
Citation: Yu, V.F.; Kao, H.-C.; Chiang,

F.-Y.; Lin, S.-W. Solving Aggregate

Production Planning Problems: An

Extended TOPSIS Approach. Appl.

Sci. 2022, 12, 6945. https://doi.org/

10.3390/app12146945

Academic Editor: Paolino Di Felice

Received: 13 April 2022

Accepted: 5 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Solving Aggregate Production Planning Problems: An Extended
TOPSIS Approach
Vincent F. Yu 1,2 , Hsuan-Chih Kao 3, Fu-Yuan Chiang 3 and Shih-Wei Lin 4,5,6,*

1 Department of Industrial Management, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; vincent@mail.ntust.edu.tw

2 Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology,
Taipei 106, Taiwan

3 Graduate Institute of Management, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; d10716008@mail.ntust.edu.tw (H.-C.K.); d10316002@mail.ntust.edu.tw (F.-Y.C.)

4 Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan
5 Department of Emergency Medicine, Keelung Chang Gung Memorial Hospital, Keelung City 204, Taiwan
6 Department of Industrial Engineering and Management, Ming Chi University of Technology,

New Taipei 243, Taiwan
* Correspondence: swlin@mail.cgu.edu.tw

Abstract: Aggregate production planning (APP) was developed for solving the problem of determin-
ing production, inventory, and workforce levels to meet fluctuating demand requirements over a
planning horizon. In this work, multiple objectives were considered to determine the most effective
means of satisfying forecasted demand by adjusting production rates, hiring and layoffs, inventory
levels, overtime work, back orders, and other controllable variables. An extended technique for order
preference via the similarity ideal solution (TOPSIS) approach was developed. It was formulated to
solve this complicated, multi-objective APP decision problem. Compromise (ideal solution) control
minimized the measure of distance, providing which of the closest solutions has the shortest distance
from a positive ideal solution (PIS) and the longest distance from a negative ideal solution (NIS). The
proposed method can transform multiple objectives into two objectives. The bi-objective problem can
then be solved by balancing satisfaction using a max–min operator for resolving the conflict between
the new criteria based on PIS and NIS. Finally, an application example demonstrated the proposed
model’s applicability to practical APP decision problems.

Keywords: aggregate production planning; compromise programming; multicriteria
decision-making; TOPSIS

1. Introduction

Optimal production, safety inventory, and manpower are concurrently determined
given a set of manufacturing resources and limitations, Baykasoglu [1] mentioned; the APP
spans the production planning time to a range of 2 to 18 months, during which the planners
may take into consideration each product category the overall production levels to meet
predictable fluctuating demands, which is justified from an aggregate point of view [2].
At the same time, such APP can provide production information to effectively utilize
an organization’s resources to satisfy various demands. Aggregate production planning
determines not only which output levels have to be met and what appropriate input mix of
resources should be used, but also how to meet prescribed requirements at minimum cost
without violating capacity limits [3].

It is essential to aggregate the information for it is almost impossible to consider every
detail related to the production planning without sacrificing its effectiveness in the long run.
This planning approach can calculate an aggregate number of production problems, such
as average item, weight, volume, production time, or dollar value. Productionquantities for
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each item or item group can be specifically determined upon the creation of the aggregate
production plan that includes anticipated constraints. One of the benefits of an APP is that it
provides multiple selections of mixes that contains either one or a combination of strategies
to respond to demand fluctuation, such as overtime/idle time production rate adjustment,
workforce size regulation, level production plus inventory policy, or sales shortfalls [4–6].
In addition, managers may have the option of using subcontracting as a suitable alternative
for part of the production schedule to reduce internal capacity shortages.

This work proposes a multi-objective planning (MOP) method to determine the most
effective means of satisfying forecast demand by adjusting production rates, hiring and
layoffs, inventory levels, overtime work, back orders, and other controllable variables. The
objective functions of this APP decision problem are to minimize total production costs, car-
rying and backordering costs, also changing workforce levels under production constraints.

While pervasive approaches–such as global criteria methods, goal programming, fuzzy
programming and interactive approaches–consider only the single criterion of shortest
distance from goal(s) or the positive ideal solution (PIS), the technique for order preference
via the similarity ideal solution (TOPSIS) provides a broader principle of compromise
for solving multiple criteria, decision-making problems. The compromise control (ideal
solution) minimizes the distance measure, provided that the nearest solution has the short-
est distance to the positive ideal solution (PIS) and the longest distance to the negative
ideal solution (NIS). The proposed method transforms multiple objectives into two ob-
jectives. The bi-objective problem can then be solved by balancing satisfaction through
a max–min operator to resolve the conflict between the new criteria based on PIS and
NIS. The development of the proposed approach is motivated by the following facts: (1) it
combines MOP and TOPSIS to provide an easy way to solve a complex APP problem;
(2) it can be efficiently coded when the problem is large in scale; and (3) this combined
decomposition-based method gives better results than traditional methods for solving
MODM problems [7]. The efficiency of the decomposition-based method increases sharply
with the size of the problem.

This work is organized as follows. First, Section 2 presents some approaches to solving
APP problems. Section 3 presents the formulation of the model. Section 4 provides a guide
for developing the optimal overall production plan using ideal-solution principles. A case
study in Section 5 demonstrates the applicability of the proposed model to practical APP
decision problems for developing the optimal overall production plan. Finally, conclusions
are drawn in Section 6.

2. Literature Review

Being well-known as a decision-making tool, this APP still has imperfections similar
to many real-life problems or real-life itself. A way to dissolve such an issue is by using
particular quadratic programming (e.g. Holt et al. [8]), and numerous models have spawned
henceforth [9–16], among which subjective criteria are rare in the majority and rather
transformed into quantitative ones [17]. Aydin and Tirkolaee [18] conducted a systematic
review of the literature on APP over the last 50 years. The main objective is to relate current
APP research to sustainable development using digital technologies. They discussed
the limitations of existing research and gave suggestions to overcome them in the era of
Industry 4.0. More insight into APP research that focuses on sustainability and circularity
as well as future research directions are also provided. Alazemi et al. [19] proposed
a 3-phase fuzzy-based framework to minimize product completion time under fuzzy
conditions, which can be applied to small and medium-sized supply chains in developing
countries. Some effective techniques have also been used to solve this complicated problem
occasionally. These successful methods are discussed in the following subsections.

