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Abstract: This paper presents a channel-wise average pooling and one dimension pixel-shuffle ar-
chitecture for a denoising autoencoder (CPDAE) design that can be applied to efficiently remove 
electrode motion (EM) artifacts in an electrocardiogram (ECG) signal. The three advantages of the 
proposed design are as follows: (1) In the skip connection layer, less memory is needed to transfer 
the features extracted by the neural network; (2) Pixel shuffle and pixel unshuffle techniques with 
point-wise convolution are used to effectively reserve the key features generated from each layer in 
both the encoder and decoder; (3) Overall, fewer parameters are required to reconstruct the ECG 
signal. This paper describes three deep neural network models, namely CPDAELite, CPDAERegular, 
and CPDAEFull, which support various computational capacity and hardware arrangements. The 
three proposed structures involve an encoder and decoder with six, seven, and eight layers, respec-
tively. Furthermore, the CPDAELite, CPDAERegular, and CPDAEFull structures require fewer multiply-
accumulate operations—355.01, 56.96, and 14.69 million, respectively—and less parameter usage—
2.69 million, 149.7 thousand, and 55.5 thousand, respectively. To evaluate the denoising perfor-
mance, the MIT–BIH noise stress test database containing six signal-to-noise ratios (SNRs) of noisy 
ECGs was employed. The results demonstrated that the proposed models had a higher improve-
ment of SNR and lower percentage root-mean-square difference than other state-of-the-art methods 
under various conditions of SNR. 
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1. Introduction 
According to the Global Burden of Disease report, cases of cardiovascular disease 

(CVD) doubled from 271 million in 1990 to 523 million in 2019 [1]. A proportion of these 
patients are diagnosed with cardiac arrhythmias. Some cardiac arrhythmias, such as ven-
tricular fibrillation and ventricular tachycardia, can lead to sudden cardiac arrest, which 
results in death if first aid cannot be performed within several minutes [2]. One of the 
diagnostic tools for CVDs is the electrocardiogram (ECG), which is recorded from a bi-
osignal acquisition system [3,4]. An ECG represents the electrical activity of heart tissue. 
Portable products that feature ECG acquisition systems include Holter monitors, auto-
mated external defibrillators, and pacemakers. These products record an ECG and diag-
nose abnormal heart rhythms in real-time. However, not only the patient’s ECG but also 
baseline wander (BW) noise, muscle artifacts (MA), electrode motion (EM) artifacts [5], 
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and powerline interference (PLI) [6] are recorded during measurements [3]. BW noise is a 
low-frequency artifact that occurs during breathing and can have a substantial influence 
on the diagnosis of an ST segment in lead I [7]; MA noise is a high-frequency noise that 
occurs when muscle activates continuously, as when the patient feels cold or nervous [8]; 
EM artifacts are generated from the stretching of the Ag/AgCl electrode barrier layer in 
the skin [5]. Because EM artifacts are similar in appearance to ectopic beats, they are re-
garded as the most challenging noise to eliminate; PLI is a 50-Hz or 60-Hz artifact influ-
enced by the ac in recording equipment [6]. Recorded ECGs are invariably accompanied 
by noise of diverse intensities, which affect the accuracy of the instrument and can affect 
the doctor’s judgment. Therefore, a suitable denoising algorithm to reconstruct a clean 
ECG from a noisy ECG can aid in CVD diagnosis. 

Several denoising approaches based on different techniques have been developed; 
examples include adaptive filtering [9–11], the wavelet method [12–14], empirical mode 
decomposition (EMD) [15–18], and denoising autoencoder (DAE) algorithms [19–28]. An 
adaptive filter updates its weight according to the error between the noisy ECG signal and 
the noise reference signal. In [9], various least-mean squares (LMS)-based adaptive filter 
algorithms were proposed. An adaptive filter uses a noise reference to only eliminate the 
noise in a noisy ECG and produce a clean ECG. The experimental results demonstrated 
that most noise was removed after 200 iterations. The QRS segment in an ECG is a com-
plex wave, and it is difficult to denoise efficiently in this short segment because the LMS 
filter cannot update the weight coefficients immediately. In [10], the noisy ECG signal and 
the noise reference signal were transferred from the time domain into the frequency do-
main by using the fast Fourier transform, and then the LMS algorithm was used to calcu-
late weights to the minimum mean-square error (MSE) between two input signals. The 
adaptive filter adjusts the magnitude in the frequency domain directly so that the filtered 
ECG approaches a clean ECG. In complexity computation, LMS-based approaches are 
simpler than other denoising techniques and can be easily implemented in digital circuits. 
In [11], a delayed error normalized LMS (DENLMS) adaptive filter was proposed and 
implemented on FPGAs to reduce Gaussian white noise in a wireless ECG monitoring 
system. WT is another popular technique for reducing noise. WT is a capable tool that 
divides a noisy signal into numerous frequency subbands with different wavelet coeffi-
cients; subsequently, the threshold function limits the frequency magnitude for the recon-
struction of the clean ECG signal. In [12], a nonlocal WT (NLWT) that combines nonlocal 
means (NLM) and WT was proposed. In a noisy ECG, the NLWT separates samples into 
several similar blocks by using the reference block in the similarity data matrix (SDM) 
extraction stage. Subsequently, these similar blocks are transferred into the wavelet do-
main, and the threshold function only retains the ECG magnitude to reconstruct the clean 
ECG signal. 

