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Abstract: Network slicing has become an unavoidable requirement for allocating 5G mobile network
resources when sharing resources among devices that have varying needs. As a result, the virtual
network slices get resources from the shared physical infrastructure that matches their needs. In
order to maximize the use of shared resources, it is critical to provide an efficient virtual network
embedding strategy for mapping each user’s requests to a physical infrastructure. Virtual network
embedding primarily deals with the two most important network parameters—node mapping and
link mapping. This paper proposes the heuristic fuzzy algorithm for node mapping and Dijikstra’s
algorithm for link mapping. The proposed fuzzy based multi-criteria decision making technique
uses membership functions for node parameters to prepare node mapping. By determining the
shortest path, Dijikstra’s algorithm is used to provide link mapping. The proposed strategy is tested
under dynamic physical infrastructure conditions for validation. The average acceptance ratio, cost-
revenue ratio, and average utilization of node capacity and link bandwidth are used to evaluate the
performance of the proposed strategy. In addition, the obtained results are compared to the literature
to show that the proposed strategy is effective.

Keywords: 5G network; virtual network embedding; resource allocation; heuristic fuzzy; shortest path

1. Introduction

The fifth generation of communication networks, also known as simply 5G, has been
continuously restructuring the setting of information and communications technology
(ICT) over the past few years. In tandem with the introduction of technologies that go
beyond 5G, a plethora of new services have also come into existence. These services in-
clude augmented and virtual reality, communications between vehicles and other objects,
electronic health care, and smart homes. Because of the wide variety of services that
are already available, the International Telecommunication Union (ITU) has determined
three primary usage scenarios for 5G services such as Ultra-reliable Low Latency Com-
munications (uRLLC), Enhanced Mobile Broadband (eMBB), and Massive Machine Type
Communications (mMTC) [1]. To be more specific, in order to meet the needs of users, it is
necessary to have adaptive and on-demand resource provisioning methods that allow for
efficient resource allocation based on a variety of service request types [2]. In addition, in
order to supply end-users with the highest possible quality of service (QoS), it is necessary
to satisfy the numerous requirements that are imposed by these services. As part of the
Alliance’s Next Generation Mobile Networks (NGMN), they introduced the concept of
network slicing, which enables the allocation of resources for 5G network devices with
varying performance requirements [3]. Assuming a shared physical infrastructure, Figure 1
illustrates logical networks with isolated components.

Virtual Network Functions (VNFs) are used to create slices of physical infrastructure
based on the grouping of requirements, which include virtual resources, logical topology,
traffic regulation, and node and link provisioning rules [4]. The 3rd Generation Partnership
Project (3GPP) authorized the 5G system architecture that supports network slicing in its
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first edition of 5G normative standards [5]. In order to provide the best service, each slice
in the network is defined as it has its own unique set of network functions [6]. There are
three types of network slicing solutions: service, resource, and deployment. There are three
main steps in network slicing: creating the slices, isolating the slices, and managing the
slices [7]. In recent years, network slicing (NS) has become the focus of the majority of
research relating to 5G networks as a result of its capacity to improve service provisioning
and QoS. For example, the research presented in Ref. [8] investigated the management and
allocation of radio access network (RAN) resources with particularly emphasis on uRLCC
and eMBB slices.

Figure 1. 5G network slicing architecture.

The authors suggested a method of intelligent decision-making as a means of con-
trolling network traffic and allocating the necessary resources. Ref. [9] provides a compre-
hensive breakdown of the myriad of factors that play a role in the execution of network
slicing concepts. These factors consist of resource allocation, slice isolation and security,
radio access network (RAN) virtualization, granularity of function, and end-to-end (E2E)
slice orchestration. The work also describes the challenges associated with the imple-
mentation of network slicing, such as optimizing resource efficiency, providing the best
possible acceptance ratio, ensuring data confidentiality and maintaining low latency, and
supporting a wide range of user requirements. Ref. [10] provides a presentation on the
applications of machine learning (ML) and artificial intelligence (AI) to various network
slicing solutions. The research documented a variety of ML and AI algorithms, in addition
to their applications to various kinds of NS use-cases, such as resource management and
mobility prediction. Ref. [11] conducted a research on the difficulties associated with slice
admission and management. In addition to its other name, Network Slice Provisioning,
Virtual Network Embedding (VNE) [12] is a paradigm that allows the physical resources of
logical networks to be assigned to those networks.

