
����������
�������

Citation: Feng, L.; Xie, Y.; Liu, B.;

Wang, S. Multi-Level Credit

Assignment for Cooperative

Multi-Agent Reinforcement Learning.

Appl. Sci. 2022, 12, 6938. https://

doi.org/10.3390/app12146938

Academic Editors: Andrea Prati,

Luis Javier García Villalba and

Vincent A. Cicirello

Received: 10 May 2022

Accepted: 7 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Multi-Level Credit Assignment for Cooperative Multi-Agent
Reinforcement Learning

Lei Feng, Yuxuan Xie, Bing Liu * and Shuyan Wang

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;
hitfenglei@hit.edu.cn (L.F.); 20s005049@stu.hit.edu.cn (Y.X.); 1180100501@stu.hit.edu.cn (S.W.)
* Correspondence: liubing66@hit.edu.cn

Abstract: Multi-agent reinforcement learning (MARL) has become more and more popular over recent
decades, and the need for high-level cooperation is increasing every day because of the complexity
of the real-world environment. However, the multi-agent credit assignment problem that serves as
the main obstacle to high-level coordination is still not addressed properly. Though lots of methods
have been proposed, none of them have thought to perform credit assignments across multi-levels.
In this paper, we aim to propose an approach to learning a better credit assignment scheme by credit
assignment across multi-levels. First, we propose a hierarchical model that consists of the manager
level and the worker level. The manager level incorporates the dilated Gated Recurrent Unit (GRU)
to focus on high-level plans and the worker level uses GRU to execute primitive actions conditioned
on high-level plans. Then, one centralized critic is designed for each level to learn each level’s credit
assignment scheme. To this end, we construct a novel hierarchical MARL algorithm, named MLCA,
which can achieve multi-level credit assignment. We also conduct experiments on three classical and
challenging tasks to demonstrate the performance of the proposed algorithm against three baseline
methods. The results show that our method gains great performance improvement across all maps
that require high-level cooperation.

Keywords: multi-agent reinforcement learning; hierarchical MARL; credit assignment

1. Introduction

Over recent decades, neural networks trained by the backpropagation method made
huge progress in supervised tasks, such as image classification, object detection, and nat-
ural language processing [1]. The combination of neural networks and reinforcement
learning yields a new research field, i.e., Deep Reinforcement Learning (DRL) [2]. DRL
has made impressive achievements over recent decades, such as AlphaGo, OpenAI Five,
and Hide-and-Seek [3–5]. Researchers realized that DRL provides a potential approach
to achieving artificial general intelligence and tried to use DRL to complete more real-
world tasks. However, most of the real-world tasks such as traffic signal control and web
service composition require two or more agents to cooperate to complete and, currently,
the math model that single-agent reinforcement learning uses is not able to model the
cooperation among agents [6,7]. Therefore, decentralized partially observable Markov
decision processes (Dec-POMDPs) emerge as a general framework for modeling cooper-
ative multi-agent tasks. Meanwhile, lots of multi-agent reinforcement learning (MARL)
algorithms are proposed to address Dec-POMDPs problems.

Dec-POMDPs provide a framework to model the cooperation among multi-agents but
how to encourage agents to cooperate with others still remains a challenging issue. In this
setting, each agent obtains partial observation and cannot communicate with others, which
explains the difficulties in addressing Dec-POMDPs problems. The partial observable
setting requires the agent to execute their actions in a decentralized manner. A straight-
forward way is to learn a decentralized policy for each agent directly by using Q-learning
and treating others as part of the environment, which yields the algorithms independent

Appl. Sci. 2022, 12, 6938. https://doi.org/10.3390/app12146938 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12146938
https://doi.org/10.3390/app12146938
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6831-5779
https://doi.org/10.3390/app12146938
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12146938?type=check_update&version=2

Appl. Sci. 2022, 12, 6938 2 of 11

Q-learning [8]. Ardi Tampuu extends this method by replacing the tabular policy (that is a
hash table) with neural networks [9]. After that, Independent Q-Learning (IQL) refers to
the one using neural networks.

