding rule.

Table 1. The rules of DNA encoding and decoding.

1 2 3 4 5 6 7 8

00 A A T T G G C C
01 C G C G A T A T
10 G C G C T A T A
11 T T A A C C G G

Table 2. The rules of DNA operation.

Addition Subtraction XOR

A T C G A T C G A T C G

A A T C G A G C T A T C G
T T C G A T A G C T A G C
C C G A T C T A G C G A T
G G A T C G C T A G C T A

2.4. Encryption Process

Figure 4 shows the encryption process.
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2.4.1. Key Handling

In order to prevent differential attacks, this algorithm uses a hash algorithm to calculate
the plain image, generates a hash digest that is highly sensitive to the plain image, and
associates it with the key-processing process. In this way, different initial parameters
can be generated for each different plain image, thereby generating completely different
cipher images.

This paper uses the MD5 hash algorithm to calculate the plain image, and obtains a
hexadecimal string with a length of 32 bits, denoted as, hash and evenly splits it into four
strings with a length of 8 bits, denoted as hash1, hash2, hash3, and hash4. The key of this
algorithm is a hexadecimal string with a length of 48 bits, denoted as key, which is evenly
divided into four strings with a length of 12 bits, denoted as key1, key2, key3, and key4.

The initial parameters of Kent chaos and 2D logistic chaos are calculated by Equa-
tion (3) and Equation (4) respectively:{

x1 = mod(hex2dec(key1)
248 + hex2dec(hash1)

232 , 1)

a = mod(hex2dec(key2)
248 + hex2dec(hash2)

232 , 1)
(3)
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{
x1
′ = mod(hex2dec(key3)

248 + hex2dec(hash3)
232 , 1)

y1
′ = mod(hex2dec(key4)

248 + hex2dec(hash4)
232 , 1)

(4)

where hex2dec(key) represents the conversion of the hexadecimal string key to a decimal
value, mod represents the modulo operation, and mod(x, 1) returns the remainder of
dividing x by 1.

Mark the plain image to be encrypted as I and its size as M× N. Iteratively calculate
the Kent chaos. In order to eliminate the influence of the transient effect of the chaotic
system, the first 1000 iterations are discarded and two chaotic sequences with length
MN − 2 are obtained, which are denoted as K1 and K2. The 2D logistic chaotic system is
iteratively calculated 1000 + MN times, and the first 1000 calculation results are discarded,
and two sequences L1 and L2 of length MN are obtained.

2.4.2. Stage-Merging Bit Scrambling

In this part, through the redesign of the card-selection and card-exchange processes of
the Knuth shuffle algorithm, the two-stage scrambling process can be merged to accomplish
the double scrambling of pixel position and pixel value, with a better performance of
encryption compared to single- and adjacent-pixel scrambling. The steps are as follows:

(1) Rearrange the image I in columns and rows, and convert all pixel values to binary to
obtain a one-dimensional sequence I′.

(2) Select the three pixels f , s, and t that will be bit scrambled each time as follows:

K′1(i) = mod(floor(K1(i)× 1014), MN − i− 1) + 1 (5)

f = I′(MN − i) (6)

s = I′(K′1(i)) (7)

t = I′(MN − i + 1) (8)

where floor represents rounding down, i = 1, 2, . . . , MN − 2.
(3) After each selection of pixels f , s, and t, the binary bits will be recombined. The 8 bits

of pixel f are recorded as f1 f2 f3 f4 f5 f6 f7 f8, s and t are similar. In addition, the method
of recombination is shown in Figure 5, which is divided into four types. Choose the
corresponding method for recombination. The calculation of K′2(i) is as follows:

K′2(i) = mod(floor(K2(i)× 1010), 4) + 1 (9)

where i = 1, 2, . . . , MN − 2.
(4) Perform a right cyclic shift on the recombined bit sequence bitStr1 to obtain a bit

sequence bitStr2:
bitStr2= circshift(bitStr1, K′′2 (i)) (10)

where circshift represents the right circular shift, which moves the sequence to the
right, and the shifted low bits are repositioned to the high bits. K′′2 (i) represents the
number of shift bits from 1 to 7, expressed as:

K′′2 (i) = mod(floor(K2(i)× 1014), 7) + 1 (11)

where i = 1, 2, . . . , MN − 2.
(5) Divide the bit sequence bitStr2 into three blocks every 8 bits, and reassign f , s, and

t respectively. Thus far, the three pixels selected in this round have completed the
bit-scrambling operation.