Slice isolation and management are critical in network slicing because the processes
provide the most effective optimal service provisioning for the requests. Many recent works
have made use of advanced technologies to address slice isolation and management issues.
According to the literature, solution techniques still require a high level of sophistication
on the security, optimal resource allocation, and acceptance rate. In response to the issues
identified in the literature, this study proposes an orchestration architecture that addresses
slice isolation and network slicing management issues. The following are the primary
contributions of the planned work:
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1. Creating a network orchestration framework for effective and easier network slicing
by combining network isolation and management strategies;

2. Preparing slice isolation strategy for the optimal resource allocation of Network
Requests (NRs) in the Physical Infrastructure (PI);

3. Proposing slice management strategy to enhance the performance of the created slices
of PI by the introduction of dynamic provisioning concepts;

4. Investigating the behavior of the proposed framework in a variety of physical infras-
tructure settings and NRs, as well as comparing the proposed strategy with existing
methodologies.

The remainder of this article is structured as follows: Section 2 discusses the literature
that is related; Section 3 provides a synopsis of the proposed system model and the math-
ematical background; and Section 4 discusses the proposed framework for orchestrating
5G mobile networks. The dynamic slicing of 5G mobile networks is discussed in Section 5,
along with a case study, and Section 6 brings the work to an end by providing a proposal
for further extension.

2. Related Works
2.1. Virtual Network Embedding Strategies

The topic of resource allocation through network embedding is the primary focus of
the research presented in ref. [13]. This study proposed a topology-aware node mapping
approach that utilized the Markov Random Walk Model to measure the capacity of the
nodes and the joint link bandwidth between them. The greedy node mapping takes the
ranking values from the steady state nodes into consideration. After that, the virtual
links, whether they are splittable or not, are mapped to the substrate network using either
the k-shortest path or the multicommodity flow method, depending on which is more
appropriate. Based on the node degree and the clustering coefficient information, ref. [14]
devised a heuristic VNE algorithm to deal with the VNE problem. Following the node
ranking method, the greedy node mapping is implemented. As stated above, the k-shortest
path is used in the link mapping stage. Instead of focusing on nodes and their immediate
neighbors, this method only takes into account the resources of the nodes in its immediate
vicinity. This results in a reduced utilization of the substrate network over time. In ref. [15],
it was suggested that a network topology attribute and network resource-considered
algorithm (VNE-NTANRC) were used to rank nodes by making connections between them
based on five network attributes. The authors of ref. [16] propose an approach based
on complex network theory to maximize resource utilization. Installing virtual network
functions and then selecting link route options for the virtual network functions are both
recommended steps in the technique.

The VIKOR technique was used to rank the nodes in ref. [17] among the different
ways to make decisions based on more than one factor. Provisioning of physical and logical
network nodes is the same as provisioning of virtual network nodes. When Floyd’s way
of setting up links is used, the shortest possible route is given to the slice request nodes.
In ref. [18], a delay time was predicted using stochastic network calculus (SNC), which
takes into account both the volume of traffic and the availability of system resources. In
addition, algorithms have been made and put into place to figure out the best way to divide
up resources in order to meet the delay bound and the most traffic that can be handled. The
authors in ref. [19] introduced an algorithm called Upper-tier First with Latency-bounded
Overprovisioning Prevention (UFLOP) to optimize the capacity and traffic allocation in
two-tier 5G sliced networks while also meeting the latency constraints of renters. This
method looks at incoming traffic in the context of the services offered to tenants and the
resources needed to provide resources, and then makes suggestions. In ref. [20], a method
for service provisioning in RAN slicing was introduced to ensure that the QoS criteria, as
well as the bandwidth and computing capacity needs, is met. This method is being used to
cut down on the amount of bandwidth used for service provisioning. It was suggested by
ref. [21] as a way to deal with scaling, monitoring, and combining of measured data at the
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slice level, which are problems that come up when monitoring the performance of network
slices. This framework was made to deal with problems that come up when monitoring
the performance of network slices, such as scalability, monitoring, and the aggregation of
measured data at the slice level.

2.2. Fuzzy Based Strategies for Network Slicing

In recent times, decisions concerning matters pertaining to 5G mobile networks have
been made using fuzzy logic and rule bases. In the paper [22], the authors developed an al-
gorithm for an information security management system that was based on soft computing.
They also implemented a prototype of an intrusion detection system (IDS) for a software-
defined network. This IDS prototype consisted of a module for collecting and processing
statistics as well as a fuzzy rules for making decisions. According to ref. [23], it is possible
to manage user mobility using a dynamic fuzzy Q-Learning algorithm. System learning
is used to generate fuzzy rules from the lack of existing fuzzy rules in order to achieve a
balance between the signaling costs incurred by handover and the user experience affected
by the call drop ratio. A study by ref. [24] looked at the implementation of fuzzy systems
to address the problems of 5G mobile network resource optimization and the paradigm of
SDN architecture development. The authors first discussed the various terms needed to
understand 5G technologies, and then went on to analyze the feasibility of implementing
fuzzy systems to telecommunications, particularly 5G technology and SDN architectures
development. Resource allocation algorithm FUZZRA has been proposed in Ref. [25]
by using fuzzy logic. According to FUZZRA, fuzzy logic rules are formulated based on
multiple input variables and are used to allocate resources to various UEs. The parameters
of the fuzzy system can be dynamically adjusted based on the network status to ensure
optimal resource utilization and high QoS. The proposed strategy significantly increases re-
source utilization, improves information dissemination between various UEs, and increases
network throughput. As a consequence of this, the service level agreement (SLA) parameter
will be utilized as an input parameter for admission control in 5G wireless networks.