Though IQL still serves as the popular MARL algorithm because of its simplicity,
agents trained by IQL stuck to suboptimal policies sometimes. For example, there is a team
of agents in a soccer game and they want to beat the other team which is controlled by
scrips. Agent A in this team learns to score and others learn to pass the ball to agent A even
when they are in far better positions than agent A to score, which is not a smart policy. This
phenomenon is called the “lazy-agent” problem, i.e., learned inefficient policies with only
one agent active and the others being “lazy” [10]. An approach to avoid this problem can
be the fully centralized MARL algorithms, which cast the Dec-POMDPs problem into the
MDP problem by using the joint state and joint action. Though it obtains the guarantee to
converge to the optimal policies, it is hard to scale to large real-world applications.

To encourage the cooperation of agents and address wired phenomenons such as the
“lazy-agent” problem, the multi-agent credit assignment becomes a crucial topic to study.
The multi-agent credit assignment refers to the fact that in cooperative settings, joint actions
typically generate only global rewards, making it difficult for each agent to deduce its own
contribution to the team’s success [11]. Sometimes each agent’s reward can probably be
handcrafted based on the global rewards in very simple tasks. However, this is not always
true and often leads to the situation where each agent only considers itself and ignores the
cooperation, which leads to suboptimal policies. Lots of work has been conducted to learn
to decompose the global reward into each agent’s reward but a good credit assignment
method is still missing.

In this paper, we investigate the credit assignment problem from the perspective of
multiple levels, i.e., different resolutions of time. We propose a novel hierarchical MARL
method, coined MLCA , that can efficiently utilize different hierarchical information to
reason and achieves credit assignment across multiple hierarchies. We set the number of
hierarchies of MLCA to two in the paper, but it can be extended to more than two easily. The
key contributions of this paper are: (1) to the best of our knowledge, MLCA is the first one
that achieves credit assignment across multiple hierarchies; (2) MLCA uses plans as high-
level options and primitive actions as the low-level options to achieve different hierarchies
and the lower hierarchy is guided by the higher hierarchy; (3) the temporal abstraction
mechanism is applied to enable different hierarchies to obtain different resolutions of
time, thereby a different credit assignment mechanism is learned across multiple levels;
(4) detailed experiments are provided to support our claims.

2. Background
2.1. Dec-POMDPs Formulation

Dec-POMDPs serve as a general framework for cooperative multi-agent tasks and we
also adopt this formulation in the paper. Dec-POMDPs can defined as
M = 〈S, A, P, R, O, n, γ, T〉 :

• S is a finite set of hidden states;
• A is a finite set of joint actions;
• P is the transition model and P(st+1|st, at) represents the probability of next state st+1

when all agents select joint action at ∈ A at state st;
• R is the reward function which returns one total credit for all agents when they choose

at ∈ A at state st, i.e R(st, at);
• O is the observation function where agent i obtains its own observation oi ∈ O(s, i);
• n is the number of agents, γ ∈ [0, 1] is the discount factor;
• γ is the discount factor;
• T is the decision-making timestep set.

Following this setting, each agent receives its current observation s, selects its action a
based on s and executes. Then, the environment reacts to all agents’ actions and returns the
next observation s′ and a global reward for each agent according to the transition model P

Appl. Sci. 2022, 12, 6938 3 of 11

and reward function R. It is worth noticing that each agent can neither see the actual state
of the world nor explicitly communicate with each other, which explains the difficulty of
finding optimal policies for agents. Thus, each agent aims to learn unilaterally to cooperate
with others and maximize the cumulative global reward, which can be defined as the total
Q-value, i.e., Qtot(s, a) = E[∑T

t=0 γtR(st, at)|s0 = s, a0 = a].