(6) Repeat steps (2) to (5) until the entire sequence is scrambled, and then convert to a
decimal sequence P.
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Figure 6 shows the whole process of stage-merging bit scrambling for image sequences.

2.4.3. DNA Dynamic Coding and Operation

(1) The chaotic sequence L1 is converted into an integer sequence I1 with a value of 0~255
by Formula (12). I1 is used as a mask sequence.

I1(i) = mod(floor(L1(i)× 1014), 255) (12)

where i = 1, 2, . . . , MN.
(2) Calculate the DNA encoding rules rule1 and rule2, the DNA operation rule rule3, and

the DNA decoding rules rule4; the calculation methods are as follows:

rule1(i) = mod(floor(L2(i)× x1 × 1014), 8) + 1 (13)

rule2(i) = mod(floor(L2(i)× a× 1014), 8) + 1 (14)

rule3(i) = mod(floor(L2(i)× x1
′ × 1014), 3) + 1 (15)

rule4(i) = mod(floor(L2(i)× y1
′ × 1014), 8) + 1 (16)

where i = 1, 2, . . . , MN.
(3) Traverse the sequences P and I1, and select the coding rules of rule1(i) and rule2(i)

to encode the DNA for P(i) and I1(i) respectively. The coding sequences P2 and I2
are obtained. Perform DNA operations on sequences P2 and I2 to obtain the coding
sequence Q1. If rule3(i) = 1, perform an addition operation. If rule3(i) = 2, perform
a subtraction operation. Otherwise, perform an XOR operation. Traverse the coding
sequence Q1, take every four bases as a group, and decode according to the decoding
rule of rule4(i) to obtain the sequence.

(4) The sequence Q2 is recombined into an image Q of size M×N in the order of columns
and rows. Q is the final cipher image.

2.5. Decryption Process

The decryption scheme is the reverse process. Specific steps are as follows:

(1) Perform key processing to obtain chaotic sequences K1, K2, L1, and L2.
(2) Perform the reverse process of the DNA dynamic encoding operation. First perform

steps (1) and (2) of Section 2.4.3 to obtain the mask sequence I1 and four rule sequences
rule1, rule2, rule3, and rule4. The cipher image is rearranged into a one-dimensional
sequence in the order of columns first and then rows, and the sequence Q1 is obtained
by encoding with the coding rule of rule4(i), and the sequence I2 is obtained by
encoding the mask sequence I1 with the coding rule of rule2(i). The DNA inverse
operation is performed between the sequences Q1 and I2 to obtain the coding sequence
P2. If rule3(i) = 2, the addition operation is performed. If rule3(i) = 1, the subtraction
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operation is performed. Otherwise, the XOR operation is performed. Traverse the
coding sequence P2, and decode according to the decoding rule of rule1(i) to obtain
the scrambled sequence P.

(3) Perform the inverse process of stage-merging bit scrambling. Convert the sequence P
to a binary sequence, then select the three pixels, the selection process is the reverse
step of step (2) in Section 2.4.2. Then, the reverse process of right circular shift and bit
sequence recombination is carried out. Finally, the selected pixels are revalued.