As recently as ref. [26] implemented a Fuzzy-based scheme to deal with user SLA
issues, a new user was attempted to be connected to an appropriate slice using a set of slices
that matched the required SLA. Reliability (Re), Availability (Av), Latency (La), and Traffic
load are all taken into consideration as input parameters by the proposed scheme, which
included the introduction of two models for an admission control mechanism. Ref. [27]
presented a fuzzy-based scheme for evaluating Slice Priority (SP), taking into consideration
the three parameters: Slice Traffic Volume (STV), Slice Interference from Other Slices
(SIOS), and Slice Connectivity (SC). The findings of the scheme concluded that each of the
considered parameters has its own unique impact on the SP. The SP parameter is increased
when both STV and SC are moving in the positive direction; however, when SIOS is moving
in the positive direction, the SP parameter is decreased.

3. System Model and Mathematical Background
3.1. Physical Infrastructure and Network Request Model

The undirected graph is used to represent both the physical infrastructure and network
request model in the proposed work. GPI = (NPI , EPI) denotes a graph, where NPI denotes
the number of nodes and EPI denotes the number of edges. Subsets for nodes and edges
are also defined. The node subset includes CPU capacity and Security Level for each node,
which are represented as CPUPI

i and SLPI
i , respectively, whereas the edge subset includes

bandwidth, which is represented as BWPI
ij . In the definitions, CPUPI

i and SLPI
i define

the CPU capacity and the security level of the i-th node of the PI, and BWPI
ij defines the

bandwidth of the link connecting nodes ‘i’ and ‘j’ of PI.
A graph for the Network Request Model is defined as a graph GNR = (NNR, ENR),

where NNR denotes the number of requested nodes and ENR denotes the number of requested
edges. Similar to the PI, the nodes and edges of NR have subsets NNR(CPUNR

i , SRNR
i ) and

ENR(BWNR
ij ), respectively. In the definitions, CPUNR

i and SLNR
i define the CPU capacity
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and the security requirements of the i-th node of the NR, and BWNR
ij defines the bandwidth

requirement of the link connecting nodes ‘i’ and ‘j’ of NR.

3.2. Node Parameters

It is a well-known fact that the quality of each node in a network can be determined
by examining the node information at the local and network levels. When determining
the quality of a node, parameters such as its capacity, degree, available bandwidth, and
proximity to the center of the network are the most important to consider. The mathematical
expressions relating to the parameters are illustrated in the expressions below.

• Capacity of a Node: Equation (1) defines the capacity of a node ‘i’ in the given network.
Each node of a network is specified with the CPU capacity value.

CN(i) = CPUi ; ∀i ∈ NPI , NNR (1)

• Degree of a Node: It is determined by the number of adjacent links connected to any
node ‘i’ in the given network. Equation (2) shows the expression for degree of a node.

DN(i) = ∑
j

EN
ij ; i 6= j & ∀j ∈ NPI , NNR (2)

where EN
ij is a binary variable; it returns 1 if there exists a connection between nodes ‘i’

and ‘j’ in the network, and 0 otherwise.
• Available bandwidth of a node: It is determined by the sum of the bandwidth of each

adjacent link connected to any node ‘i’ in the given network. Equation (3) shows the
expression for determining the bandwidth of a node.

BN(i) = ∑
j

BN
ij ; i 6= j & ∀j ∈ NPI , NNR (3)

• Closeness Centrality of a Node: Determined by the shortest route between any two
nodes, which is used to determine the global importance of any node. As a result,
a node’s centrality is increased in direct proportion to its distance from other nodes.
Equation (4) shows the expression for determining the closeness centrality of any node
in the network.

LN(i) = {∑
j

Li,j}−1 ; i 6= j & ∀j ∈ NPI , NNR (4)

3.3. Mathematical Model for Performance Measurement

For the purpose of this study, the network’s performance is evaluated using three
metrics: average resource efficiency, average acceptance rate, as well as average bandwidth
and CPU consumption.

• Average Acceptance Rate: This metric is calculated by dividing the number of success-
ful NRs by the number of unsuccessful NRs during the specified transmission time
interval (Tmax), which yields the direct performance measurement for the provided
physical infrastructure.

ηAR =
sNR
tNR

(5)

where sNR and tNR refer to the total number of successful and unsuccessful NRs in
the specified time interval, respectively.