2.1. Robust Optimization

An APP is based on parameters with uncertain values in many production envi-
ronments. Since product demand can be uncertain, the robustness of such planning
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relies on incorporating uncertain parameters into production scheduling model to ad-
dress such uncertainty and to meet production demands. Leung et al. [20] developed a
solid optimization model to resolve a multisite APP problem in an uncertain environment.
Kazemi-Zanjani et al. [21] on the other hand proposed another optimization approach as a
possible method in a manufacturing environment but with random yields instead. Al-e-
Hashem et al.’s [4] vigorous optimization model is designated to handle multiple products
and locations in APP problems, where two conflicting objectives are simultaneously con-
sidered as well as the volatile nature of the supply chain. The supply chain cost parameters
and demand fluctuations can be unreliable; the problem can then be transformed into a
linear multi-objective problem.

2.2. Mixed Integer/Integer Linear Programming

Mixed integer programming is widely used in recent researches. Dhaenens-flipo
and Finke [22] created a mixed-integer linear programming-based planning model in a
multi-firm, multi-product, and multi-period environment. Park [23] proposed an integrated
transportation and production planning model using mixed-integer linear programming
in an environment that contains multiple locations, numerous readers, various products,
and aggregate phases. The author also presented a sub-model that generates inputs to
another sub-model from its outputs that has a transportation planning purpose and a
general objective of maximizing total profit using the same technique as Dhaenens-flipo
and Finke [22]. Da Silva et al. [24] presented an APP model applied to a Portuguese firm
that produces construction materials and developed a multi-criteria, mixed-integer linear
programming model with the following performance criteria: profit maximization, order
timeliness, and workforce stability. It includes certain operational features, such as partial
inflexibility of the workforce, legal constraints on workload, size of the workforce, workers
in training, and production and inventory capacity. The purpose is to determine the number
and types of workers, overtime hours, inventory level for each product category, and
subcontracting necessities. Rizk et al. [25] proposed a mixed-integer, linear programming
model for production and distribution planning in a manufacturing environment with a
single production facility and multiple distribution centers.

2.3. Nonlinear Programming

To satisfy multiple conflicting objectives, such as multiple products, phasic production,
more than 1 periods, and/or numerous unmeasurable goals, Chen and Lee [26] formulated
a mixed-integer, nonlinear programming problem that can be used on a multi-echelon
supply chain network with unpredictable market demand and variable product prices.
It can provide solutions to issues such as fair profit distribution, secure inventory levels,
maximum customer service levels, and the robustness of decisions with respect to uncertain
product demand. This model simultaneously accounts for compromised product price
preference levels of from the sellers’ and buyers’ perspectives. Lababidi et al. [27] also
created a deterministic, mixed nonlinear integer programming model to optimize supply
chain system resources by minimizing total production costs and raw material procurement,
as well as loss costs, transportation costs, reorder costs, and labor change costs while
maximizing overall customer satisfaction in terms of inventory levels, demand, labor levels,
machine capacity, and warehouse space.

2.4. Fuzzy Mathematical Programming

Classical mathematical programming may not be perfect for solving APP problems.
Wang and Fang [28] discussed these limitations and proposed a fuzzy linear programming
model that considers pricing, subcontracting costs, workforce sizes, manufacturing scales,
and market feedback using fuzzy set theory. Fung et al. [29] modeled multiproduct APP
problems with rough demand, uncertain capacity, and financial constraints. With these
unclear demand, and vague production capacities, a fuzzy production-inventory equation
for a single period, and a dynamic equation for equilibrium are developed as fuzzy/soft
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equations, representing the possibilities of meeting market demand. Using this formulation
and interpretation, a fuzzy multi-product aggregate production-planning model was built,
which introduces its solution-implementing parametric programming, best balance, and
interactive techniques to meet different scenarios based on different decision preferences.
Chen and Huang [30] proposed an approach to finding the membership function of fuzzy
minimum total cost of APP problems with fuzzy parameters. This approach applies α-cuts
and Zadeh’s extension principle to transform the fuzzy APP model into a family of crisp
APP models that can be described by a pair of mathematical programs. The lower and
upper bounds of the α-cuts of the fuzzy minimum total cost for different probability levels
α were calculated to derive the approximated membership function; the corresponding
optimal aggregate production schedules were also provided.

2.5. Algorithms for Solving Large-Scale Problems

Pradenas et al. [31] developed a mathematical model and a heuristic procedure based
on a tabu search for the aggregate production scheduling problem, set in a sawmill, to
determine the quantities of different tree trunk (product) types and use different cutting
(manufacturing) schedules. Aliev et al. [32] designed a fuzzy-integrated multi-period and
multi-product production and distribution model for the supply chain. The model was built
in the form of fuzzy programming, and a genetic algorithm provided the solution. These
along with interactive aggregate can provide a reasonable tradeoff between maximizing
of profit and fill rate. Jain and Palekar [33] presented and compared several heuristics for
generating input data for solving APP problems through configuration-based formulations.
Computational experiments show that large, real-world problems can be solved in a
reasonable time frame using heuristics and commercial optimization software, such as
CPLEX. Ramezanian et al. [34] have developed a mixed-integer, linear programming
(MILP) model to solve NP-hard problems based on genetic and tabu search algorithms
in production systems, which generates multiple different products with demands that
require a stock-up of inventory. Zare, H. et al. [35] concluded this best by suggesting
that decision-makers are enabled to put together “environmental, organizational, and
managerial factors” and derive multiple objectives and priorities via goal planning. Based
on the literature review, a multi-objective model (MOP) was constructed. The proposed
approach extends the TOPSIS method to solve the complex, multi-objective constrained
production planning process problem faced by many manufacturing firms.

3. Problem Formulation

The APP problem can be described as follows. It is assumed that a firm produces
a single product to satisfy market demand over the planning horizon. The problem is
to determine the most effective manufacturing mix that satisfies the projected demand
by adjusting production rates, workforce sizes and loads, inventory levels, order status,
supplier collaboration, and other controllable variables. The objective functions of this APP
decision problem are to maximize sales revenue, to minimize total production costs, and to
minimize repair costs as well. Thus, the APP problem can be derived into a mathematical
model under the following assumptions:

Notations

The notations used in the model are given as follows.