(4) When all the scrambled pixels are revalued, convert the sequence back to decimal and
reassemble into an image I of size M× N, which is the final decrypted image.
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3. Security Analysis

The simulation environment is as follows: the hardware environment is AMD Ryzen
7 5800H CPU, 16GB RAM, and the programming environment is MATLAB R2019b which
opens the parallel computing toolbox. The standard images Lena, text, fruits, and peppers
of size 256× 256 are used as test images, and the key used is “CD8C10890E0ABC357C6061F9
D01EC890322C9769F0123456”. The experimental results are shown in Figure 7. Under
the naked eye, no feature of the plain image can be found from the cipher image, and the
decrypted image is consistent with the plain image.
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3.1. Sensitivity Analysis of Chaotic Sequences

In order to test the sensitivity of bit scrambling to chaotic sequences, cipher images are
decrypted except for the bit-scrambling stage. Figure 8 shows the results of the tests for the
image of peppers. The algorithms proposed in [1,2,4] can recognize the approximate outline
of the original image from the decrypted image, and the sensitivity is poor. In addition,
it is difficult to get the original information from the decrypted image by the algorithm
proposed in this paper and in [7,8]. The results show that stage-merging bit scrambling
and adjacent-pixel bit scrambling are both sensitive to the chaotic sequences used.
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3.2. Histogram Analysis

An algorithm with an outstanding encryption effect is supposed to make the number
of pixels corresponding to each pixel value after encryption relatively average, which can
hide the statistical information of pixel values and improve security. Figure 9 shows the
histogram comparison of Lena’s plain image, scrambled intermediate cipher image, and
cipher image. The pixel value distribution of the plain image is concentrated in a specific
interval. After bit scrambling, the pixel value distribution becomes smooth and uniform,
which hides the original information.

3.3. Information Entropy Analysis

The information entropy can be used to measure the randomness of the images. For
grayscale images, the ideal information entropy is 8 [14]. The definition of information
entropy is given as [15]:

H = −
255
Σ

i=0
pi log2(pi) (17)

where pi represents the frequency of occurrence of pixel value i.
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Tables 3 and 4 show the results of the information entropy test. It should be noted that
the scrambled intermediate cipher image of this algorithm is a one-dimensional sequence
of length MN. For the convenience of comparison, it is rearranged into an image with a
size of M× N for processing. Compared with the algorithm put forth in [4] that uses single-
pixel bit scrambling and those described in [7,8] that use adjacent-pixel bit scrambling, the
information entropy of the scrambled intermediate cipher image and final cipher image is
closer to the ideal value 8. After encryption by the algorithm in this paper, the pixel value
has an excellent random distribution characteristic.

Table 3. Information entropy test results of scrambled intermediate cipher image.

Image Plain Image Ours Ref. [4] Ref. [7] Ref. [8]

Lena 7.5683 7.9691 7.9261 7.7532 7.9674
Text 0.4912 7.1349 2.9977 2.8157 6.9499

Fruits 7.4782 7.9650 7.8868 7.6300 7.9635
Peppers 7.5701 7.9499 7.8984 7.8290 7.9499

Table 4. Information entropy test results of cipher image.

Image Plain Image Ours Ref. [4] Ref. [7] Ref. [8]

Lena 7.5683 7.9974 7.9969 7.9973 7.9973
Text 0.4912 7.9971 7.9961 7.9969 7.9967

Fruits 7.4782 7.9973 7.9970 7.9972 7.9972
Peppers 7.5701 7.9976 7.9973 7.9972 7.9971
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3.4. Correlation Analysis

The strong correlation between adjacent pixels is one of the characteristics of image
data. It is necessary to make adjacent pixels as irrelevant as possible. The correlation
coefficient can reflect the degree of association between adjacent pixels. A correlation
coefficient close to 0 represents a weak correlation between adjacent pixels, and it is difficult
for attackers to use this information to conduct statistical attacks. The correlation coefficient
is computed as follows [16,17]:

E(x) =
1
K

K
Σ

i=1
xi (18)

D(x) =
1
K

K
Σ

i=1
(xi − E(x))2 (19)

cov(x, y) =
1
K

K
Σ

i=1
(xi − E(x))(yi − E(y)) (20)

H = −
255
Σ

i=0
pi log2(pi) (21)

where rxy represents the correlation coefficient, x and y represent the pixel values of adjacent
pixels, and K represents the number of randomly selected pixel pairs; K = 5000 is set in
this paper.

The correlation coefficients are divided into the horizontal direction, vertical direc-
tion, and diagonal direction according to the different ways of taking adjacent pixels.
Table 5 shows the test results. The correlation coefficients of the cipher image are close
to 0 in three directions, indicating that the correlation degree of adjacent pixels can be
effectively reduced.