EMD-based approaches decompose the noisy ECG signal into several intrinsic mode 
functions (IMFs) using a Hilbert–Huang transform (HHT, [29]), and the denoising ECG 
signal can be reconstructed by removing the noise IMFs. In [15], a real-time 2-stage motion 
noise (MN) artifact cancelation method based on EMD was proposed. The EMD isolates 
high-frequency components of the signal under the assumption that most of the MN arti-
facts are contained in the first stage, and the MN artifacts are eliminated by the high-pass 
filter in the first EMD (F-EMD) in the second stage. Although the aforementioned de-
noising approaches have been widely and successfully applied, they have several limita-
tions. In adaptive filtering approaches, a noise reference signal for BW, EM, and MA must 
be measured, necessitating the use of additional electrodes. In the wavelet approaches, 
the software and hardware thresholds to satisfy various scenarios are challenging to de-
fine. In the EMD approach, because the frequencies of P waves and T waves in lead I, II, 
and III are similar to some of the noise, they may be classified as noise IMFs after HHT 
[29]. The detailed pros and cons for various strategies are listed as Table 1. A DAE algo-
rithm for ECG biosignal noise removal was proposed in [19–23]. In [19,20], the DAE was 
improved to extract the features of a clean ECG in the wavelet domain. Because these 
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approaches use the DAE for adjusting the threshold, they have greater denoising perfor-
mance than do wavelet methods. In [21], a deep neural network (DNN)–DAE outper-
formed an adaptive filtering approach, EMD, and wavelet approaches with a superior 
signal-to-noise ratio (SNRimp). In [22], a fully convolutional denoising autoencoder (FCN-
based DAE) surpassed a DNN–DAE and convolutional neural network (CNN)–DAE. 
However, the QRS segment was distorted because fully connected layers averaged out 
the neighboring samples in the QRS segment. Reference [23] reports that denoising per-
formance was improved by adding long short-term memory (LSTM) to a DAE. The LSTM 
cell learns the time series orders of ECG waves, which enhances the reconstruction qual-
ity. However, LSTM involves the use of numerous parameters and exhibits high compu-
ting complexity. Therefore, a CUDA accelerator was recommended to be used during the 
influence stage. In the studied DAE network, denoising performance was evaluated by 
calculating the SNRimp, root-mean-square error (RMSE), and percentage root-mean-square 
difference (PRD) for a noisy ECG with different SNRs. 

In contrast to various datasets widely used in computer vision, few datasets are avail-
able for ECG signal enhancement. Therefore, most noisy ECG signals are mixed manually 
using one of the following two methods: (1) adding Gaussian noise into the recorded ECG 
from patients (MIT–BIH arrhythmia database [30], MITDB); (2) adding EM, BW, and MA 
noise recorded from physically active volunteers (MIT–BIH Noise Stress Test Database 
[31], NSTDB) into a clean ECG. Recently, refs. [20,23,24,32] added Gaussian noise into a 
clean ECG and then successfully eliminated this white noise. 

However, this approach is limited because the noisy ECGs used are not realistic. In 
[19,21,22,25,27,28], the ratios of BW, EM, and MA artifacts in the noisy ECG were not men-
tioned, which indicates that the noisy ECGs may be different even if the same signal seg-
ments of noise and ECG are employed. Therefore, evaluating the denoising performance 
of each approach is not possible. As illustrated in Figure 1, the waves of (a)–(d) are differ-
ent when the composition ratio of noise is adjusted, but the SNRs of these four situations 
are identical. 

Table 1. Comparison of Advantages and Disadvantages of Various Strategies. 

Methods Advantage Disadvantage 

Adaptive Filter 
[9–11] 

(1) Simplest and easy to implement on embedded 
systems or digital signal processors.  
(2) Compared with AI algorithms, it has less com-
putational complexity. 
(3) The category can be time domain and fre-
quency domain processing. 

(1) A noise signal as a reference signal is requested, 
and different noise sources would generate differ-
ent weights, which cannot be shared.  
(2) The system would fail to work if the noise of the 
external environment changes suddenly and the 
weight updates too slow. 

DWT-DAE 
[12–14] 

(1) It can extract the feature in the spatial domain 
and has an effectively computational ability. 
(2) It takes more computational complexity than 
adaptive filter approaches but gains better results. 

(1) It is very hard to definite the value of the soft-
ware and hardware thresholds for all scenarios. 
(2) The selection of mother wavelet functions 
would generate different results. 

EMD 
[15–18] 

(1) Baseline wander can be easily removed by us-
ing the highest IMF. 
(2) The process of the EMD algorithm is simple 
and routine so it is not suitable for complex and 
varied noises. 

(1) The IMFs of noise may contain some part of 
ECG feature that cannot be arbitrarily discarded.  
(2) The EMD algorithm takes the amount of com-
puting time for the routine process and cannot be 
real-time and online executed due to the data de-
pendency of IMFs’ calculations. 
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Figure 1. Noisy ECG signal mixed with different component ratios of BW, EM, and MA. (a–d) illus-
trate the noisy ECG with 3 dB SNR and clean ECG signal, BW, EM, and MA artifacts in the same 
segment. 

To objectively evaluate the denoising performance, we used NSTDB_118e [–6, 0, 6, 
12, 18, and 24 dB] and NSTDB_119e [–6, 0, 6, 12, 18, and 24 dB] from PhysioNet as noisy 
ECG signals [33]. The experimental results demonstrated that the proposed approach is 
highly capable of suppressing different intensities of noise. In this paper, a high-quality 
channel-wise average pooling and 1D pixel-shuffle DAE (CPDAE) is proposed. The pro-
posed CPDAE deploys residual block, pixel shuffle, global average pooling, and skip con-
nection to extract a clean ECG. Here, skip connection is widely applied in deep learning, 
which can remedy the lost information with dimensionality reduction in the encoder and 
combines the features in deep and shallow layers [34–36]. However, all of the features 
have to be recorded in every encoder layer on computation if the feature information is 
directly transmitted from encoder to decoder. This requires a great amount of memory for 
additional data storage in the architecture. Hence, channel-wise average pooling (CWAP) 
and point-wise convolution (PW Conv.) are proposed to mitigate the issue of excessive 
memory requirements caused by original skip-connection. CWAP is calculated by aver-
aging the features in every channel so that the memory requirement is substantially re-
duced. To provide information of the encoder layer effectively, point-wise convolution 
(PW Conv.) is applied to restore the features into the same shape as the encoder features, 
and then, the features are merged into the decoder layer, which achieves memory saving 
and provides information received from the encoder layer to the decoder layer. Based on 
the above design concept, the key contributions of the proposed method can be summa-
rized as follows: 
• The schemes of the residual block, pixel shuffle, and CWAP layer are utilized in the 

proposed DAE for enhancing the feature extracting capability, and the results show 
that the proposed CPDAE, which uses fewer parameters, can achieve better de-
noising performance than state-of-the-art approaches. 

• The proposed CWAP layer between encoder and decoder not only avoids the ECG 
features disappearing through the deeper encoder layer, but also uses less memory 
than the shortcut connection. Furthermore, the key features are all averaged in the  

• CWAP layer so that the number of channels is greatly reduced to one channel, and 
this also implies that it only takes 1/C times the memory size in implementation. 
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• The noisy ECG dataset obtained from NSTDB dataset is adopted to evaluate the de-
noising performance for various algorithms under the same conditions to ensure the 
same experimental environment can be completely rebuilt. 