Parameters

sri = sales revenue for product i ($/unit)
pci = production cost of regular time for product i ($/unit)
oci = production cost of overtime for product i ($/unit)
cci = inventory carrying costs for product i in each period ($/unit period)
bci = stock-out cost for product i in period t ($/unit period)
lct = regular payroll cost per worker in period t ($/man hour)
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hct = cost of hiring one worker in period t ($/man-day)
f ct = cost of firing one worker in period t ($/man-day)
rci = repair cost for product i ($/unit)
ρi = defect rate for product i
ki = labor time for product i (man-hour/unit)
δ = regular working hours per worker per day
β= fraction of regular workforce available for overtime use in period t
Wo = initial workforce level (man-day)
Wtmax = maximum workforce level available in period t
t = planning horizon or number of periods
Io = initial inventory level (units)
Bo = initial backorder level (units)
Ditmax = maximum demand for product i in period t (units)
Ditmin = minimum demand for product i in period t (units)
Mt = regular time machine capacity in period t (machine-hour)
θMt = fraction of regular machine capacity available for overtime use in period t
bi = machine time for product i (machine-hour/unit)
_
It = the storage space limitation in period t
αi = fraction of subcontracting output available for product i
Ctmax = maximum capacity limitation of subcontracting in period t
QtMOQ = minimum order quantity for subcontracting in period t

Decision Variables

Iit = inventory level for product i in period t (units)
Bit = backorder level for product i in period t (units)
RPit = the unit of regular time production for product i in period t
OPit = the unit of overtime production for product i in period t
OSit = the unit of subcontracting production for product i in period t
Wt = the number of workers in period t
Ht = the number of workers hired in period t
Lt = the number of workers laid off in period t

Objective Functions

This proposed APP problem considers three objectives: maximizing sales revenue,
minimizing total production cost, and minimizing repair cost. The sales revenue indicates
the market share. When market share is a main concern for a company, maximizing sales
revenue becomes a primary objective in the APP problem. Repair costs can represent inner
failure costs in the production process. In many cases, inner failure costs may be a chief
goal because they impact the utilization of production resources. When inner failure costs
are high, a company may be forced to use overtime production or more resources. In
these cases, repair costs should be considered a separate objective, instead of a component
of production costs. In this case, minimizing total production costs, maximizing sales
revenue, and minimizing repair costs are all important considerations for the case company.
Therefore, it is more appropriate to model them as three separate objectives so that the APP
model can find a Pareto optimum that balances these three goals. Thus, we formulate a
three-objective, multiple-period APP model for the case study as follows:

Maximize Sales Revenue

maxZ1 = ∑N
i=1 ∑T

t=1 sri × (Iit−1 − Bit−1 + RPit + OPit + OSit − Iit + Bit) (1)
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Minimize Production Costs

minZ2 =
N
∑

i=1

T
∑

t=1
(pci × RPit + oci ×OPit + sci ×OSit + cci × Iit + bci × Bit)+

∑T
t=1(hct × Ht + f ct × Lt) + ∑T

t=1 lct ×Wt

(2)

Minimize Repair Costs

minZ3 = ∑N
i=1 ∑T

t=1 ρi × rci × (RPit + OPit) (3)

The first objective function in (1) is to achieve the highest possible return from the
quantities generated by regular production, overtime production, and contract production,
including inventories and back orders. The second objective function in (2) is to mini-
mize production costs, which contain three components. The first component involves
production costs, subcontracting costs, inventory, and backorder level costs. The second
component entails extra production loading or how many workers would have to be laid
off to reduce overhead. The last component is the labor costs associated with regular-time
workers. The third objective function in (3) considers the quality issue. Defect rates differ
slightly across products. Management has set an acceptable (if not desirable) amount that
the company is willing to pay in each period for repair costs. The first objective function
is to maximize sales revenue and increase production quantities to achieve the highest
possible goal. However, attaining the highest possible revenue may result in increased
production costs in the second objective function. Similarly, increased repair costs may
raise total expenses, which impacts total sales revenue. Most conflicts are generated by
improving each objective function. Attempting to enhance each objective function may
result in further conflicts. Hence, this paper proposes a compromised solution to solve
this problem.

Constraints

After the three objective functions formulated in the previous section, nine constraints
related to the APP model were set up as follows.

Wt ≤Wtmax (4)

Wt = Wt−1 + Ht − Lt, t ∈ T (5)

Ht × Lt = 0, t ∈ T (6)

∑N
i=1 ki × RPit ≤ δ×Wt, t ∈ T (7)

∑N
i=1 ki ×OPitδ× β×Wt, t ∈ T (8)

Iit−1 − Bit−1 + RPit + OPit + OSit − Iit + Bit ≤ Ditmax
i ∈ I, t ∈ T

(9)

RPit + OPit + OSit + Iit−1 − Bit−1 ≥ Ditmin
i ∈ I, t ∈ T

(10)

Iit × Bit = 0, i ∈ I, t ∈ T (11)

∑N
i=1 bi × RPit ≤ Mt, t ∈ T (12)

∑N
i=1 bi ×OPit ≤ θMt Mt, t ∈ T (13)

∑N
i=1 Iit ≤

_
It, t ∈ T (14)

QtMOQ ≤∑N
i=1 αiOSit ≤ Ctmax (15)
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RPit, OPit, OSit, Iit, Bit, Wt, Ht,
_
It ≥ 0,

i ∈ I, t ∈ T
(16)

Constraint (4) ensures that the limit of the maximum available labor is respected in
each period. Constraint (5) ensures that the available workforce in each period is equal to
the workforce in the previous period, plus or minus any change in the workforce in the
current period. The change in headcount may be due to the hiring of additional workers or
the laying off of redundant workers. Constraint (6) states that Ht × Lt= 0 because either
net hiring or net laying off of workers occurs in a period but not both simultaneously.
Constraints (7) and (8) ensure that the hours worked to produce products during regular
and overtime hours are limited to the available regular and overtime hours. Constraints
(9) and (10) specify that the quantity of products sold is between the minimum known
demand and the maximum forecast demand. Constraint (11) ensures that either inventory
or backorders are included in the solution, but not both. Constraints (12) and (13) ensure
that the machine times for manufacturing the products are limited to the regular and
overtime machine capacity in the manufacturing facility. Constraint (14) ensures that
the inventory does not exceed the maximum storage space limit. Constraint (15) ensures
that procurement quantities can meet the minimum order quantity, but do not exceed
the maximum supplier capacity. Constraint (16) ensures that all decision variables are
non-negative.