• Average CPU and Bandwidth Utilization: The total CPU and bandwidth utilized by
the successful NRs in the given transmission time interval is determined by,

CPUutilized =
sNR

∑
i=1

CPUNR(i) (6)
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BWutilized =
sNR

∑
i=1

BWNR(i) (7)

• Average Resource Efficiency: This metric is defined as the ratio of the amount of
revenue generated to the amount of money spent on building the physical infrastruc-
ture. The revenue can be calculated by accurately calculating the amount of CPU and
bandwidth used per NSR. The physical infrastructure provided by NSR determines
the cost of investment. The following Equation (6) is used to calculate the network’s
resource efficiency for the given transmission time interval (Tmax).

ηRE =
sNR

∑
i=1

CPUNR(i) + BWNR(i)
(CPUNR(i) + BWNR(i).L(i))

(8)

where CPUNR(i) and BWNR(i) refer to the total CPU and bandwidth requested by the
i-th NR, respectively. L(i) refers the shortest path length utilized for i-th NR, and sNR
refers the total number of successful NRs.

3.4. Objective Function and Constraints

Effective network slicing maximizes the physical network resource utilization while
minimizing the slice provisioning costs. The provided security level, CPU capacity, and
bandwidth are used to measure the slice provisioning cost. Accordingly, the cost of provi-
sioning slices is minimized using the integer linear programming model with the constraints
shown below.

Minimize,

∑
k∈NNR

∑
i∈NPI

xk
i (1 + SLPI

i )(CPUNR
k ) + ∑

m∈ENR
∑

n∈EPI

am
n BWNR

m (9)

subject to,
∑

NNR
i

xk
i = 1; ∀NNR

i ∈ NNR (10)

∑
NPI

k

xk
i ≤ 1; ∀NPI

k ∈ NPI (11)

xk
i CPUNR

k ≤ CPUPI
i ; ∀NPI

i ∈ NPI ; ∀NNR
k ∈ NNR (12)

xk
i SRNR

k ≤ SLPI
i ; ∀NPI

i ∈ NPI ; ∀NNR
k ∈ NNR (13)

∑
NPI

ij

(akl
ij − akl

ji ) = xk
i − xl

i ; ∀NPI
i ∈ NPI ; ∀ENR

kl ∈ ENR (14)

∑
ENR

kl

akl
ij BW(ENR

kl ) ≤ BW(EPI
ij ); ∀EPI

ij ∈ EPI (15)

xk
i ∈ (0, 1) is a binary variable, where xk

i = 1 indicates that NNR is served onto NPI ,
otherwise 0. am

n indicates whether the link ‘n’ of EPI hosts the request link ‘m’ of ENR. If a
link presents then the am

n is 1, otherwise 0. Network providers use extra resources to ensure
node security. Constraint (10) ensures that each request node is assigned to a physical
node. Constraint (11) limits the number of nodes per physical node. The constraint on CPU
capacity (12) ensures that the requested CPU does not exceed the available CPU capacity.
Constraint (13) ensures each node’s security. Constraint (14) ensures that each slice link
is assigned to a physical path, and all nodes along the path, with the exception of the
beginning and ending nodes, see zero throughput. The constraint (15) ensures that the
requested bandwidth does not exceed the available bandwidth.
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4. Proposed Strategy for Dynamic Virtual Network Embedding (DVNE)

To embed network requests in the physical infrastructure, the proposed strategy makes
use of the heuristic fuzzy for node mapping and the Dijkstra’s Algorithm for link mapping.
Figure 2 provides the diagrammatic representation of the proposed strategy implemented
for DVNE.

Figure 2. Proposed strategy for dynamic network embedding.

4.1. Node Mapping for DVNE

According to the literature, many strategies for node mapping have utilized the
approach based on node ranking. Node rankings for the request and the physical infras-
tructure are prepared based on their respective node parameters. Because node parameters
are different, recent techniques adopt multi-criteria decision making techniques for ranking.
This proposed work employs the heuristic fuzzy ranking of request nodes and physical in-
frastructure for embedding. The membership functions for the respective node parameters
are prepared using fuzzy, and the decision on the node’s position in the ranking is made
using the decision fuzzy set value of each node. In this work, the membership functions
are developed for CPU capacity, degree, BW, and closeness centrality.

• Membership function for CPU capacity: This membership function is used to deter-
mine how close a node’s CPU capacity is to the maximum capacity of the cluster. The
highest priority in the ranking is assigned to the member with the highest membership
value. CPUmin and CPUmax are the ranges of CPU capacity that have been specified
for the process.