• To test the generalizability of various DAE models, the other noisy ECG dataset with 
six noise-level inputs is generated by randomly mixing the first 30 min section of the 
ECG signal in NSRDB with the 30 min section of EM noise in NSTDB. The experi-
mental results demonstrate that the proposed CPDAE has better noise suppression 
than other approaches. 
The remainder of this paper is organized as follows. Section II reviews the basic setup 

of the DAE. Section III describes the details of the proposed CPDAE methods. The exper-
imental results and dataset are presented in Section IV. Finally, Section V concludes the 
paper. 

2. Methodology 
2.1. Review of AE and DAE 

A DAE is a variation of an autoencoder (AE) that is widely used in lossy data com-
pression [37]. An AE aims to make the output x  equal to the input x, as depicted in 
Figure 2a. An AE has two main parts: (1) The encoder maps the high-dimension input x̂  
into a low-dimension code z via neural network layers (NNs); (2) The decoder recon-
structs the high-dimension signal x  from the low-dimension code. The formulas of 
these two parts can be expressed as Equations (1) and (2), where w and b are the weight 

and bias of NNs in the encoder, respectively, and w  and b  represent the weight and 
bias matrices of NNs in the decoder, respectively. ϕ and ψ are the nonlinear activation 
functions of the encoder and the decoder, respectively. 

ˆ( )φ= +z wx b   (1)

( )ψ= +x wz b    (2)

To make x and x  be as similar as possible, the MSE is used as the cost function (3) 
in AE, where N and i are the number of input data and the data sample index, respectively. 

1
2

0, , ,

1argmin ( )
N

i i
iN

L x x
−

=

= −
w b w b

   (3)

 

  
(a) (b) 

Figure 2. Architecture of (a) AE and (b) DAE. 

The DAE, an extension of the AE, is employed to reconstruct a clean signal from a 
corrupted signal [38]. It is commonly used in signal denoising and enhancement [39,40]. 
As illustrated in Figure 2b, the input of a DAE is a corrupted signal x̂ , which consists of 
a clean signal x and a noise signal n, and the denoised signal x  is reconstructed from 

Encoder z Decoder

Clean ECG
x

,w b ,w b
x̂ x

Cost function

Encoder z Decoder

Clean ECG
x

Noise n

,w b ,w b
x̂ x
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x̂ . In the encoder layer, NNs attempt to isolate the features of the clean signal into code 
z, and x  is further reconstructed from z by the decoder. During the training phase, a 
DAE can learn the features of a clean ECG by updating the weights according to the cost 
function computed according to the MSE between the clean signal and the reconstructed 
signal. 

2.2. Residual Block 
The residual block [41] has been widely applied to avoid the vanishing gradient prob-

lem in deeper neural network layers. During the training phase, the optimizer updates 
every NN's parameters by calculating the gradient from the cost function [42]. However, 
the vanishing gradient in the lower layers is more evident than that in the upper layers; 
therefore, the accuracy cannot be increased even if more NNs are added. To solve this 
problem, the residual block adds identity mapping between the start and the end of the 
NNs in Equation (4). This is evident in Figure 3, where zn+1 and zn are, respectively, the 
input and output of the residual block, ReLU σ is the activation function, and F (zn) rep-
resents the NNs. 

1 ( ))(n n nFσ+ = +z z z   (4)

 
Figure 3. Block diagram of the residual block. 

2.3. Pixel Shuffle (Subpixel) 
The pixel-shuffle (PS) layer was first applied for increasing the image resolution in 

[43]; the goal of PS is to map the image from low resolution to high resolution. The PS is 
an operation of data arrangement without any parameters and is used to generate one 
high-resolution feature from four low-resolution features. In [44], checkerboard artifacts 
were avoided by adding the PS operation before the deconvolution operation. In this 
study, we applied PS to preserve the features in an up-sampling process instead of using 
the general method of transposed convolution with stride = 2. PS converted the features 
in p from two channels into one channel, as illustrated in Figure 4. Similarly, pixel unshuf-
fle was adopted to separate the features in p from one channel into two channels in a 
down-sampling process. In various architectures of autoencoders for ECG signal noise 
cancellation, the ECG features in different layers are extracted from high-dimension in-
formation through multiple neural layers via an encoder. Finally, only precious few fea-
tures are retained as ECG (as Z in Figure 2). Afterward, the clean ECG is reconstructed 
from precious few features (Z) via the decoder. This procedure reveals that the reduction 
in the number of neurons is essential in the encoder, so all of the available methods adopt 
max-pooling or convolution with stride = 2 to attain the number of neurons dropped by 
half. At max-pooling, the maximum features are retained, and the rest features are dis-
carded. If the adjacent feature values are great, only the maximum value can be preserved, 
and the other significant features also have to be scrapped. If the stride in convolution is 
set to 2, the movement of the kernel is shifted by two grids, which lessens the computa-
tional cost and the number of output features is dropped by half. However, the precision 
of feature extraction with stride = 2 is not more exact compared to stride = 1. For this rea-
son, this work not only adopts un-pixel shuffle and pixel shuffle methods to preserve the 
information but also deploys convolution with stride = 1 to extract the detail features as 
much as possible so that more precise information can be acquired. 

ReLUReLU

( )nF z

……nz 1n+zσσ

identity nz
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Figure 4. Workflow of the modified 1D pixel−shuffle and 1D pixel−unshuffle. 

3. Proposed CPDAE 
In this study, a CPDAE network architecture was proposed for ECG noise cancela-

tion. The proposed structure consists of several encoder and decoder layers. The noisy 
ECG x̂  is fed into the input layer first, and the clean ECG feature code z is extracted in 
the encoding stage. The signal x  is reconstructed in the decoding stage. Moreover, 
channel-wise average pooling (CWAP) between the corresponding encoder and decoder 
layers is added to compensate for the decreased feature content layer by layer. 

To test the denoising performance, three models were proposed and implemented in 
this study. The proposed CPDAELite attempts to minimize the amount of parameter usage 
and the number of multiply–accumulate operations (MACs); the proposed CPDAEFull ex-
hibits the greatest denoising capability; the proposed CPDAERegular is the median version 
between the lite and full versions. In the remainder of this paper, only CPDAERegular is 
discussed for simplicity. The CPDAERegular consists of seven encoders, seven decoders, and 
six CWAP blocks. The overall architecture is illustrated in Figure 5. The detailed proce-
dures of the encoder, decoder, and CWAP are described in the following sections. 