2.2. Independent Q-Learning

To address Dec-POMDPs problems, the straightforward approach can be Indepen-
dent Q-learning (IQL) which was proposed by Ming Tan in 1993 [12]. IQL extends the
single-agent reinforcement learning algorithm, Q-learning, to the multi-agent tasks by
treating each agent as an individual learner and others as part of the environment in the
perspective of this agent. Thus, in IQL, each agent treats the global reward as its reward
and maximizes its cumulative reward. While Ming Tan demonstrated that sharing infor-
mation such as current observations among agents could encourage cooperation, it is not
allowed in this setting since the communication cost can be expensive and prohibitive
in most multi-agent tasks.

Ardi Tampuu extended the IQL to a more complex environment by replacing the Q
table (where the Q-value stores) with neural networks [9]. It is worth noticing that the
introduction of neural networks also makes the converge guarantee for IQL no longer valid.
After that, IQL refers to the one that uses neural networks to store Q-values but IQL often
fails to address tasks that require high-level cooperation [10].

2.3. Value Decomposition Network

Since the individual learner treats other agents as part of the environment in the fully
decentralized methods, the transition dynamics for each agent become highly stochastic.
The fully decentralized approach, such as IQL, faces the instability problem. In order to
ease this instability, a centralized training and decentralized execution (CTDE) diagram
is proposed. As its name reflects, CTDE allows the agents to communicate and share
information in the training phase and stay isolated in the execution phase. CTDE eases
the learning processes for MARL algorithms greatly and is the dominating framework
currently. In addition, CTDE provides a possible way to achieve reasonable multi-agent
credit assignments in the training phase.

To encourage the cooperation among agents in the multi-agent systems, Value Decom-
position Network (VDN) that follows the CTDE diagram is proposed. VDN aims to use
a value decomposition network to learn a linear decomposition scheme and divide the
global reward into each agent’s individual reward based on its contribution to success. In
VDN, each agent obtains its own value network and its output are added to obtain the total
Q-value, which can be defined as

Qtot(s, a) =
N

∑
n=1

Qi(on, an) (1)

where s is the global state, on denotes the n-th agent’s observation, and an denotes the n-th
agent’s action and the gradient is backpropagated to update all agents’ value networks.
VDN manages to avoid the spurious reward signals that emerge in a fully centralized
approach and ameliorates the coordination problem.

2.4. COMA

Jakob N. Foerster proposes a classical policy-based MARL algorithm, COMA, to
address the credit assignment issue [11]. COMA follows the actor-critic approach and actors,
i.e., policies, are independent and trained by backpropagating the gradient estimated by a
critic. One of COMA’s contributions is that the critics are not independent, but centralized,
which means all agents share the same critic. The critic only appears in the training phase,

Appl. Sci. 2022, 12, 6938 4 of 11

which satisfies the CTDE digram and the critic can use all available information in the
training phase and each agent’s policy stays independent in the execution phase.

Another contribution is the introduction of the counterfactual baseline that is inspired
by difference rewards [11,13,14]. Difference rewards are a powerful way to perform multi-
agent credit assignments but it requires a default action to compare with the reward
obtained by the current action, which also requires access to the simulator. COMA avoids
this requirement by introducing an advantage function

Aa(s, u) = Q(s, u)−∑
u′a

πa(u′a|τa)Q(s, (u−a, u′a)), (2)

where Q(s, u) is the centralized critic, u−a denotes other agents’ actions, πa(u′a|τa) denotes
the probability of chosing action u′a condition on the history of observations τa. Hence,
COMA uses this advantage function as the object to optimize and learn directly from agents’
experiences instead of relying on extra simulations, a reward model, or a user-designed
default action.

3. Related Work

Credit assignment has been a long-standing problem in the field of multi-agent rein-
forcement learning [13,15]. A good credit assignment scheme can divide the only global
reward from the environment into individual rewards for agents based on their contribu-
tion. Thus, it can encourage high-level cooperation among agents and avoid suboptimal
policies, such as the “lazy-agent” problem that exists in the trained policies by IQL. Because
of the call for high-level coordination policies trained by MARL algorithms, credit assign-
ment attracts lots of researchers’ attention. Lots of MARL algorithms have been proposed
to tackle it and these methods can be divided into two groups.