4. Model Solution
4.1. dp Distance Concept

To solve the MOP problems, initial reference points must be established to obtain
compromise programming, such as the global criteria method, goal programming, fuzzy
programming, and the interactive approach. With given reference points, the MOP prob-
lems can then be solved in the way that is closest to the ideal point. Thus, the problem is
how to measure the distance to the ideal point. Target programming measures this distance
using the weighted sum of the absolute distance to the given targets. The dp metric defines
the distance between two points, z and z+ (ideal point), in k-dimensional space as:

dp =
{
∑k

j=1

[
z+j − zj

]p}1/p
, where p ≥ 1, (17)

Based on the distance concept, the compromise programming (CP) model [36,37]
follows goal-seeking behavior, looking for the closest solution to the ideal point in terms of
a distance function, given by:

dp(x) =
{
∑k

j=1 wp
j

[
z+j − zj(x)

]p}1/p
, where p ≥ 1, (18)

where p is the order of the norm, wj are the weights given to the normalized devia-
tions, X is the set of feasible alternatives, and z+ = (z+1 , z+2 , · · · , z+k ) is the ideal point
(z+j = opt{zj(x), x ∈ X}).

The parameter p is a factor that balances group utility with maximum individual
regret. As the value of p increases, the distance dp decreases, i.e., d1 ≥ d2 ≥ · · · ≥ dp, and
greater emphasis is given more importance in forming the total. Specifically, p = 1 means
that all these deviations are equally important, while p = 2 means that these deviations are
weighted proportionally, with the largest deviation having the greatest weight. Finally, for
p = ∞, the largest deviation completely dominates the distance determination [38,39].

d∞ = max
j

{
wj

∣∣∣z+j − zj(x)
}

, j ∈ k (19)

However, because of the incommensurability among these objectives, it is not possible
to use the above distance family directly. To remove the effects of the incommensurability,
we have need to normalize the distance (18) by taking the ideal point [40,41] as:
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dp =

{
∑k

j=1 wp
j

[
z+j − zj(x)

z+j

]p}1/p

, where p ≥ 1 (20)

The amount of dp decreases when parameter p increases.
To obtain a compromise solution, the global criteria method for MOP problems calcu-

lates the distance value, where the ideal solution is the reference point. The problem now is
how to solve the following auxiliary problem [39]:

min
x∈S

dp =

{
∑k

j=1 wp
j

[
zj(x+)− zj(x)

zj(x+)

]p}1/p

, (21)

where x+, j ∈ k is the positive ideal solution, and p = 1, . . . , ∞.
In the next section, the concept of TOPSIS is extended for MODM problems to obtain

a compromise solution for MOP problems.

4.2. TOPSIS for Solving MOP Problems

Hwang and Yoon [34] proposed TOPSIS (technique for order preference by similarity
to ideal solution). Usually, the solutions based on the positive ideal solution (PIS) are
different from the solutions based on the negative ideal solution (NIS). Therefore, both
PIS(x∗) and NIS(x∗) can be used to normalize the distance family as follows [7,37,38]:

dp =

{
∑k

j=1 wp
j

[
z+j − zj(x)

z+j − z−j

]p}1/p

, where p ≥ 1 (22)

where z+j and z−j are the maximum and minimum values of the function zj(x), respectively.
They include the positive ideal solution (PIS) and the negative ideal solution (NIS) for

solving multi-attribute decision making (MADM) problems. Using a similar concept, the
principle of TOPSIS for MODM is to determine the optimal solution such that it minimizes
the distance to PIS and maximizes the distance to NIS. Suppose there is the following
MOP problem:

max/min [z1(x), z2(x), . . . , zk(x)] (23)

s.t.X = {x ∈ X|gi(x) ≤,=,≥ bi,
∀i = 1, . . . , m, x ≥ 0, x ∈ Rk} (24)

where
zj(x) = benefit objective for maximization j ∈ J
zi(x) = cost objective for minimization i ∈ I
The ideal and anti-ideal values of a maximization objective are calculated using (25)

under the problem constraints. The same values of a minimization objective are computed
from (26) under the constraints of the problem.

z+ =

{
max
x∈X

zj(x), j = 1, 2, . . . , k
}

,

z− =

{
min
x∈X

zj(x), j = 1, 2, . . . , k
}

or
(25)

z+ =

{
min
x∈X

zi(x), i = 1, 2, . . . , k
}

,

z− =

{
max
x∈X

zi(x), i = 1, 2, . . . , k
} (26)
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where j ∈ J, i ∈ I, z+ =
{

z+1 , · · · , z+k
}

, and z− =
{

z−1 , · · · , z−k
}

is a set of individual
positive (negative) ideal solutions and is a point in the k-dimensional objective functional
space. Using the PIS and the NIS, the following distance functions are obtained:

dPIS
p =

{
∑j∈k1

wp
j

[
z+j − zj(x)

z+j − z−j

]p

+ ∑i∈k2
wp

i

[
zi(x)− zi

+

z−i − z+i

]p}1/p

(27)

and

dNIS
p =

{
∑j∈k1

wp
j

[
zj(x)− zj

−

z+j − z−j

]p

+ ∑i∈k2
wp

i

[
zi
− − zi(x)
z−i − z+i

]p}1/p

(28)

where wj, wi, j = 1, 2, · · · , k1, and i = 1, 2, · · · , k2 are the relative weights of the objectives,
k1 denotes the number of maximizing (or minimizing) objective functions, k2 represents
the number of minimizing (or maximizing) objective functions and p = 1, . . . , ∞.

To obtain a compromise solution, the MOP problem is transformed into the following
bi-objective problem with two justifiable goals:

min dPIS
p (x) (29)

max dNIS
p (x) (30)

s.t. X = {x ∈ X|gi(x) ≤,=,≥ bi,
∀i = 1, . . . , m, x ≥ 0, x ∈ Rk}, (31)

where p = 1, 2, . . . , ∞, dPIS
p , and dNIS

p represent the distances of the dp-metric from the PIS
and from the NIS, respectively. Since there are usually conflicts with the individual targets,
it is difficult to achieve their individual optima simultaneously. Therefore, the membership
functions µ1(x) and µ2(x) are used to represent the satisfactory level of the bi-objective
functions and use the max-min operation [42,43] to control the equivalent model, given the
same values of γ:

max γ (32)

s.t. µ1(x) ≥ γ
µ2(x) ≥ γ

x ∈ X
(33)

where γ = min(µ1, µ2) is the minimal satisfaction level for the two criteria of shortest
distance from PIS and farthest distance from NIS. The membership functions µ1(x) and
µ2(x) are shown in Equations (34) and (35), respectively.