 
Figure 5. Architecture of the regular version of the proposed CPDAE. 

3.1. Encoder Layer 
Initially, the input (1 × 1024) noisy ECG ( x̂ ) is fed into the convolution operation to 

extend the channel to 32. Subsequently, seven encoder layers are used to extract the clean 
ECG features from the input signal. Finally, a 32 × 8 dimensional feature map z is obtained 
after the noisy ECG proceeds through the seven encoder layers. The structure of encoders 
1–7 is illustrated in Figure 6; the input (an) is fed into the 1D residual block (1D Res) to 
extract the ECG features. After 1D-PUS rearranges the features, the dimension is con-
verted from C × N to 2C × N/2. No parameters need to be learned in 1D-PUS. Finally, the 
output of the encoder layer (an+1) is obtained after the point-wise convolution operation, 
which combines with the channel features [45]. In detail, the kernel size of 1D convolution 
is set to 5 in 1D Res, and that of point-wise convolution is set to 1 in Figure 6. Moreover, 
the ReLU is used as the activation function (σ) in 1D Res. 
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Figure 6. Layer structure of encoders 1–7; C and N are the numbers of input channels and features, 
respectively. 

3.2. Channel-Wise Average Pooling in Skip Connection 
When the encoder layer maps features into low-dimensional z from the input layer, 

certain tiny but key features disappear as the network deepens. This results in the recon-
structed features being unable to perfectly represent the features of the ECG signal [36]. 
To solve this problem, a skip connection between the corresponding encoder and decoder 
was added in [34–36]. However, this requires substantial memory use to hold the output 
of the encoder layer [46]. In this study, CWAP was proposed as a trade-off between de-
noising quality and memory requirements. The CWAP passes the average feature of chan-
nels from the encoder to the corresponding decoder and reduces the amount of memory 
usage in the skip connection as follows in Equation (5): 
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

  
(5)

where â  and a are the CWAP output and input from the encoder, respectively. In addi-
tion, C is the number of input channels, and N represents the number of features. The 
CWAP averages the input channels into one channel ( â ) to reduce C times the memory 
usage of the skip connection. The memory size of the output a  of point-wise convolu-
tion takes the same dimension as a, and the output a  can be fed into the decoder layer, 
as depicted in Figure 7. To minimize gradient vanishing, a nonlinear activation function, 
such as a ReLU or sigmoid function, is not available in the skip connection. 

 
Figure 7. Channel-wise average pooling layer structure and point-wise convolution operation. 

3.3. Decoder Layer 
The decoder layer is almost inversely symmetrical to the encoder part. Seven decod-

ers are mapped to the high-dimensional features from the code z, as illustrated in Figure 
5. Except for the last layer (decoder 7), the input of each decoder is the sum of both the 
skip connection and the output of the upper decoder layer, calculated through element-
wise addition. Each decoder reconstructs the features from an by using the 1D residual 
block. Subsequently, the point-wise convolution (PW Conv) increases two times the chan-
nels that are required before up-sampling the 1D PS operation, and the features (an+1) are 
rearranged to be the output  features in the decoder layer, as illustrated in Figure 8. With 
the same configuration as the encoder layer, the kernel size of the 1D convolution in the 
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1D residual block is set to 5, and that of the point-wise convolution in the encoder layer is 
set to 1. 

 
Figure 8. Layer structure of decoders 1–7. 

After passing through decoders 1–7, the features of the clean ECG are distributed in 
32 channels, where the features are mapped from low dimensions to high dimensions. 
The reconstructed ECG signal ( x ) is obtained after the data pass through the output 
layer, which diminishes the 32 channels into 1 channel by convolution operations. 

The detailed layer information of the proposed regular model and its submodule is 
listed in Tables 2 and 3, respectively. Initially, the noisy ECG with the size of 1 × 1024 is 
fed into the Input Layer. Then, the ECG signal is extracted by 7 layers of the Encoder, and 
it is further compressed into the Code z with the size of 32 × 8. Subsequentially, the clean 
ECG can be reconstructed by 7 layers of the Decoder and an Output Layer. In addition, to 
enhance the quality of the reconstructed signal, the key features are transmitted by 6 lay-
ers of CWAP inserting between Encoder Layers 1–6 and Decoder Layers 1–6. The total 
number of parameters of CPDAERegular is 194,753, and the proposed model can be real-time 
run on certain low-cost CUDA devices. The number of encoders and decoders in the pro-
posed model can be arbitrarily increased or decreased as long as the number of the feature 
code z is a natural number. 

Table 2. Layer Information for the Regular Version of Proposed CPDAE. 

Execution Or-
der-Annotation Type 1D NN Layer Name No. Filter × 

Kernel Size Paddings Region/Unit 
Size * AF No. Trainable 

Parameter Output Size 

  0-Input ( x̂ )  Noisy ECG   1 × 1024 
  1 

Input Layer 
Convolution 32 × 1 0 – – 64 32 × 1024 

  2 Res. 32 × 5 2 ↓ 2 ReLU 10,304 32 × 1024 
  3 Encoder Layer 1 Res. + PUS + PW Conv. 32 × 5 2 ↓ 2 ReLU 12,384 32 × 512 
  5 Encoder Layer 2 Res. + PUS + PW Conv. 32 × 5 2 ↓ 2 ReLU 12,384 32 × 256 
  7 Encoder Layer 3 Res. + PUS + PW Conv. 32 × 5 2 ↓ 2 ReLU 12,384 32 × 128 
  9 Encoder Layer 4 Res. + PUS + PW Conv. 32 × 5 2 ↓ 2 ReLU 12,384 32 × 64 
 11 Encoder Layer 5 Res. + PUS + PW Conv. 32 × 5 2 ↓ 2 ReLU 12,384 32 × 32 
 13 Encoder Layer 6 Res. + PUS + PW Conv. 32 × 5 2 ↓ 2 ReLU 12,384 32 × 16 
 15-Code (z) Encoder Layer 7 Res. + PUS + PW Conv. 32 × 5 2 ↓ 2 ReLU 12,384 32 × 8 
 16 Decoder Layer 7 Res. + PW Conv. + PS 32 × 5 2 ↑ 2 ReLU 12,416 32 × 16 
 17 Decoder Layer 6 Res. + PW Conv. + PS 32 × 5 2 ↑ 2 ReLU 12,416 32 × 32 
 18 Decoder Layer 5 Res. + PW Conv. + PS 32 × 5 2 ↑ 2 ReLU 12,416 32 × 64 
 19 Decoder Layer 4 Res. + PW Conv. + PS 32 × 5 2 ↑ 2 ReLU 12,416 32 × 128 
 20 Decoder Layer 3 Res. + PW Conv. + PS 32 × 5 2 ↑ 2 ReLU 12,416 32 × 256 
 21 Decoder Layer 2 Res. + PW Conv. + PS 32 × 5 2 ↑ 2 ReLU 12,416 32 × 512 
 22 Decoder Layer 1 Res. + PW Conv. + PS 32 × 5 2 ↑ 2 ReLU 12,416 32 × 1024 
 23 