The first group is the value-based methods, which start from the VDN. VDN proposed
an addictive decomposition scheme to divide the global reward into each agent’s reward.
It is worth noticing that the IGM (Individual-Global-Max) principle is required in this
kind of method. The IGM principle requires the consistency of the optimal joint action
selection with optimal individual action selections. This linear factorization does have
better performance in encouraging cooperation among agents than IQL [10]. However, it
also limits the application scenarios of VDN because the linear relation between global
reward and individual agents’ rewards is not always valid. To overcome the limitations of
this linear representation, QMIX proposes a monotonic value function factorization scheme
by introducing a hyper network [16]. The hyper network takes the global information as
input and outputs the weights of the mixing network. The weight of the mixing network
is forced to be non-negative to obtain this monotonic value function factorization scheme.
However, the representation ability of QMIX is limited due to the introduction of the
non-negative mixing network [17,18]. QPLEX improves the representation ability of the
mixing network by adopting the dueling network architecture, which can transform the
IGM principle to easily realized constraints on advantage functions [18].

Another group is the policy-based MARL methods. Unlike the value-based methods
that learn the Q-values first and select actions based on Q-values, the policy-based MARL
methods learn policy directly. Lowe et al. proposed a multi-agent policy-gradient algorithm
using centralized critics named MADDPG, but it does not address the credit assignment [19].
One of the most classical policy-based MARL methods is COMA. COMA performs the
credit assignment by introducing a centralized critic and a counterfactual baseline that
incorporates the difference reward technique. The difference reward technique replaces the
original reward with a shaped reward that compares the reward received when that agent’s
action is replaced with a default action [13,14]. It is worth noticing that the counterfactual
baseline is proved to not influence the final optimization object. After that, a MARL
algorithm named LICA tries to train a neural network to learn a credit assignment scheme
directly [20]. DOP introduces the idea of value function decomposition into the multi-agent
actor-critic framework to address the credit assignment issue. It also supports off-policy

Appl. Sci. 2022, 12, 6938 5 of 11

learning to improve the sample efficiency and currently serves as the state-of-the-art MARL
algorithm [21].

4. Method

In this section, we provide a detailed description of the proposed method MLCA .
First, we describe the hierarchical model that includes two levels. The hierarchical model
not only serves as the foundation for multi-level credit assignment but also enables our
method to utilize different resolutions of time. Then, in order to empower the higher level
broader horizon over time and give high-level plans, the temporal abstraction is achieved
by using the dilated LSTM. Finally, we present the two-level credit assignment method that
can be easily extended to more levels.

It is worth noticing that unlike other hierarchical MARL methods, i.e., ROMA and
RODE, MLCA proposes to use the temporal abstract technique to assign different time reso-
lutions to different levels and achieves multi-level credit assignment based on that [22,23].

4.1. The Hierarchical Model

In order to achieve the multi-level credit assignment, we propose a two-level hierar-
chical model for each agent first. Inspired by the feudal network, the hierarchical model
consists of the top level (the manager) and the lower level (the worker) and can be repre-
sented as Figure 1 [24]. The manager aims to learn high-level plans that are denoted as αn.
These high-level plans are used to guide the low-level worker to generate primitive actions
based on αn. Thus, the manager can focus on learning high-level decisions and the worker
only needs to follow the guidance from the manager.

As Figure 1 represented, the observation on
t is taken as the input of the hierarchi-

cal model. It first needs to be processed by the perception network fper, which can be
represented as

zt = fper(on
t), (3)

where zt denotes the embedding results of the perception network. Then, zt is sent to the
manager and the worker, respectively. We first present the workflow of the manager. zt is
processed by the RNN of the manager first, which can be denoted as

νt, mn
t = f RNN

m (zt, mn
t−1), (4)

where mn denotes the n-th agent’s hidden states in the manager. Then, the intermediate
result νt is sent to the option network f option to produce the embedding results αn of
high-level policies, which can be represented as

αn = f option(νt). (5)