5. Model Implementation
5.1. Data Description

In this section, we describe the application of the proposed approach to a real-world
aggregate production planning problem. Founded in 1989, the company is the leading
provider of complete broadband access solutions for internet service providers, enterprises,
and home users. The company has more than 3200 employees and sales offices worldwide.
The company’s 2008 revenue was more than US$479 million. Production facilities are
located in Taiwan and mainland China. The company produces two products (Wireless
LAN and Ethernet Switch) from its Taiwan manufacturing plants to fulfill demand. Based
on company reports, a six-period planning horizon is determined. The regular workday is 8
(δ) man-hours. The regular payroll is NT$150 (lct) in each period. The costs associated with
hiring and firing are NT$50 (hct) and NT$40 ( f ct) per worker per day, respectively. Produc-
tion costs for overtime are limited to a maximum of 30% (β) of regular-time production. It is
also assumed that there is no beginning inventory (Ii0) or backorder (Bi0) for each product.
The storage space limitation of the inventory does not exceed 2000 m3 (

_
I). Table 1 shows

the sales revenue of each product and the production cost. Table 2 presents the related
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operating data. The minimum order quantity of a subcontractor is 1000 units (QtMOQ),
but the capacity does not exceed 5000 units (Ctmax) in each period. Table 3 depicts the
maximum workforce and fraction of machine capacity. The regular time machine capacity
in each period (Mt) is 12,000 h. Finally, Table 4 displays the maximum forecast demand
and minimum known demand.

Table 1. Sales Revenue and Production Costs.

Product (i) Sales
Revenue (sri)

Production Costs,
Regular Time (pci)

Production Costs,
Overtime (oci)

Subcontracting
Costs (sci)

Inventory
Costs (cci)

Backorder
Costs (bci)

1 100 50 70 90 50 45
2 200 60 80 110 55 50

Table 2. Related Operating Data.

Product (i) Labor Time for
Product (ki)

Machine Time
(bi)

Subcontracting
Output Fraction

(αi)

Repair Cost
(rci)

Defect Rate (ρi)

1 2 0.3 0.5 30 5%
2 3 0.4 0.6 45 3%

Table 3. Maximum Work Force and Fraction of Machine Capacity.

Period (t)

1 2 3 4 5 6

Wtmax 450 500 350 550 400 500
θMt 0.5 0.4 0.5 0.4 0.6 0.6

Table 4. Maximum forecast demand and minimum known demand.

Period (t)

1 2 3 4 5 6

Product: 1 (Wireless LAN)
Maximum forecast demand 1 6000 7000 5500 5000 4500 6000
Minimum known demand 1 2000 2500 1500 1300 1000 2000
Product: 2 (Ethernet Switch)
Maximum forecast demand 2 5500 6000 6500 4000 5000 3500
Minimum known demand 2 1500 2000 2300 2000 1000 800

5.2. Problem Solving

Using the data presented in the previous subsection, LINGO–a commercial optimiza-
tion software–is used to solve this model. A traditional linear programming approach with
a single objective in (23)–(26) was used to solve a set of single positive ideal solutions and
negative ideal solutions. Then, the payoff table PIS and the payoff table NIS constructed in
Tables 5 and 6, respectively, were obtained.

Table 5. PIS Payoff Table.

Z1 Z2 Z3

Max Z1 9,500,000 + 6,488,440 22,790
Min Z2 1,697,000 1,642,785 + 3318
Min Z3 5,000,000 3,858,000 0 +

PIS: z+ = (9,500,000, 1,642,785, 0).
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Table 6. NIS Payoff Table.

Z1 Z2 Z3

Min Z1 1,677,200 − 1,654,480 3318
Max Z2 9,500,000 8,494,955 − 18,389
Max Z3 7,776,000 5,183,500 33,930 −

NIS: z− = (1,677,200, 8,494,955, 33,930).

Next, the information from the PIS and NIS payoff tables was used to transform (27)
and (28). Thus, dPIS

p and dNIS
p in (36) and (37) were acquired.

µ1(xk) =


1 i f dPIS

p (xk) > (dPIS
p )

+

1− dPIS
p (xk)−(dPIS

p )
+

(dPIS
p )

−−(dPIS
p )

+ i f (dPIS
p )

− ≤ dPIS
p (xk) ≤ (dPIS

p )
+

0 i f dPIS
p (xk) < (dPIS

p )
−

(34)

µ2(xk) =


1 i f dNIS

p (xk) > (dNIS
p )

+

1− (dNIS
p )

+−dNIS
p (xk)

(dNIS
p )

+−(dNIS
p )

− i f (dNIS
p )

− ≤ dNIS
p (xk) ≤ (dNIS

p )
+

0 i f dNIS
p (xk) < (dNIS

p )
−

(35)

dPIS
p =


(∑2

i=1 ∑6
t=1 wp

1 × [(9, 500, 000− Z1)/(9, 500, 000− 1, 677, 200)]p+

∑2
i=1 ∑6

t=1 wp
2 × [(Z2 − 1, 642, 785)/(8, 494, 955− 1, 642, 785)]p+

∑2
i=1 ∑6

t=1 wp
3 × [(Z3 − 0)/(33, 930− 0)]p)


1/p

(36)

dNIS
p =


(∑2

i=1 ∑6
t=1 wp

1 × [(Z1 − 1, 677, 200)/(9, 500, 000− 1, 677, 200)]p+

∑2
i=1 ∑6

t=1 wp
2 × [(8, 494, 955− Z2)/(8, 494, 955− 1, 642, 785)]p+

∑2
i=1 ∑6

t=1 wp
3 × [(33, 930− Z3)/(33, 930− 0)]p)


1/p

(37)

To obtain numerical solutions in (29)–(31), the weights of dPIS
p and dNIS

p are set as
w1 = 0.4, w2 = 0.3, and w3 = 0.3. According to Lai et al.’s study [39], increasing in p
increases the influence of objectives with large weights on the measurement distances.
Thus, the value of p is related to the preferences of decision-makers. In this study, p = 1 was
set to obtain the problem as either concave or convex. If the preference for the p value that
is significantly different from 1 can be efficiently solved with multiple local optima, then
the other p values can be set in the future. Table 7 showed the PIS Payoff Table for this case.

Table 7. PIS Payoff Table.

dPIS
1 dNIS

1

MindPIS
1 1.35858 1.49444

MaxdNIS
1 3.78877 1.43973

Finally, the membership functions µ1(x) and µ2(x) of (29)–(31) can be used to represent
the satisfactory level of bi-objective functions and use the max–min operation to control the
corresponding model. This results in the following formulation can be obtained:

max γ (38)

s.t.
(
dPIS

1 (x)− 1.35858
)
/(2.4302) ≥ γ(

1.43973− dNIS
1 (x)

)
/(−0.05474) ≥ γ

x ∈ X

(39)

When the results of dPIS
1 and dNIS

1 are calculated, the problems of (38) and (39) can
be solved. In Table 7, the maximum satisfactory level (γmax) is 0.7120 to achieve the
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compromise solution for the production plan in Table 8. From the system of Equations (36),
(37) and (3), three values Z1, Z2, Z3 are found. The sales revenue (Z1), production costs
(Z2), and repair costs (Z3) are NT$7,662,900, NT$4,779,525, and NT$10,458, respectively.