Output Layer 
Res. 32 × 5 2 ↓ 2 ReLU 10,304 32 × 1024 

 24 Convolution 32 × 1 0 – – 33  1 × 1024 
 25-Output (x̃) Reconstructed ECG   1 × 1024 
  4-En. 1→De.1 CWAP & PW Conv. #1 CWAP + PW Conv. 32 × 1 0 – – 64 32 × 16 
  6-En. 2→De.2 CWAP & PW Conv. #2 CWAP + PW Conv. 32 × 1 0 – – 64 32 × 32 
  8-En. 3→De.3 CWAP & PW Conv. #3 CWAP + PW Conv. 32 × 1 0 – – 64 32 × 64 
 10-En. 4→De.4 CWAP & PW Conv. #4 CWAP + PW Conv. 32 × 1 0 – – 64 32 × 128 
 12-En. 5→De.5 CWAP & PW Conv. #5 CWAP + PW Conv. 32 × 1 0 – – 64 32 × 256 
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 14-En. 6→De.6 CWAP & PW Conv. #6 CWAP + PW Conv. 32 × 1 0 – – 64 32 × 512 
Total parameters: 194,689 Total MACs: 56.96 M Forward/Backward memory size: 4.44 Mbytes 

* AF: activation function; En.: encoder layer; De.: decoder layer; ↓: down-sampling; ↑: up-sam-
pling. 

Table 3. Layer Information of the Submodule for the Regular Version of the Proposed CPDAE. 

Execution Or-
der-Annotation 1D NN Layer Name 

No. Filter × 
Kernel Size 

Pad-
dings 

Region/Unit 
Size  * AF 

No. Trainable  
Parameter (w, b) 

Input 
Size Output Size 

Residual Block (Res.) 10,304 32 × N 32 × N 
  1-Conv. Convolution 32 × 5 2 – – 5152 32 × N 32 × N 
  2-Conv. Convolution 32 × 5 2 – ReLU 5152 32 × N 32 × N 
Encoder Layer (Res. + PUS + PW Conv.) 12,384 32 × N 32 × N/2 
  1-Res. Residual Block 32 × 5 2 – ReLU 10,304 32 × N 32 × N 
  2-PUS Pixel-UnShuffle – – ↓ 2 – – 32 × N 64 × N/2 
  3-PW Conv. Convolution 32 × 1 0 – – 2080 64 × N/2 32 × N/2 
Decoder Layer (Res. + PW Conv. + PS) 12,416 32 × N 32 × 2N 
  1-Res. Residual Block 32 × 5 2 – – 10,304 32 × N 32 × N 
  2-PW Conv. Convolution 64 × 1 0 – ReLU 2112 32 × N 64 × N 
  3-PS Pixel-Shuffle – – ↑ 2 – – 64 × N 32 × 2N 
Skip Connection (CWAP + PW Conv.) 64 32 × N 32 × N 

  1-CWAP 
Channel-wise Average 

Pooling 
– – ↓ 32 – – 32 × N  1 × N 

  2-PW Conv. Convolution 32 × 1 0 ↑ 32 – 64  1 × N 32 × N 
* AF: activation function; ↓: down-sampling; ↑: up-sampling. 

4. Experimental Results 
4.1. Evaluation Criteria 

In this study, the quantitative performance of the denoising technique was evaluated 
using RMSE, PRD, and SNRimp. 

SNRimp compares the SNR between the noisy ECG (SNRin) and the reconstructed sig-
nal (SNRout). A higher SNRimp value indicates superior denoising performance, defined as 
follows. The aforementioned variables are defined as follows:  

imp out inSNRSNR SNR= −   (6)
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where M is the strength of the signal, and xi is the amplitude of each sampling point in a 
clean ECG. Similarly, ix  and ˆ ix are the amplitudes of the sampling in the reconstructed 
ECG and noisy ECG, respectively. 

RMSE represents the variance between the reconstructed ECG ( x ) and the clean 
ECG (x). A smaller RMSE value represents a more favorable denoising performance. 
RMSE is formulated as follows: 

( )
1

2

0

1 M

i i
i

RMSE x x
M

−

=

= × −    (9)

PRD represents the reconstructed signal quality between the clean signal and the re-
constructed signal. A lower PRD value, defined in Equation (10), indicates higher quality. 
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Because of the original dc offset that exists in the clean ECG dataset, the mean of the input 
signal was considered in this work, consistent with the approach in [47]. 
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4.2. Dataset Selection and Experiment Preprocessing 
To evaluate the proposed system, a noisy ECG signal and a clean ECG signal were 

acquired from the nstdb [31] and the mitdb [30], respectively. The mitdb contains 48 half-
hour excerpts of two-channel ambulatory ECG recordings, which were recorded at a 360 
Hz sampling rate with 11-bit resolution using an analog/digital converter [33]. The mitdb 
includes several types of arrhythmia, and it has been widely used as the dataset for heart-
beat classification [48]. The nstdb provides twelve 30 min ECG recordings (two leads per 
recording) and three 30 min recordings of noise typical in ambulatory ECGs [49]. The 
noisy ECG was created by mixing six levels (–6 dB, 0 dB, 6 dB, 12 dB, 18 dB, and 24 dB) of 
EM noise into the clean ECG recordings from mitdb_118 and mitdb_119 [50]. First, the 
noise was added to the recordings after the first 5 min. Subsequently, 2 min noise seg-
ments with 2 min noise-free segments were alternated until the end. 