µCN,i =


1 i f (CN(i) ≥ CPUmax)

CPUmax−CN(i)
CPUmax−CPUmin

i f (CPUmin ≤ CN(i) < CPUmax)

0 i f (CN(i) < CPUmin)

(16)

• Membership function for node degree: This membership function determines how
close a node’s degree is to the node’s maximum degree. The degree range is deter-
mined using network information. The maximum limit (DNmax) is determined by
the node with the highest degree in the network, and the minimum limit (DNmin) is
determined by the node with the lowest degree in the network. As a result, a node
with the highest degree in the network has the membership value ‘1’, while a node
with the lowest degree in the network has the membership value ‘0’. The member
with the highest membership value is given the highest priority in the ranking.
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µDN,i =


1 i f (DN(i) ≥ DNmax)
DNmax−DN(i)
DNmax−DNmin

i f (DNmin ≤ DN(i) < DNmax)

0 i f (DN(i) < DNmin)

(17)

• Membership function for bandwidth: the available bandwidth of any node can be
compared to the maximum bandwidth of the node using this membership function.
This is similar to the way a node’s degree is determined by its location on the network.
The maximum limit (BNmax) is taken from the node that has the most bandwidth
available in the network, and the minimum limit (BNmin) is taken from the node that
has the least bandwidth available. In this case, a node with the most bandwidth in the
network is given the membership value of “1”, while a node with the least bandwidth
is given the membership value of “0”. The member with the highest membership
value is given the highest priority in the ranking.

µBN,i =


1 i f (BN(i) ≥ BNmax)
BNmax−BN(i)
BNmax−BNmin

i f (BNmin ≤ BN(i) < BNmax)

0 i f (BN(i) < BNmin)

(18)

• Membership function for closeness centrality: A node’s closeness centrality can be
calculated using this membership function by comparing it to the node in an associated
network with the highest closeness centrality. The range for the closeness centrality is
selected from the network information in the same way as the degree and bandwidth
of a node. After calculating the closeness centrality of every node in a network, the
upper and lower bounds ((LNmax) and (LNmin)) are immediately determined. This
means that the network’s most central node receives the membership value ‘1’, while
the network node with the lowest closeness centrality receives the membership value
‘0’. Priority is given to the most valuable member in terms of membership value
when ranking.

µLN,i =


1 i f (LN(i) ≥ LNmax)
LNmax−LN(i)
LNmax−LNmin

i f (LNmin ≤ LN(i) < LNmax)

0 i f (LN(i) < LNmin)

(19)

With the help of fuzzy maximum imperative, the decision fuzzy value for each indi-
vidual node in a network is calculated from the membership values. Once the imperative
values of each node of the physical infrastructure and service request network have been
established, the node ranking process can begin. It is necessary to arrange the nodes in
a non-increasing order of fuzzy decision values in order to see the entire network. For
each network, the nodes are ranked and stored in a fuzzy decision array (FDA). During
node ranking, the highest priority is given to the maximum value of the fuzzy decision.
The following is the equation that corresponds to the fuzzy decision set for any node in
the network.

µD,i = max(µCN,i, µDN,i, µBN,i, µLN,i) (20)

After the arrival of the fuzzy decision arrays of both networks, the nodes of the service
request network are mapped into the physical infrastructure, which is then completed.
Therefore, the highest ranked node of the service request network has been embedded into
the highest ranked node of the physical infrastructure. Algorithm 1 describes in detail the
process of node mapping using fuzzy logic.
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Algorithm 1 Node mapping through FDA

1: Input: GPI(t), GNR(t)
2: Output: GPI(t), sNR
3: Calculate µCN ,µDN ,µBNµLN ; ∀NPI(t)εGPI(t)
4: Prepare FDAPI(t) using µD
5: Calculate µCN , µDN , µBNµLN ; ∀NNR(t)εGNR(t)
6: Prepare FDANR(t) using µD
7: Set aCount = 0
8: for each node j of FDANR(t) do
9: if (FDANR(t) 6= empty) then

10: for each node k of FDAPI(t) do
11: if constraints (10)–(15) satisfied then
12: allocate NPI(t, k)to NNR(t, j)
13: increment aCount
14: CPUNR(t) = CPUNR(t) + CPUNR

j

15: BWNR(t) = BWNR(t) + BWNR
j

16: else
17: increment k
18: end if
19: end for
20: end if
21: end for
22: if NNR(t) ≤ aCount then
23: increment sNR
24: end if
25: return GPI(t)

4.2. Link Mapping for DVNE

Once the service request nodes have been embedded in the physical network nodes,
the shortest path connecting all of the embedded nodes in the physical network must
be determined. For NSR, the shortest route may not always be the best option. Some
of the links in the identified shortest path may be used by the current NSRs that are in
service. Therefore, finding all possible paths connecting nodes and arranging them in
a non-decreasing order with respect to the length of each path is absolutely essential.
Conventional methods such as breadth-first search and k-shortest path algorithms have
been used many times in the past to find the shortest path connecting all the embedded
nodes. The shortest path algorithm based on Dijkstra’s algorithm is utilized in this proposed
DVNE strategy. For every NNR(t), this process seeks to find all possible paths from NNR

i to
NNR

j embedded in NPI , based on the available links in the network. Nodes that have been
ranked high in the previous node selection process are used as target nodes for subsequent
node mapping processes, which are carried out using Dijkstra’s algorithm (Algorithm 2).