Table 8. Compromise Solution for the Production Plan.

Period (t)

1 2 3 4 5 6

Product: 1 (Wireless LAN)
Regular time production 734 753 128 633 485 305

Overtime production 10 102 194 207 26 127
Subcontracting level 2143 1662 1870 492 491 2978

Inventory level 0 0 0 0 0 0
Backorder level 0 0 0 0 0 0

Product: 2 (Ethernet Switch)
Regular time production 61 207 848 0 743 871

Overtime production 317 240 3 88 97 156
Subcontracting level 5122 5553 5661 3900 2721 2290

Inventory level 0 0 12 0 0 0
Backorder level 0 0 0 0 1439 1622
Workforce level 450 500 350 550 400 500

Hiring 0 50 0 200 0 100
Laying off 50 0 150 0 150 0

5.3. Performance Analysis

To evaluate the performance of the proposed approach, the dp distance concept was
used to develop an evaluation method; (19)–(21) were considered to determine the degree
of closeness of the result of the extended TOPSIS approach to the ideal solution. The
distance functions can be defined as follows.

d∞ = max
{

wj

∣∣∣z+j −zj(x)
}

, j ∈ k

and

dp =

{
k

∑
j=1

wp
j

[
z+j − zj(x)

z+j

]p}1/p

, p ≥ 1, j ∈ k

where dp represents the degree of approximation of the preferred compromise solution
vector X to the optimal solution vector with respect to the kth objective function. Here,
w = (w1, w2, · · · , wk) is the vector of objective demand levels. The power p represents a
distance parameter 1 ≤ p ≤ ∞.

Finally, the solution of the illustrative example is considered using different meth-
ods. The target programming approach (a) yields the following results: Z1 = 4,750,000,
Z2 = 2,616,120, and Z3 = 3785. The fuzzy goal programming approach (b) [16] gives the
following results: Z1 = 3,350,000, Z2 = 2,679,250, and Z3 = 3785. The compromise program-
ming (CP) approach (c) [41] yields Z1 = 7,530,000, Z2 = 4,706,250, and Z3 = 1019. On the
other hand, the proposed approach (d) obtains the solution Z1 = 7,662,900, Z2 = 4,779,525,
and Z3 = 10,458. Table 9 compares the results obtained by three existing methods and
the proposed approach. In the given example, it is assumed that w1 = 0.4, w2 = 0.3, and
w3 = 0.3.

From Table 9 and Figure 1, it is clear that approaches (c) and (d) offer preferred
solutions that are better than the solutions obtained by approaches (a) and (b) for all
distance functions d1, d2, and d∞. The profits and sales revenues resulting from approaches
(c) and (d) are also higher than those obtained by the other two approaches. In addition,
further comparison between approaches (c) and (d) reveals that the profit of the solution
obtained by the proposed approach (d) is higher than that resulting from approach (c).
The sales revenue (market share) in the solution is 132,900 units higher than that obtained
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by approach (c). Moreover, the distances d1 and d2 are shorter in the solution, while
d∞ is the same for the two approaches. The shorter the distances d1 and d2 are, the
better the performance. Thus, these outcomes show that the proposed approach has good
performance. It can be concluded that the extended TOPSIS compromise solution is more
suitable than the other approaches. The comparison between different approaches is
illustrated in Figure 1.

Table 9. Comparison of Solutions Obtained by Four Different Approaches.

(a) GP (b) Fuzzy GP (c) CP (d) Proposed Approach (e) Optimal Solution

Z1 4,750,000 3,350,000 7,530,000 7,662,900 9,500,000
Z2 2,616,120 2,679,250 4,706,250 4,779,525 1,642,785
Z3 3785 3785 1019 10,458 0

Profit 2,130,095 666,965 2,822,731 2,872,917 -
d1 0.8116 1.1504 0.5999 0.5928 -
d2 0.5123 0.8017 0.3729 0.3714 -
d∞ 0.4000 0.7343 0.3000 0.3000 -
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6. Conclusions

In this paper, the TOPSIS compromise solution method was extended to solve pro-
gramming problems with multiple objectives. The APP model, combined with a TOPSIS
approach, provides an effective way to find a satisfactory solution to such problems. In
generally, TOPSIS provides a broader principle of compromise for solving multiple-criteria
decision making problems. It converts k-objectives, which are conflicting and incompat-
ible with each other, into two-objectives (the shortest distance from PIS and the longest
distance from NIS), which are compatible and conflicting with each other in most cases.
The bi-objective problem can then be solved using membership functions to represent
the satisfaction level for both criteria and obtain a TOPSIS compromise solution via a
second-order compromise. The max–min operator is then considered a suitable approach
to solve the conflict between the new criteria (the shortest distance from the PIS and the
longest distance from the NIS) [39].

The proposed APP model provides useful information to the industry from the de-
termined optimal overall production plan. Using this model, decision-makers can work
out the optimal number of temporary workers to hire at the beginning of each period, the
optimal number of temporary workers to be laid off at the end of each period, and the
number of temporary workers that should be available in each period. This information
is useful for managing the human resources of a manufacturing company. The output of
this model also provides information on the optimal number of overtime man-hours of
permanent and temporary workers during workdays and holidays, inventory levels, and
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the number of regular working hours for some periods. The related cost elements and total
costs are presented for financial consideration by top management.

In this paper, four advantages of TOPSIS have been addressed: (i) sound logic that is
the rationale in solving multi-objective decision problems; (ii) a scalar value that considers
both the best and worst ideal solutions simultaneously; (iii) a simple calculation process
that can be easily programmed into a spreadsheet; and (iv) the performance measures
compared to other approaches can be visualized on a polyhedron.

The proposed general APP model is applicable to a wide range of industries in
which the output per period can be adjusted by changing the number of jobs and the
number of workers, and by applying overtime. However, the proposed APP model is not
suitable for multi-plant and multi-product problems because the model’s design is suitable
for single-product, single-plant problems. A new APP model can be constructed with
different sets of constraints to handle problems with multiple plants and multi-product.
We recommend that further studies be conducted to develop APP models that meet the
specific requirements of multi-plant and multi-product problems. Appropriate methods
for disaggregating the aggregate plan into the total production plan should also be devised
based on the situations and requirements of the industries.