To this end, high-level policies have been generated.
Then, we present the worker inside the worker and the mechanism that how the

high-level plans guide the low-level actions. zt is processed by the RNN of the worker first,
which can be denoted as

µt, wn
t = f RNN

w (zt, wn
t−1), (6)

where wn denotes the n-th agent’s hidden states in the worker.
Then, intermediate result µt is sent to the embedding network f U to produce Un,

which can be represented as
Un = f option(µt). (7)

In order to incorporate the high-level plans generated by the manager, the Un is
designed to combine with the αn. To achieve this, αn is processed by the φ first. These two
process can be denoted as

logits = Un · φ(αn) (8)

Appl. Sci. 2022, 12, 6938 6 of 11

To this end, the policy π can be obtained by

π = So f tmax(logits) (9)

It is worth noticing that the manager is supposed to generate high-level information.
In this section, we introduce the hierarchical model but the details about the manager
are not provided. Thus, we present the way we empower the manager with this ability,
i.e., temporal abstraction.

policy

No gradient

Manager Worker

Figure 1. The structure of the hierarchical model takes the agent’s current observation as input and
output a policy that is a distribution over available actions. There are two levels, i.e., the manager
and the worker, in the model and marked in purple and green, respectively.

4.2. Temporal Abstraction

In order to make the manager able to focus on high-level decisions, the RNN structure
of the manager is designed to work on a lower temporal resolution. Thus, the dilated GRU
is applied, which is inspired by dilated convolution networks [25]. The dilated convolution
networks support the exponential expansion of the receptive field without loss of resolution
or coverage and improve the performance in image classification greatly. The dilated GRU
follows its dilated scheme by obtaining r (the dilated radius) sets of hidden states that are
denoted as h = {ĥi}r

i=1. The comparison between the unrolling structure of dilated GRU
and the traditional GRU is represented as Figure 2.

At timestep t, the hidden state ĥt%r is chosen as the input of GRU. Each hidden state
is used once every t timesteps. By doing so, the dilated GRU obtains the ability to have a
much longer memory and larger receptive field than a normal GRU.

Appl. Sci. 2022, 12, 6938 7 of 11

(a)

(b)

Figure 2. The traditional GRU versus the dilated GRU: (a) The unrolling structure of the traditonal
GRU; (b) The unrolling structure of the dilated GRU.

4.3. Multi-Level Credit Assignment

After the introduction of the hierarchical model and the dilated GRU, in Figure 3
we present the multi-level credit assignment and the whole structure of the proposed
method MLCA.

Agent 1

Concate

Manager Critic Worker Critic

Agent 1

Figure 3. The structure of the MLCA algorithm.

To achieve multi-level credit assignment for this two-hierarchical model, we propose
to use one centralized critic network for each hierarchy. Then, there are two centralized
critics, i.e., the manager critic for the high-level manager and the worker critic for the
low-level worker. The manager critic takes all high-level plans {αi}N

i=0 generated by the
managers of all agents as input and outputs a total Q-value for the current joint plan. Thus,

Appl. Sci. 2022, 12, 6938 8 of 11

the total Q-value for the manager level can be denoted as Qm
tot(s, {αi}N

i=0), which is what the
method wants to maximize. Moreover, in order to obtain a good critic, the object function
for the manager critic is

Lm = E[Rt −Qm
tot(s, {αi}N

i=0)], (10)

where Rt denotes the discounted accumulated rewards and can be defined as

Rt =
T

∑
i=t

γi−tri. (11)

Similarly, the worker critic takes all low-level primitive policies {πi}n
i=0 as input and

outputs a total Q-value for current joint policies. Thus, the total Q-value for the worker
level can be denoted as Qw

tot(s, {π}N
i=0), which is what the method wants to maximize. The

object function for the manager critic is

Lw = E[Rt −Qw
tot(s, {π}N

i=0)], (12)

To this end, the whole learning process can be represented as Algorithm 1.