Table 5. Correlation coefficient test results.

Images
Plain Image Cipher Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9391 0.9682 0.9232 0.0035 0.0028 −0.0045
Text 0.2385 0.3664 0.0500 −0.0094 0.0053 0.0082

Fruits 0.9523 0.9578 0.9288 −0.0022 −0.0095 −0.0170
Peppers 0.9675 0.9723 0.9451 0.0064 −0.0110 −0.0088

Figure 10 shows the correlation of Lena in different directions. The pixel value of
adjacent points of plain images are all clustered near y = x, which has a strong correlation.
The pixel value of the adjacent points of the cipher image are uniformly distributed in the
rectangular region, which shows that the distribution of the pixel value of the cipher image
is discrete and the correlation degree of the adjacent pixels is weak.

3.5. Differential Attack

Differential attack means that the attacker encrypts two plain images with only slight
differences, and cracks them by the difference between the ciphertext images [18]. In order
to resist differential attacks, it is required that even if the plain image changes slightly, the
cipher image needs to be greatly different. NPCR (number of pixels change rate) and UACI
(unified average changing intensity) are usually used to measure the degree of difference,
where NPCR represents the proportion of different pixel values at the same location in
the two images, and UACI represents the difference in pixel values at the same location.
The ideal values of the two are 99.6094% and 33.4635% respectively, and the calculation
formulas are defined as [19,20]:

NPCR =

M
Σ

i=1

N
Σ

j=1
D(i, j)

M× N
× 100% (22)
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UACI =

M
Σ

i=1

N
Σ

j=1
|C1(i, j)− C2(i, j)|

255×M× N
× 100% (23)

D(i, j) =
{

0, C1(i, j) = C2(i, j)
1, C1(i, j) 6= C2(i, j)

(24)

where C1 and C2 represents the two images used to test the difference.
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Figure 10. The correlation of Lena in different directions: (a) horizontal direction of plain image and
cipher image; (b) vertical direction of plain image and cipher image; (c) diagonal direction of plain
image and cipher image.

Randomly select a pixel value of the plain image and add 1 to encrypt it. If the selected
pixel value is 255, decrease it by 1. Calculate the NPCR and UACI between the new and
old cipher images, and repeat 500 times to calculate the average value. The test results are
shown in Table 6.

The NPCR and UACI of this algorithm are very close to the ideal value, which can
effectively resist differential attack. The NPCR and UACI values of the algorithm described
in [4] are quite different from the ideal values, because the initial chaotic value of the
algorithm is not associated with the plain image. The generation of the chaotic initial value
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of the algorithm in this paper and those described in [7,8] is linked to the hash digest of the
plain image, so it is extremely sensitive to the plain image.

Table 6. Differential attack test results.

Image NPCR/% UACI/%

Ours 99.6086 33.4635
Ref. [4] 51.0727 10.0694
Ref. [7] 99.6087 33.4652
Ref. [8] 99.6085 33.4617

3.6. Key Sensitivity Analysis

Image-encryption algorithms should be highly sensitive to keys [21]. To ensure secu-
rity, even if the key used is only slightly different from the correct key, it should have a
completely different encryption and decryption result.

The key used in this algorithm is a hexadecimal string, which is split into four equal-
length parts to calculate the initial value and parameters of the chaotic system. In order to
verify the sensitivity of the key, only the last digit of one of the segments is changed each
time, and it is added by 1. The key is divided into an encryption key and decryption key.
Additionally, the encryption key sensitivity test uses the key before and after the change for
encryption and the difference between the two cipher images is calculated. The decryption
key sensitivity test uses the changed key for decryption, and the difference between the
decrypted image and the original image is calculated. The test results are shown in Table 7.
Both the NPCR and UACI are close to their ideal values, indicating that the key sensitivity
is excellent.

Table 7. Key sensitivity test results.