Author Contributions: Conceptualization, V.F.Y., H.-C.K. and F.-Y.C.; methodology, H.-C.K. and
F.-Y.C.; software, H.-C.K. and F.-Y.C.; validation, V.F.Y., H.-C.K., F.-Y.C. and S.-W.L.; formal analy-
sis, H.-C.K. and F.-Y.C.; investigation, H.-C.K. and F.-Y.C.; resources, V.F.Y.; data curation, H.-C.K.
and F.-Y.C.; writing—original draft preparation, H.-C.K. and F.-Y.C.; writing—review and editing,
V.F.Y., H.-C.K., F.-Y.C. and S.-W.L.; supervision, V.F.Y. and S.-W.L.; project administration, V.F.Y.;
funding acquisition, V.F.Y. and S.-W.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The work of the first author is partially supported by the Ministry of Science and Technology
of the Republic of China (Taiwan) under Grant MOST 108-2221-E-011-051-MY3 and the Center for
Cyber-Physical System Innovation from the Featured Areas Research Center Program within the
framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan. The
fourth author of the work is grateful to the Ministry of Science and Technology, Taiwan, and the
Linkou Chang Gung Memorial Hospital for financially supporting this research grants MOST 109-
2410-H-182-009MY3 and BMRPA19, respectively.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baykasoglu, A. MOAPPS 1.0: Aggregate production planning using the multiple-objective tabu search. Int. J. Prod. Res. 2001,

39, 3685–3702. [CrossRef]
2. Nam, S.-J.; Logendran, R. Aggregate production planning—A survey of models and methodologies. Eur. J. Oper. Res. 1992,

61, 255–272. [CrossRef]
3. Yan, H.-S.; Zhang, X.-D.; Jiang, M. Hierarchical production planning with demand constraints. Comput. Ind. Eng. 2004,

46, 533–551. [CrossRef]
4. Al-e-Hashem, S.M.J.M.; Malekly, H.; Aryanezhad, M.B. A multi-objective robust optimization model for multi-product multi-site

aggregate production planning in a supply chain under uncertainty. Int. J. Prod. Econ. 2011, 134, 28–42. [CrossRef]
5. Jamalnia, A.; Soukhakian, M.A. A hybrid fuzzy goal programming approach with different goal priorities to aggregate production

planning. Comput. Ind. Eng. 2009, 56, 1474–1486. [CrossRef]
6. Leung, S.C.H.; Wu, Y.; Lai, K.K. Multi-site aggregate production planning with multiple objectives: A goal programming

approach. Prod. Plan. Control 2003, 14, 425–436. [CrossRef]
7. Abo-Sinna, M.A.; Amer, A.H. Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Appl. Math.

Comput. 2005, 162, 243–256. [CrossRef]
8. Holt, C.C.; Modigliani, F.; Simon, H.A. A linear decision rule for production and employment scheduling. Manag. Sci. 1955,

2, 1–30. [CrossRef]

http://doi.org/10.1080/00207540110061607
http://doi.org/10.1016/0377-2217(92)90356-E
http://doi.org/10.1016/j.cie.2004.01.012
http://doi.org/10.1016/j.ijpe.2011.01.027
http://doi.org/10.1016/j.cie.2008.09.010
http://doi.org/10.1080/0953728031000154264
http://doi.org/10.1016/j.amc.2003.12.087
http://doi.org/10.1287/mnsc.2.1.1


Appl. Sci. 2022, 12, 6945 15 of 16

9. Guzman, E.; Andres, B.; Poler, R. Models and algorithms for production planning, scheduling and sequencing problems:
A holistic framework and a systematic review. J. Ind. Inf. Integr. 2021; in press. [CrossRef]

10. Jang, J.; Chung, B.D. Aggregate production planning considering implementation error: A robust optimization approach using
bi-level particle swarm optimization. Comput. Ind. Eng. 2020, 142, 106367. [CrossRef]

11. Attia, E.-A.; Megahed, A.; AlArjani, A.; Elbetar, A.; Duquenne, P. Aggregate production planning considering organizational
learning with case based analysis. Ain Shams Eng. J. 2022, 13, 101575. [CrossRef]

12. Mehdizadeh, E.; Niaki, S.T.A.; Hemati, M. A bi-objective aggregate production planning problem with learning effect and
machine deterioration: Modeling and solution. Comput. Oper. Res. 2018, 91, 21–36. [CrossRef]

13. Bakar, M.R.A.; Bakheet, A.J.K.; Kamil, F.; Kalaf, B.A.; Abbas, I.T.; Soon, L.L. Enhanced simulated annealing for solving aggregate
production planning. Math. Probl. Eng. 2016, 2016, 1679315.

14. Wang, S.-C.; Yeh, M.-F. A modified particle swarm optimization for aggregate production planning. Expert Syst. Appl. 2014,
41, 3069–3077. [CrossRef]

15. Aazami, A.; Saidi-Mehrabad, M. Benders decomposition algorithm for robust aggregate production planning considering pricing
decisions in competitive environment: A case study. Sci. Iran. 2019, 26, 3007–3031. [CrossRef]

16. Yang, T.; Ignizio, J.P.; Kim, H.J. Fuzzy programming with nonlinear membership functions: Piecewise linear approximation.
Fuzzy Sets Syst. 1991, 41, 39–53. [CrossRef]

17. Khemiri, R.; Elbedoui-Maktouf, K.; Grabot, B.; Zouari, B. Integrating fuzzy TOPSIS and goal programming for multiple objective
integrated procurement-production planning. In Proceedings of the 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8.