Algorithm 1 : Optimization Process for MLCA

1: Randomly initialize the neural networks (i.e., θ and ν) for agents’ individual functions
and all centralized critics

2: for number of training iterations do
3: Sample b trajectories D1, D2, · · · , Db by interacting with the environment
4: Calculate accumulated rewards {R0,i, · · · , RT,i} for each trajectory Di
5: for k iterations do
6: Update both centralized critics by minimizing Equation (13)

L = Lm + Lw (13)

7: Update decentralized hierarchical model by maximizing Equation (14)

Qm
tot(s, {αi}N

i=0) + Qw
tot(s, {π}N

i=0) (14)

8: end for
9: end for

5. Experiments
5.1. Environment Setting

MARL has gained great progress over recent decades but there exists a period the
widely accepted benchmarks are missing. That is because the introduction of the neural
networks improves the application scenarios of the MARL algorithms greatly and the
toy cases used before are no longer good benchmarks for newly proposed algorithms.
Thus, some challenging benchmarks are proposed to evaluate the performance of MARL
algorithms. Among them, the StarCraft Multi-Agent Challenge (SMAC) provides the de-
centralized control of each agent and serves as the most popular, standard, and challenging
benchmark [26].

SMAC is developed based on the real-time strategy game, StarCraft II. Each agent
in SMAC can observe its own states, i.e., health, shield, and others within its field of
observation, it also observes other units’ statistics such as health, location, and unit type.
Agents can only attack enemies within their shooting range. Agents in a team will receive a
global reward for battle victory, as well as damaging or killing enemy units. Each battle
will last for at most 250 steps and may end early because agents in a team all die.

SMAC provides a series of challenging tasks for MARL algorithms to learn and
conquer. We select three classical tasks, 2s3z, 5m_vs_6m, and MMM2 to evaluate our
proposed method. 2s3z is an easy task, 5m_vs_6m is a hard task and MMM2 is a super

Appl. Sci. 2022, 12, 6938 9 of 11

hard task. These three challenges with different levels of difficulties are able to demonstrate
the performance of MLCA .

Three very effective algorithms, DOP, COMA, and QMIX serve as baseline
methods [11,16,21]. DOP is the most recent method and serves as the state-of-the-art
method currently. DOP and COMA are policy-based and QMIX is value-based. We follow
the setting in [16] where all methods use the same batch size (i.e., 32 episodes) and the same
number of training iterations which is 2 million. All methods’ performance is tested every
10,000 training iterations using 32 test episodes where agents act deterministically, All
experiments are carried out with 3 different random seeds. The maximum and minimum
values of the test win rate at different timesteps are plotted for every method in every
challenge. Taking Figure 4 as an example, the horizontal axis represents the number of
timesteps experienced by the agent, denoted as T. T(mil) represents T in millions. The
vertical axis represents the test win rate which ranges from 0 to 1. The MLCA is marked in
red. The red line in the block denotes the mean test win rate, the upper and lower bound of
the red area are the largest and smallest test win rate, respectively.

Figure 4. Comparing performance across various scenarios in SMAC. DOP, COMA and QMIX serve
as the baseline methods and MLCA is the proposed method.

In order to reproduce results easily, hyperparameters are listed in Table 1.

5.2. Results

Figure 4 presents the comparison results of the proposed method MLCA against DOP,
COMA, and QMIX. We can observe that MLCA gains great performance improvement
across all three challenges. Since 2s3z is an easy task that does not require high-level
cooperation, all methods can learn to conquer easily, but MLCA obtains higher sample
efficiency and stability. While in 5m_vs_6m and MMM2, our method learns faster and
better. MMM2 is a super hard task and requires high-level cooperation among 10 agents and
three different types of units. MLCA obtains the highest sample efficiency and can reach
nearly 1.0 test win rate in 2 million steps, while other methods can not. The result in the

Appl. Sci. 2022, 12, 6938 10 of 11

MMM2 task demonstrates that the proposed method MLCA can learn better cooperation
policy, which shows the effectiveness of the multi-level credit assignment scheme.