4.3. DVNE

The application of fuzzy-based node mapping in conjunction with DA-based link
mapping is being done in order to achieve the best possible optimal embedding of nodes
for the NR in PI. This combined process assigns a node to each of the NR nodes that have
been received up to the maximum arrival time of (Tmax) and creates a link between each of
the nodes in the network. The rank array and the path array of the physical infrastructure
are both kept up to date in accordance with the life time of the NR that has been received.
This allows for the determination of the provisioning that is both the most appropriate and
the most optimal for the NR that is yet to arrive. Therefore, dynamic NR allocation in a
physical infrastructure will become more effective and efficient as a result of this.

Algorithm 3 depicts the order in which the events take place during the entirety of
the solution process, which allots resources for NRs for the longest possible amount of
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time (Tmax). The success rate, the efficient use of resources, and the consumption of CPU
and bandwidth are the three primary metrics that are considered when evaluating the
effectiveness of the process.

Algorithm 2 Link mapping through DA

1: Input: GPI(t) and FDA
2: Output: LA
3: for all u node in FDA do
4: for all l node in GPI(t) do
5: dist[l]<- INFINITY
6: prev[l]<- UNDEFINED
7: add l to Q
8: end for
9: dist[u] <- θ

10: while Q 6= empty do
11: u <- vertex in Q with min dist[u]
12: remove u from Q
13: for each neighbor l of u still in Q do
14: alt <- dist[u]+Graph.Edges(u,l)
15: if alt < dist[v] then
16: dist[v] <- alt
17: prev[v] <- u
18: end if
19: end for
20: end while
21: L(t) = dist[]
22: end for

Algorithm 3 DVNE

1: Input: GPI , Tmax, t = 0
2: Output: VNE
3: GPI(0) <- GPI

4: set CPUmax, CPUmin, DNmax,DNmin,BNmax,BNmin, LNmax,LNmin as 0
5: for t<Tmax do
6: Calculate CPUmax, CPUmin, DNmax, DNmin, BNmax, BNmin, LNmax, LNmin of GPI(t)
7: Get NR(t)
8: Calculate CPUmax, CPUmin, DNmax, DNmin, BNmax, BNmin, LNmax, LNmin of GNR(t)
9: Call Algorithm 1

10: Call Algorithm 2
11: for each path p do
12: if ((p 6= empty) and constraints (10)–(15) satisfied) then
13: do link mapping in GPI(t)
14: break
15: else
16: increment p
17: end if
18: end for
19: Calculate µAR, CPUutilized, BWutilized, µRE
20: end for

5. Simulation Evaluation
5.1. Test Case Parameters

The proposed work is carried out on physical infrastructure with three distinct resource
capacities. In addition, this is implemented based on the various numbers of NRs that
are received within the allotted amount of time. The implementation of the suggested
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strategy is performed under two distinct operational conditions: (i) static provisioning
and (ii) dynamic provisioning. These operating conditions are differentiated from one
another based on the retention of resources in accordance with the life time of the requests.
The efficiency of the use of resources, the acceptance rate, and the utilization of both CPU
and BW are the criteria that are used to assess the proposed algorithm’s performance.
Table 1 lists the various parameters of physical infrastructure and NR that are taken into
consideration for the implementation.

Table 1. Simulation parameters.

Physical Infrastructure

Definitions Descriptions Range

NPI Number of physical nodes 100, 200, 300

CPUPI Distribution of CPU capacity for each node in unit U[20,50]

BWPI Distribution of bandwidth for each link in unit U[20,50]

SAPI Distribution of available security level for each node in in real number (0–1)

Network Request

Definitions Descriptions Range

TNR Total number of NRs arrived in the time frame U[5,35]

NNR Distribution of nodes for each NSR 20

CPUNR Distribution of CPU capacity requirement for each node of a NR U[5,25]

BWNR Distribution of bandwidth requirement for each link of a NR U[5,25]

SRNR Distribution of required security level for each node in real number (0–0.5)

LTNR Time duration of each NR T[10,35]

5.2. Simulation Results
5.2.1. Static Provisioning

In accordance with the static provisioning, it is the presumption that the life time of
the requests is considered to be infinite. To put it another way, the PI resources that are
embedded within the NR are not made available for release once the process is complete.
When determining values for the remaining parameters of physical infrastructure and
network request, the ranges that have been provided against them are taken into account.
In addition, it is presumed that both NR and physical infrastructure can be segmented as
eMBB, uRLLC, and mMTC, respectively. The request to provision in physical infrastructure
is sent to the VNF manager in batches consisting of a single type of slice at a time. The
strategy that has been proposed ensures that nodes and links are embedded for the NRs
that have been requested by optimally allocating the resources of PI slices to NSR slices.
This strategy is evaluated by taking into account the number of NSR nodes that fall into a
variety of categories, such as 10, 20, and 30, within the context of 100, 200, and 300 nodes
that make up the physical infrastructure.