18. Serhan, A.N.; Babaee, T.E. A systematic review of aggregate production planning literature with an outlook for sustainability and
circularity. Environ. Dev. Sustain. 2022, 1–42. [CrossRef]

19. Alazemi, F.K.A.O.H.; Ariffin, M.K.A.B.M.; Mustapha, F.B. A New Fuzzy TOPSIS-Based Machine Learning Framework forMini-
mizing Completion Time in Supply Chains. Int. J. Fuzzy Syst. 2022, 24, 1669–1695. [CrossRef]

20. Leung, S.C.H.; Tsang, S.O.S.; Ng, W.L.; Wu, Y. A robust optimization model for multi-site production planning problem in an
uncertain environment. Eur. J. Oper. Res. 2007, 181, 224–238. [CrossRef]

21. Kazemi-Zanjani, M.; Ait-Kadi, D.; Nourelfath, M. Robust production planning in a manufacturing environment with random
yield: A case in sawmill production planning. Eur. J. Oper. Res. 2010, 201, 882–891. [CrossRef]

22. Dhaenens-Flipo, C.; Finke, G. An integrated model for an industrial production—Distribution problem. IIE Trans. 2001,
33, 705715. [CrossRef]

23. Park, Y.B. An integrated approach for production and distribution planning in supply chain management. Int. J. Prod. Res. 2005,
43, 1205–1224. [CrossRef]

24. da Silva, C.G.; Figueira, J.; Lisboa, J.; Barman, S. An interactive decision support system for an aggregate production planning
model based on multiple criteria mixed integer linear programming. Omega 2006, 34, 167–177. [CrossRef]

25. Rizk, N.; Martel, A.; D’amours, S. Synchronized production—Distribution planning in a single-plant multi-destination network.
J. Oper. Res. Soc. 2008, 59, 90–104. [CrossRef]

26. Chen, C.L.; Lee, W.C. Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and
prices. Comput. Chem. Eng. 2004, 28, 1131–1144. [CrossRef]

27. Lababidi, H.M.S.; Ahmed, M.A.; Alatiqi, I.M.; Al-Enzi, A.F. Optimizing the supply chain of a petrochemical company under
uncertain operating and economic conditions. Ind. Eng. Chem. Res. 2004, 43, 63–73. [CrossRef]

28. Wang, R.; Fang, H. Aggregate production planning with multiple objectives in a fuzzy environment. Eur. J. Oper. Res. 2001,
133, 521–536. [CrossRef]

29. Fung, R.Y.K.; Tang, J.; Wang, D. Multiproduct aggregate production planning with fuzzy demands and fuzzy capacities. IEEE
Trans. Syst. Man Cybern. Part A 2003, 33, 302–313. [CrossRef]

30. Chen, S.-P.; Huang, W.-L. A membership function approach for aggregate production planning problems in fuzzy environments.
Int. J. Prod. Res. 2010, 48, 7003–7023. [CrossRef]

31. Pradenas, L.; Peñailillo, F.; Ferland, J. Aggregate production planning problem: A new algorithm. Electron. Notes Discret. Math.
2004, 18, 193–199. [CrossRef]

32. Alieva, R.A.; Fazlollahi, B.; Guirimov, B.G.; Alievc, R.R. Fuzzy genetic approach to aggregate production—Distribution planning
in supply chain management. Inf. Sci. 2007, 177, 4241–4255. [CrossRef]

33. Jain, A.; Palekar, U.S. Aggregate production planning for a continuous reconfigurable manufacturing process. Comput. Oper. Res.
2005, 32, 1213–1236. [CrossRef]

34. Ramezanian, R.; Rahmani, D.; Barzinpour, F. An aggregate production planning model for two phase production systems: Solving
with genetic algorithm and tabu search. Expert Syst. Appl. 2012, 39, 1256–1263. [CrossRef]

35. Freimer, M.; Yu, P.L. Some new results on compromise solutions for groupdecision problems. Manag. Sci. 1976, 22, 688–693.
[CrossRef]

36. Zare, H.; Kamali Saraji, M.; Tavana, M.; Streimikiene, D.; Cavallaro, F. An Integrated Fuzzy Goal Programming—Theory of
Constraints Model for Production Planning and Optimization. Sustainability 2021, 13, 12728. [CrossRef]

37. Ho, J.K.; Loute, E. Computational experience with advanced implementation of decomposition algorithm for linear programming.
Math. Program. 1983, 27, 283–290. [CrossRef]

http://doi.org/10.1016/j.jii.2021.100287
http://doi.org/10.1016/j.cie.2020.106367
http://doi.org/10.1016/j.asej.2021.09.002
http://doi.org/10.1016/j.cor.2017.11.001
http://doi.org/10.1016/j.eswa.2013.10.038
http://doi.org/10.24200/sci.2018.5563.1346
http://doi.org/10.1016/0165-0114(91)90156-K
http://doi.org/10.1007/s10668-022-02304-8
http://doi.org/10.1007/s40815-021-01226-3
http://doi.org/10.1016/j.ejor.2006.06.011
http://doi.org/10.1016/j.ejor.2009.03.041
http://doi.org/10.1080/07408170108936867
http://doi.org/10.1080/00207540412331327718
http://doi.org/10.1016/j.omega.2004.08.007
http://doi.org/10.1057/palgrave.jors.2602316
http://doi.org/10.1016/j.compchemeng.2003.09.014
http://doi.org/10.1021/ie030555d
http://doi.org/10.1016/S0377-2217(00)00196-X
http://doi.org/10.1109/TSMCA.2003.817032
http://doi.org/10.1080/00207540903246649
http://doi.org/10.1016/j.endm.2004.06.031
http://doi.org/10.1016/j.ins.2007.04.012
http://doi.org/10.1016/j.cor.2003.11.001
http://doi.org/10.1016/j.eswa.2011.07.134
http://doi.org/10.1287/mnsc.22.6.688
http://doi.org/10.3390/su132212728
http://doi.org/10.1007/BF02591904


Appl. Sci. 2022, 12, 6945 16 of 16

38. Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981.
39. Lai, Y.-J.; Liu, T.-Y.; Hwang, C.-L. TOPSIS for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [CrossRef]
40. Yu, P.L.; Zeleny, M. The set of all nondominated solutions in linear cases and a multicriteria decision making simplex method.

J. Math. Anal. Appl. 1975, 49, 430–468. [CrossRef]
41. Zeleny, M. Multiple Criteria Decision Making; McGraw-Hill: New York, NY, USA, 1982.
42. Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, 141–164. [CrossRef]
43. Zimmermann, H.J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1, 45–55.

[CrossRef]

http://doi.org/10.1016/0377-2217(94)90282-8
http://doi.org/10.1016/0022-247X(75)90189-4
http://doi.org/10.1287/mnsc.17.4.B141
http://doi.org/10.1016/0165-0114(78)90031-3

	Introduction 
	Literature Review 
	Robust Optimization 
	Mixed Integer/Integer Linear Programming 
	Nonlinear Programming 
	Fuzzy Mathematical Programming 
	Algorithms for Solving Large-Scale Problems 

	Problem Formulation 
	Model Solution 
	dp  Distance Concept 
	TOPSIS for Solving MOP Problems 

	Model Implementation 
	Data Description 
	Problem Solving 
	Performance Analysis 

	Conclusions 
	References