In this study, the noisy ECG signal was acquired from the noise segment of 24 ECG 
leads in the nstdb, which can be found in 5–7, 9–11, 13–15, 17–19, 21–23, 25–27, and 29–30 
min in every ECG lead. Subsequently, each segment was further separated into several 
nonoverlap fragments with a length of 1024 samples. Finally, 6888 noisy ECGs were used 
to evaluate the denoising performance. For the clean ECG signal, the corresponding indi-
ces of the clean ECG in mitdb-118 and mitdb-119 were used. The 6888 fragments were 
split into a training set and testing set, with 80% and 20% of the fragments, respectively. 
The dc offset was removed from all fragments in the preprocessing phase in consideration 
of the effect of the dc offset on PRD. Moreover, the 11-bit digitized ECG signal was divided 
by 2048 to normalize the input data within 0 and 1. 

4.3. Experimental Results and Comparison 
The artificial intelligence framework of this study was PyTorch 1.9, and the adopted 

CPU, RAM, and GPU in our experiment were an AMD R9-5950x, 96 GB, and Nvidia 
RTX3090 24 GB, respectively. To train the models efficiently, suitable hyperparameters 
were selected and set to accelerate the training convergence speed. Table 4 demonstrates 
the six hyperparameters used in this study. The cost function using MSE was the same as 
in previous studies [21–24,28]. The epochs were set to 1000 to ensure that each model 
would converge during the training phase. The learning rate was set to 10−4 and decayed 
by one-half every 200 epochs. This implied that the weights could be updated rapidly in 
the early training stage, and finetuned at the final training stage [51]. For optimization, an 
Adam optimizer was employed instead of stochastic gradient descent because it could 
locate the gradient more accurately. 

Table 4. Hyperparameters for the Experiment. 

Hyperparameters Value 
Cost function Mean-square-error (MSE) 

Learning Rate (LR) 1 × 10−4 
Learning Rate scheduler Step-LR (𝐿𝑅 2⌊# ௢௙ ௘௣௢௖௛/ଶ଴଴⌋⁄ ) 

Optimizer Adam 
Batch size 32 

Epochs 1000 
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To evaluate the denoising performance with various parameters and MACs, we im-
plemented CPDAELite, CPDAERegular, and CPDAEFull with different combinations, as dis-
played in Table 5. CPDAELite is highly suitable for implementation on an embedded plat-
form. CPDAEFull has the highest denoising performance and the greatest number of 
MACs. This implies that a powerful GPU would be needed to realize this highly complex 
algorithm. CPDAERegular balances denoising performance and lightweight computational 
capability. For the testing phases of Lite, Regular, and Full versions, the average run-time 
per frame was 0.1154 ms, 0.1424 ms, and 0.1327 ms, respectively. Conceptually, the MACs 
can be reduced by decreasing the number of encoder and decoder layers and the number 
of channels for each layer, but the denoising capability of DAE would drop down. How-
ever, deeper layers have the ability to learn data representations with multiple levels of 
abstraction. This method compensates for the lack of features when a low number of chan-
nels in each encoder/decoder layer is used (e.g., CPDAELite). By contrast, when more chan-
nels are available in each encoder/decoder layer (e.g., CPDAEFull), the denoising perfor-
mance is not substantially improved by adding more layers. 

Table 5. Components of the Proposed Models. 

Proposed Models No. Encoder/De-
coder Layers 

No. Channels Kernel Size MACs 
Average Run-Time (ms) per Frame 

Training Phase Testing Phase 
CPDAELite 8 16 5 14.69 M 0.5508 0.1154 

CPDAERegular 7 32 5 56.96 M 0.6439 0.1424 
CPDAEFull 6 128 5 355.01 M 0.6935 0.1327 

To evaluate the performance of the proposed CPDAE more clearly, the channel num-
bers were, respectively set to 16, 32, 48, 64, and 128 with the corresponding numbers of 
layers set to 5, 6, 7, 8, and 9 for the usage of encoder and decoder. Here, the average of 
SNRimp was utilized to measure the performance. Figure 9 shows that the more layers, the 
higher SNRimp attained under the fixed numbers of channels. In addition, a better average 
of SNRimp would be obtained with the adjustment of the numbers of channels and layers. 
The design goal of CPDAELite aims to decrease the number of parameters and achieved 
performance similar to that of FCN [22]. The desired average of SNRimp in CPDAELite has 
to be more than 10 dB, so the numbers of channels and layers were set to 16 and 8, respec-
tively. The result with CPDAERegular attained a curve with the greatest improvement, 
where the numbers of channels and layers were respectively set to 32 and 7. The model of 
CPDAFull achieved the best denoising results, where the numbers of channels and layers 
were respectively set to 128 and 6. Although each additional encoder and decoder layer 
could improve the performance slightly, it also led to a significant increase in the number 
of parameters. 

 
Figure 9. A performance comparison of CPDAE models with various channels and encoder/decoder 
layers. 
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The proposed models were compared with the following four existing approaches: 
(1) DNN–DAE, (2) CNN–DAE, (3) FCN–DAE [22], and (4) CNN–LSTM–DAE [23]. The 
DNN–DAE has 10 fully connected layers with 512, 256, 128, 64, 32, 64, 128, 256, 512, and 
1024 nodes. The CNN–DAE uses the same structure as the FCN–DAE [22] in layers 1–13, 
and two fully connected layers are added in layers 14 and 15. Moreover, ReLU and batch 
normalization are used at the end of each layer. The model architectures of the FCN–DAE 
[22] and CNN–LSTM–DAE [23] are state-of-the-art. The FCN–DAE [22] has six convolu-
tion layers in the encoder and seven transposed convolutions in the decoder. The CNN–
LSTM–DAE [23] uses eight convolution layers and five max-pooling layers to extract the 
features of the clean ECG in the encoder. In contrast with previous works, LSTM cells at 
the end of the encoder were added to learn the relevant information in the sequential data. 
To recover the original clean ECG signal, eight convolution layers, six up-sampling layers, 
and one fully connected layer are used in the decoder. 