Key
Key after
Change

Encryption Key Decryption Key

NPCR/% UACI/% NPCR/% UACI/%

CD8C10890E0A CD8C10890E0B 99.5270 33.2301 99.6155 29.2486
BC357C6061F9 BC357C6061FA 99.5712 33.4940 99.5789 29.5203
D01EC890322C D01EC890322D 99.6063 33.2062 99.6170 30.6404
9769F0123456 9769F0123457 99.6414 33.4769 99.5667 30.6010

3.7. Encryption Time

For image-encryption algorithms, on the basis of ensuring security, encryption time is
also a significant indicator to measure the quality of the algorithm.

In the simulation environment of this paper, the encryption time test is carried out
on the same image with the size of 256 × 256, and the average value of multiple test
results is taken. Table 8 shows the results. Compared with single- and adjacent-pixel bit
scrambling, stage-merging bit scrambling significantly shortens the scrambling time, and
the scrambling speed is faster.

Table 8. Encryption time test results.

Process Ours Ref. [4] Ref. [7] Ref. [8]

Scrambling 0.53s 0.73s 0.80s 2.81s
Total 0.77s 0.87s 0.94s 2.95s

3.8. Key Space

Exhaustive attack means that the attacker brute-forces the algorithm by trying every
possible key combination, so the encryption algorithm needs to have a key space large
enough to prevent brute force enumeration. If the key space is larger than 2100, it means
that the brute force attack can be resisted [22].
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The key used in this algorithm is a hexadecimal string with a length of 48, which is
equivalent to 192 binary bytes. Therefore, the key space is 2192, which is much larger than
2100, indicating that this algorithm can resist exhaustive attacks.

3.9. Robustness

During the transmission of cipher images, there may be data loss or noise pollution.
If the robustness of the image-encryption algorithm is not strong, the corresponding de-
crypted image may lose the original information completely. In order to test the robustness
of the proposed algorithm, the cropping attack and noise attack on cipher images are tested.

The cipher image is decrypted after 1/8, 1/4, and 1/2 regions are cropped, and the
results are shown in Figure 11. The first row shows the cropped cipher images of different
regions, and the second row shows the corresponding decrypted images. Although the ci-
pher images have different degrees of data loss, the decryption images can still restore some
information, indicating that the algorithm can resist cropping attacks to a certain extent.
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Cipher images of Lena were processed with different intensities of salt and pepper
noise (SPN), speckle noise (SN), and Gaussian noise (GN), and then decrypted, as shown
in Figure 12. With the increase in noise intensity, the decoded images become less clear.
Among them, the decrypted images processed by SPN have only a few noise points, and
the decryption quality is good. In addition, SN and GN have a great influence on the
decryption quality, but the rough outline of the original image can still be recognized.

The peak signal-to-noise ratio (PSNR) between the plain image and the decrypted
image can be used to evaluate the strength of the robustness. Its formula is as follows [23]:

PSNR = 10× log10(
2552

MSE
) (25)

MSE =
1

M× N

M
Σ

i=1

N
Σ

j=1
[C1(i, j)− C2(i, j)]2 (26)

where MSE represents the mean square error, C1 represents the plain image, and C2 repre-
sents the decrypted image after the attack.
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4. Conclusions

At present, single-pixel position scrambling is not sensitive to the chaotic sequences
used, and adjacent pixel position scrambling still needs to be improved in scrambling
speed and scrambling effect. To solve this problem, this paper proposes a stage-merging
position-scrambling algorithm, which combines the two-stage scrambling process, and can
complete the dual scrambling of pixel position and pixel value at the same time. Compared
with the two-stage scrambling process, this method effectively improves the scrambling
speed and information entropy of the scrambled intermediate encrypted image. This
paper also introduces the Knuth shuffle algorithm, and redesigns its card selection and
replacement. DNA dynamic encoding is also used to dynamically select specific rules in
the process of encoding, operation, and decoding, which further improves the security of
the algorithm. After testing, the encrypted image pixels are evenly distributed, and the
correlation between adjacent pixels is weak. The algorithm can effectively resist statistical
attacks, differential attacks, exhaustive attacks, and other common attacks. In the future,
we can further explore the use of stage merging to design encryption schemes for different
types of images (such as color images).
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