• Average Resource Efficiency: Figure 3 depicts the resource efficiency that is achieved
under a variety of operational conditions for the system. In terms of the overarching
observation regarding resource efficiency and NRs, Figure 3 demonstrates that the
resource efficiency of the network decreases as the number of NRs increases, whereas
the efficiency improves with the number of nodes in the physical infrastructure.
An increased number of nodes in a network will, as demonstrated by the resource
efficiency equation, result in a shorter overall length of the shortest route, which in
turn will lead to improved resource utilization. Additionally, because of the rise in
the number of NRs, it is necessary to provide additional nodes that have adequate
CPU capacity and bandwidth. According to Figure 3, the proposed method achieves a
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resource efficiency of 0.783, 0.765, and 0.753 for NRs 10, 20, and 30, respectively, when
applied to an infrastructure with a total of 100 nodes. In addition, the efficiency of
the resource improves as the number of nodes increases to 200 and 300, reaching a
maximum of 0.8 under 5 NRs for a physical resource that has 300 nodes, as shown in
Figure 3.

• Average Acceptance Ratio: NRs ranging from 5 to 35 are used in this investigation
with the suggested method for calculating the acceptance ratio. The results obtained
after successful execution of the algorithm under a variety of different conditions
pertaining to the physical infrastructure are displayed in Figure 4. Despite the fact
that the number of physical nodes is growing, the acceptance ratio will decrease as the
total number of requests (NR) increases. Because there are now more nodes, a larger
proportion of the population has come around to accepting it. The acceptance ratio
increases concurrently with the increase in number of nodes of physical infrastructure.
In Figure 4, the proposed method achieves a 100% acceptance rate when receiving
5 NRs, regardless of the number of nodes in its PI. In addition, Figure 4 shows that the
requesting service for 35 NRs in PI with 100 nodes results in a poor acceptance rate
of 0.4%.

• Average CPU and Bandwidth utilization: The amount of CPU and bandwidth used
within an infrastructure consisting of 100, 200, and 300 nodes is also measured with
a variety of request counts. The obtained results can be seen in Figure 5, which are
categorized according to the number of PI nodes and total NR. The proposed system is
capable of serving a maximum of 7265 CPUs and a minimum of 1236 CPUs, as well as
having a maximum and minimum utilization of 21,186 and 4628 BW when operating
under a PI that is equipped with 100 and 300 nodes, respectively.

Figure 3. Average resource efficiency of static provisioning.

Figure 4. Average acceptance ratio of static provisioning.
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Figure 5. Resource utilization of static provisioning. (a) CPU utilization, (b) bandwidth utilization.

5.2.2. Dynamic Provisioning

According to dynamic provisioning, the life times of the requests are chosen at random
within the range that is specified in Table 1. In addition, the resources that are occupied
by embedded requests in the physical infrastructure are released once the life time of
the embedded request has passed, which retains the resources for requests that will be
made in the future. The values of all other parameters for PI and request, as well as the
assumptions, are made as in the previous case. This strategy is also evaluated by taking
into account the number of NR nodes that fall into various categories, such as 10, 20, and
30 within the context of 100, 200, and 300 nodes that make up the physical infrastructure.
Dynamic provisioning’s utility is demonstrated by comparing the results with those of static
provisioning’s resource efficiency, acceptance rate, CPU, and bandwidth consumption.

• Average resource efficiency: It is understandable that resource efficiency is measured
in terms of the availability and utilization of the resources available to a given project.
Static and dynamic provisioning yield nearly identical resource efficiency when using
the proposed approach. Nodes in the PI and the number of requests they receive
have an impact on the value, which varies with the number of nodes and requests.
Figure 6 illustrates the proposed approach’s resource efficiency under both static and
dynamic provisioning.

• Average acceptance ratio: When dynamic provisioning is carried out through the
proposed strategy, it stands to reason that the acceptance ratio will increase. This is
because the occupied resources will be freed up depending on how long the existing
requests will remain active, so it is logical that this will cause the increase. Figure 7
provides a visual representation of the acceptance ratio in relation to a selection of
possible infrastructure provision scenarios. According to the data, dynamic provi-
sioning results in a greater improvement in the acceptance ratio, with a maximum
and minimum percentage improvement of 37% and 19% under the PI equipped with
100 nodes and 300 nodes, respectively. This represents a significant leap from the pre-
vious level of improvement. It is abundantly clear from the findings that the greatest
percentage of improvement can be accomplished when the network operates with the
fewest possible resources.