The average loss curves for various DAEs under the testing and training sets are de-
picted in Figure 10. In the training phase (Figure 10a), the loss value of every DAE was an 
obvious decrease in the first 500 epochs, ensuring that all DAEs could effectively obtain 
the trainable parameters. After the DAEs had been trained over 800 epochs, the trend of 
the loss curve for all DAEs became flat, so we stopped training at epoch 1000. In the last 
epoch, DNN–DAE showed the highest loss value; however, the FCN–DAE and CNN–
LSTM–DAE had very similar loss values. It is worth noting that the proposed CPDAEFull 
had the lowest loss value in this experiment, and the loss value almost had no changes 
after 300 times of epochs. This result shows that the proposed CPDAEFull learns ECG fea-
tures very well compared with other methods by using fewer training times. In the testing 
phase, the DNN–DAE had the worst MSE. The loss curves of the proposed CPDAE mod-
els (Lite, Regular, and Full version) had a significant improvement compared with other 
approaches. 

  

(a) (b) 

Figure 10. The loss curves in training and testing phases: (a) training phase; (b) testing phase. 

The criteria for the improvement of SNR are reported in Figure 11. We used box plots 
to display the SNRimp distribution under certain SNRin. All of the models exhibited favor-
able improvement in low SNRin (–6 dB, 0 dB, and 6 dB). When the SNRin was –6, the DNN–
DAE, CNN–DAE, FCN–DAE, CNN–LSTM–DAE, and CPDAELite exhibited a similar 
SNRimp distribution. According to our results, CPDAERegular and CPDAEFull were ranked 
first (23.68 dB) and second (20.05 dB) in terms of average SNRimp. However, when the SNRin 

was increased to 12, 18, and 24 dB, the proposed CPDAE methods were superior to the 
other approaches. Moreover, because the noise was not always at a high-intensity level, 
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performance had to be tested under low-intensity noise. The state-of-the-art approaches 
were only tested under the condition of SNRin > 10 dB; higher SNRin was essential for val-
idation. The SNRimp values of the DNN–DAE, CNN–DAE, FCN–DAE, and CNN–LSTM–
DAE methods decreased under the conditions of 12, 18, and 24 dB SNRin. 

Figures 12 and 13 demonstrate the average PRD and RMSE, respectively. Lower PRD 
and RMSE values imply that the reconstructed ECG is closer to a clean ECG. EM noise is 
the most difficult to remove because it has waves similar to a clean ECG. The models 
treated the ECG signal as noise in some cases, which resulted in higher PRD values. Under 
the –6 dB condition of SNRin, the CNN-LSTM-DAE approach exhibited the widest inter-
quartile range (IQR), which indicates that the denoising performance was the most unsta-
ble. The FCN method had the lowest IQR, but its average PRD was higher than that of the 
other methods. Although the proposed CPDAELite did not exhibit any obvious difference 
in SNRimp, the reconstructed ECG was more similar to a clean ECG than those obtained 
with the other methods. However, the PRD and RMSE values of the proposed CPDAEFull 

were much lower than the values of the other methods in all situations. 

 
Figure 11. Box plots for SNRimp comparison of the denoising criteria of all of the evaluated methods 
under six SNRin for the testing phase of NSTDB; the box plots include outliers (dot), minimum, in-
terquartile range, median, maximum, and average (dotted line). 

 
Figure 12. Box plots for PRD comparison of the denoising criteria of all of the evaluated methods 
under six SNRin for the testing phase of NSTDB; the box plots include outliers (dot), minimum, in-
terquartile range, median, maximum, and average (dotted line). 
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Figure 13. Box plots for RMSE comparison of the denoising criteria of all of the evaluated methods 
under six SNRin for the testing phase of NSTDB; the box plots include outliers (dot), minimum, in-
terquartile range, median, maximum, and average (dotted line). 

Table 6 reports the total numbers of trainable parameters and MACs for various 
methods with the two criteria of average SNRimp and average PRD. The DNN–DAE, CNN–
DAE, and CNN–LSTM–DAE used several fully connected layers, which necessitated the 
use of numerous parameters and resulted in ineffective processing of complex noise. For 
the comparison of MACs, the DNN–DAE consists of the fully connected layer so that it 
only costs 1.4 M MACs. The proposed CPDAEFull costs the highest MACs because the 
number of channels is higher than others. For the performance comparison of the SNRimp 
and PRD, the proposed CPDAELite uses fewer parameters and MACs than FCN–DAE and 
achieves better denoising performance. Here, CPDAEFull is the best version of the pro-
posed models, and it exhibits outstanding denoising performance under different SNRin 
values, although it would take 344.01 M MACs. To ensure the generalizability of the pro-
posed method, EM noise was further added into a clean ECG in MIT-BIH Normal Sinus 
Rhythm Database (NSRDB, [52]), where the data include the ECG signals from 16 subjects. 
Twelve minutes of ECG signals were taken from each subject to be evaluated in experi-
ments. Six levels of noisy ECG signals were mixed into ECG signals, i.e., −6, 0, 6, 12, 18, 
and 24 dB. Finally, there were a total of 59,400 untrained noisy ECG data to be tested in 
the testing phase. To evaluate the various algorithms by SNRimp and PRD, a box plot was 
deployed as shown in Figures 14 and 15. The results show that the three proposed CPDAE 
models had superior noise suppression compared to the other algorithms. 

Table 6. Comparison of the Proposed Models with State-of-the-art Methods. 

DAE Model 
Number of 
Trainable 

Parameters 
MACs 

SNRimp (dB) PRD (%) 
SNRin 
−6 dB 

SNRin 
0 dB 

SNRin 
6 dB 

SNRin 
12 dB 

SNRin 
18 dB 

SNRin 
24 dB 

SNRin 
−6 dB 

SNRin 
0 dB 

SNRin 
6 dB 

SNRin 
12 dB 

SNRin 
18 dB 

SNRin 
24 dB 

DNN 1,399,712 1.4 M 18.83 13.72 8.49 2.62 -2.94 -9.5 88.15 79.13 76.70 73.00 73.65 73.38 
CNN 1,116,478 13.27 M 18.63 15.11 10.58 5.29 -0.36 -7.08 89.45 68.19 61.41 54.50 55.38 56.09 

FCN [22] 78,444 25.08 M 18.60 14.38 10.80 6.35 2.18 -3.88 93.53 73.29 60.21 49.00 42.01 39.29 
CNN-LSTM [23] 10,920,532 46.69 M 18.90 15.66 11.24 6.25 0.73 -5.63 86.92 65.23 54.68 42.70 47.44 47.38 

CPDAELite 55,505 14.43 M 18.85 16.12 12.44 8.01 4.31 -0.72 84.60 58.17 49.72 40.51 32.87 27.05 
CPDAERegular 194,689 56.96 M 19.91 19.18 16.60 12.55 8.52 2.03 79.26 44.66 31.99 24.26 20.45 20.23 

CPDAEFull 2,694,529 355.01 M 23.68 27.75 24.99 21.38 16.92 8.15 51.20 18.10 12.81 9.28 8.65 8.66 
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Figure 14. Box plots for SNRimp comparison of the denoising criteria of all of the evaluated methods 
under six SNRin for the testing phase of NSRDB with EM noise; the box plots include outliers (dot), 
minimum, interquartile range, median, maximum, and average (dotted line). 