Table 1. Hyperparameters of each algorithm.

MLCA QMIX COMA DOP

Parallel
environment 8 8 8 8

Replay buffer size N.A. 50,000 N.A. 50,000
Learning rate 0.0005 0.0005 0.0005 0.0005

Discount factor 0.99 0.99 0.99 0.99
Dilated radius 10 N.A. N.A. N.A.

T 2,000,000 2,000,000 2,000,000 2,000,000

It is worth noticing 2s3z is a homogeneous task, which means the agent team and the
enemy team share the same number of agents and the same type of agents. 5m_vs_6m and
MMM2 are heterogeneous, which makes the learning process harder. While our method
MLCA gains great performance improvement in both heterogeneous and homogeneous tasks
because of the multi-level credit assignment scheme. The results demonstrate that MLCA
can achieve a better credit assignment scheme and thus encourage high-level cooperation.

6. Conclusions

In this paper, we propose a novel method MLCA to address the multi-agent credit
assignment issue. The novelties of MLCA lie in: (1) the dilated GRU is designed to make
the RNN able to obtain different time resolutions; (2) a two-level hierarchical model is
proposed where the higher-level uses dilated GRU and focuses on high-level plans and
the low level uses traditional GRU and executes primitive actions based on plans from the
higher level; (3) one centralized critic for each level is proposed to achieve the multi-level
credit assignment. Detailed experiment results demonstrate that MLCA obtains much higher
sample efficiency and can conquer the MMM2 task that is super hard in 2-million steps. Thus,
MLCA can use fewer computation resources to obtain better performance. MLCA can be
extended to three or more levels easily, which will be left as future work. In addition, our
method highlights a new approach to achieving a better credit assignment scheme.

Author Contributions: Conceptualization, L.F. and Y.X.; methodology, L.F.; software, Y.X.; validation,
Y.X. and S.W.; formal analysis, B.L.; investigation, Y.X.; resources, B.L.; data curation, S.W.; writing—
original draft preparation, L.F. and Y.X.; writing—review and editing, L.F., Y.X., B.L. and S.W.;
visualization, S.W.; supervision, B.L.; project administration, B.L.; funding acquisition, B.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The National Natural Science Foundation of China (Grant
No. 62171156).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Github address: https://github.com/YuxuanXie/MLCA.git, accessed
on 6 July 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction. AI Mag. 2000, 21, 103. [CrossRef]
3. Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.;

Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

https://github.com/YuxuanXie/MLCA.git
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/TNN.1998.712192
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042

Appl. Sci. 2022, 12, 6938 11 of 11

4. Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.; et al. Dota 2
with Large Scale Deep Reinforcement Learning. arXiv 2019, arXiv:1912.06680.

5. Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.; McGrew, B.; Mordatch, I. Emergent tool use from multi-agent
autocurricula. In Proceedings of the 8th International Conference on Learning Representations (ICLR 2020), Addis Ababa,
Ethiopia, 26–30 April 2020.

6. Wang, H.; Wang, X.; Hu, X.; Zhang, X.; Gu, M. A multi-agent reinforcement learning approach to dynamic service composition.
Inf. Sci. 2016, 363, 96–119. [CrossRef]

7. Prabuchandran, K.; AN, H.K.; Bhatnagar, S. Multi-agent reinforcement learning for traffic signal control. In Proceedings
of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014;
pp. 2529–2534.

8. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, Cambridge, UK, 1989.
9. Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru, J.; Aru, J.; Vicente, R. Multiagent cooperation and competition

with deep reinforcement learning. PLoS ONE 2017, 12, e0172395. [CrossRef] [PubMed]
10. Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W.M.; Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J.Z.; Tuyls,

K.; et al. Value-Decomposition Networks For Cooperative Multi-Agent Learning. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2018), Stockholm, Sweden, 10–15 July 2018.

11. Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual Multi-Agent Policy Gradients. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, LA, USA, 2–7 February 2018.