• Average CPU and bandwidth utilization: Figure 8 illustrates the dynamic provisioning
and shows the number of CPUs that are served as well as the bandwidth that is utilized.
According to the figure, the provisioning chosen allows for the highest possible
utilization of both the CPU and the bandwidth within the context of the system
conditions. As with static provisioning, CPU and bandwidth utilization through
dynamic provisioning increases as infrastructure and the number of requests increase.
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Figure 6. Resource efficiency of dynamic provisioning: (a) 100 nodes, (b) 200 nodes, (c) 300 nodes.

Figure 7. Acceptance ratio of dynamic provisioning: (a) 100 nodes, (b) 200 nodes, (c) 300 Nodes.

Figure 8. Resource utilization of DVNE. (a) CPU used, (b) bandwidth used.

5.2.3. Discussion

This section demonstrates the effectiveness of the proposed algorithm by comparing
the obtained results with the literature, specifically NNR [15], CN [16], and VIKOR [17]. It
is presumable that the dynamic provisioning service for network requests is made available
to all of the proposed algorithms. When the PI is outfitted with 300 nodes and is responsible
for catering to a wide variety of network requests, resource efficiency and acceptance rate
are taken into consideration for the comparison. The performance of the various algorithms
is illustrated in Figure 9, which is organized according to a variety of categories.
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Figure 9. Performance results. (a) Resource efficiency, (b) acceptance ratio.

It is clear from Figure 9a that the CN algorithm has the lowest throughput of any
and all of the other algorithms when they are combined. VIKOR NNR and DVNE all
outperformed CN in terms of performance. When there are 300 nodes and 30 NSRs, an
efficiency of 0.753 is recorded. The proposed method for calculating the acceptance ratio
is evaluated using NRs in the range of 5 to 35. The life-spans of the NRs are picked at
random from a range that has been determined in advance. The results obtained after the
algorithms have been successfully run under the conditions of a physical infrastructure
consisting of 300 nodes are displayed in Figure 9b. The acceptance ratio drops when
the total number of NR points is increased. On the other hand, when NR lifespans are
decreased, acceptance ratios tend to increase along with them. A maximum acceptance
ratio of 0.98 can be accomplished with the proposed method, while a minimum acceptance
ratio of 0.7 can be accomplished with 35 NRs. The NNR algorithm is ranked in second place
because it produces results that are on par with those produced by the DVNE algorithm.
When it comes to allocation of network resources using the CN and VIKOR approaches, the
lowest acceptance ratios are 0.68 and 0.66 for 35 NRs under available nodes, respectively.
These numbers are based on the number of nodes.

To further validate the performance of the proposed algorithm, in addition to resource
efficiency and acceptance ratio, the time required by each of the various algorithms to
finish the task is analyzed and compared. As can be seen in Figure 10, a comparison of the
execution times for provisioning while using various NRs is performed. The amount of
time required to carry out the algorithmic procedures grows in direct proportion to the
total number of NRs and available nodes in the physical infrastructure. The time needed to
complete the resource allocation algorithm developed by DVNE is significantly greater than
that required by the other two algorithms under any and all conditions of the operation.

Figure 10. Execution time of DVNE with other algorithms.
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When a physical infrastructure consists of 100 nodes, it takes fewer than 10 millisec-
onds to serve NRs with values ranging from 5 to 35. In addition, the same number of
NRs served on the PI with 300 nodes requires a response time that is only slightly longer
than 10 milliseconds. When compared with the SA approach’s execution time, the VIKOR
approach’s execution time is significantly faster. The amount of extra time needed to finish
a task when using the SA approach can range anywhere from 100 ms to 1000 ms.

6. Conclusions

In the course of this research, an approach to a solution was developed for efficient
network slicing within the context of a 5G mobile network environment. All aspects of
the deployment plan, including the NRs and the physical infrastructure, were modeled.
The proposed strategy takes into account the facets of network slicing that are regarded as
being of the utmost significance, namely the isolation of slices and their management. The
DVNE scheme utilizes heuristic fuzzy for node allocation and Dijkstra’s algorithm for link
establishment. The proposed scheme, which was responsible for dynamic provisioning,
also managed the slices themselves and handled slice management. The proposed strategies
are evaluated under a wide variety of network operating conditions, each of which has its
own unique PI and NSR values. In order to evaluate the effectiveness of network slicing,
we looked at resource efficiency, acceptance ratio, CPU/BW utilization, and execution
time. As a result of including constraints in the resource allocation process, concerns about
the NSRs’ minimal SLA and security have been addressed. The proposed work can be
expanded to incorporate a higher level of SLA and security concerns. Additionally, it can
be expanded to take into account the portability of user equipment and the management of
its energy consumption.
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