 
Figure 15. Box plots for PRD comparison of the denoising criteria of all of the evaluated methods 
under six SNRin for the testing phase of NSRDB with EM noise; the box plots include outliers (dot), 
minimum, interquartile range, median, maximum, and average (dotted line). 

Two noisy signals are displayed in Figure 16a,j, and the corresponding clean signals 
are displayed in Figure 16b,k. The ECG filtered with the CNN–DAE (Figure 16c,d) and 
DNN–DAE (Figure 16l,m) could eliminate most noise well, but the ECG signals were also 
destroyed. In the FCN–DAE, the reconstructed ECG retained most information of the ECG 
wave; however, one QRS segment was misjudged as noise (Figure 16e). The CNN–LSTM–
DAE exhibited a similar result in Figure 16o. The proposed CPDAELite removed the most 
noise, but the amplitude of the T wave was slightly decreased, as seen in Figure 16g,p. 
The proposed CPDAERegular retained the most significant ECG features. Moreover, the pro-
posed CPDAEFull retained the complete ECG features and produced the clearest ECG. In 
addition, we also tested the proposed DAE on self-recorded ECG, and the experimental 
results in Figure 17 demonstrate that the proposed models can extract a clear ECG signal 
from corrupted ECGs. Since these ECG and noise signals had never been seen in the train-
ing set, the reconstructed ECGs would have some distortion. However, it still shows that 
the proposed framework is able to restore important features such as the P wave, the QRS 
complex, and the T wave. Therefore, we believe that the generalizability of the proposed 
method exists and can stand the test of other datasets. Although the proposed CPDAE 
had outstanding performance, there were still some outliers in the statistical analysis. This 
result indicates some limitations existing in the proposed CPDAE. Here, we revealed three 
scenarios for the case of impairment as shown in Figure 18. Figure 18a demonstrates that 
the reconstructed ECG located at the boundary received a little distortion if a fragment of 
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a ECG signal containing any one of the P wave, QRS complex, or T wave was cut at the 
boundary. Figure 18b shows that if the original ECG signal contained more high-fre-
quency noise, it was difficult to reconstruct a perfect denoising ECG for both CPDAELite 
and CPDAERegular under this situation. Because the proposed CPDAEFull had the strongest 
computing ability, it obtained much better reconstructed ECG signals than the others. Fig-
ure 18c shows that the intermediate ECG signal was disappearing, and the proposed 
CPDAE could not render a properly reconstructed ECG. It is interesting in the position of 
the intermediate reconstructed ECG for the proposed CPDAE. The position of the recon-
structed ECG signal for CPDAELite was later than that for the original clean ECG, and the 
position of the reconstructed ECG signal for CPDAERegular was earlier than that for the 
original clean ECG. The proposed CPDAEFull misjudged the original ECG signal, resulting 
in the wrong reconstruction location because of the strong noise interference. 
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Figure 16. Comparison of the reconstructed results for various evaluated models in MLII of 
NSTDB_119e06 (a−i), and V1 of NSTDB_118e06 (j−r). 

  

  

  

  

Figure 17. Reconstructed ECGs of various DAEs in self-recorded ECG. 
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CPDAEFull 

   
 (a) (b) (c) 

Figure 18. Three scenarios for the limitations of the proposed CPDAE algorithm. (a) Boundary ef-
fect; (b) high-frequency interference; (c) strong high-frequency noise interference with boundary 
effect. 

5. Conclusions 
In this study, a CPDAE was proposed to effectively eliminate the electrode EM arti-

facts in a noisy ECG. The three proposed models of the CPDAE, namely CPDAELite, 
CPDAERegular, and CPDAEFull, can be implemented on devices and platforms with different 
computational capabilities. The purpose of designing CWAP is to reduce memory usage 
while feature transfers are needed. Therefore, it can be applied to any network that in-
volves a shortcut layer or combines with an attention mechanism to selectively transfer 
features. The source code can be found in the supplementary materials. Considering that 
EM is the hardest noise to remove and causes PRD to be higher under the condition of −6 
dB SNRin, removing the EM signal without losing ECG features remains a challenge. To 
compare with state-of-the-art methods, the proposed models provided higher SNR with 
less computational complexity. The MAC and SNR results demonstrate that the proposed 
methods are suitable for future ECG instrumentation applications. However, among the 
limitations, it is worth noting that there were a small number of outliers in the boxplots of 
the three CPDAE models, which means the proposed method can not suppress the noise 
in some parts of all scenarios. Because the integrity of ECG segments in noisy ECGs cannot 
be ensured, the CPDAE misjudged ECG features as noise when the ECG features were 
not complete in noisy ECGs In addition, our studies can be extended to investigation of 
the following subjects: (1) The significant ECG features are kept completely or not; (2) 
Adding BW and MA noise to the evaluation; (3) The dataset should be re-checked because 
we found some ECGs containing noise in some fragments, which reduces the denoising 
performance during the training phase; (4) Using other loss function instead of MSE; (5) 
The information of RR intervals can be involved in the proposed CPDAE; (6) Considering 
that each ECG signal has highly similar and significant features, the generative adversarial 
networks (GAN) architecture can be a good solution to improve the quality of the recon-
structed ECG; (7) Although the three proposed CPDAE models demonstrate very out-
standing reconstructed quality, it is necessary to verify the usability of reconstructed 
ECGs via the doctor. 

Supplementary Materials: The following are available online at: https://github.com/Mag-
nusJhang/Channel-wise-Average-Pooling-and-1D-Pixel-Shuffle-Denoising-Autoencoder (accessed 
on 8 July 2022). 
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