12. Tan, M. Multi-Agent Reinforcement Learning: Independent versus Cooperative Agents. In Proceedings of the Tenth International
Conference on Machine Learning (ICML 1993), Amherst, MA, USA, 27–29 June 1993; pp. 330–337.

13. Wolpert, D.H.; Tumer, K. Optimal Payoff Functions for Members of Collectives. Adv. Complex Syst. 2001, 4, 265–280. [CrossRef]
14. Tumer, K.; Agogino, A. Distributed agent-based air traffic flow management. In Proceedings of the 6th International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), Honolulu, HI, USA, 14–18 May 2007; pp. 1–8.
15. Agogino, A.K.; Tumer, K. Unifying Temporal and Structural Credit Assignment Problems. In Proceedings of the 3rd International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), New York, NY, USA, 19–23 August 2004.
16. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. Qmix: Monotonic value function factorisation

for deep multi-agent reinforcement learning. In Proceedings of the International Conference on Machine Learning, Stockholm,
Sweden, 10–15 July 2018; pp. 4295–4304.

17. Son, K.; Kim, D.; Kang, W.J.; Hostallero, D.E.; Yi, Y. QTRAN: Learning to Factorize with Transformation for Cooperative
Multi-Agent Reinforcement Learning. In Proceedings of the 36th International Conference on Machine Learning (ICML 2019),
Long Beach, CA, USA, 9–15 June 2019.

18. Wang, J.; Ren, Z.; Liu, T.; Yu, Y.; Zhang, C. QPLEX: Duplex Dueling Multi-Agent Q-Learning. In Proceedings of the 8th
International Conference on Learning Representations (ICLR 2020), Addis Ababa, Ethiopia, 26–30 April 2020.

19. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December
2017; Volume 30.

20. Zhou, M.; Liu, Z.; Sui, P.; Li, Y.; Chung, Y.Y. Learning Implicit Credit Assignment for Multi-Agent Actor-Critic. In Proceedings of
the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Online, 6–12 December 2020.

21. Wang, Y.; Han, B.; Wang, T.; Dong, H.; Zhang, C. Dop: Off-policy multi-agent decomposed policy gradients. In Proceedings of
the 8th International Conference on Learning Representations (ICLR 2020), Addis Ababa, Ethiopia, 26–30 April 2020.

22. Wang, T.; Dong, H.; Lesser, V.; Zhang, C. ROMA: Multi-Agent Reinforcement Learning with Emergent Roles. arXiv 2020,
arXiv:2003.08039.

23. Wang, T.; Gupta, T.; Mahajan, A.; Peng, B.; Whiteson, S.; Zhang, C. Rode: Learning roles to decompose multi-agent tasks. In Pro-
ceedings of the 8th International Conference on Learning Representations (ICLR 2020), Addis Ababa, Ethiopia, 26–30 April 2020.

24. Vezhnevets, A.S.; Osindero, S.; Schaul, T.; Heess, N.; Jaderberg, M.; Silver, D.; Kavukcuoglu, K. Feudal networks for hierarchical
reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, NSW,
Australia, 6–11 August 2017.

25. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the 4th International Conference on
Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2–4 May 2020.

26. Samvelyan, M.; Rashid, T.; de Witt, C.S.; Farquhar, G.; Nardelli, N.; Rudner, T.G.J.; Hung, C.M.; Torr, P.H.S.; Foerster, J.;
Whiteson, S. The StarCraft Multi-Agent Challenge. arXiv 2019, arXiv:1902.04043.

http://dx.doi.org/10.1016/j.ins.2016.05.002
http://dx.doi.org/10.1371/journal.pone.0172395
http://www.ncbi.nlm.nih.gov/pubmed/28380078
http://dx.doi.org/10.1142/S0219525901000188

	Introduction
	Background
	Dec-POMDPs Formulation
	Independent Q-Learning
	Value Decomposition Network
	COMA

	Related Work
	Method
	The Hierarchical Model
	Temporal Abstraction
	Multi-Level Credit Assignment

	Experiments
	Environment Setting
	Results

	Conclusions
	References

