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Abstract: College students are the group with the most entrepreneurial vitality and potential. How
to cultivate their entrepreneurial and innovative ability is one of the important and urgent issues
facing this current social development. This paper proposes a reliable, intelligent prediction model
of entrepreneurial intentions, providing theoretical support for guiding college students’ positive
entrepreneurial intentions. The model mainly uses the improved crow search algorithm (CSA) to
optimize the kernel extreme learning machine (KELM) model with feature selection (FS), namely
CSA-KELM-FS, to study entrepreneurial intention. To obtain the best fitting model and key features,
the gradient search rule, local escaping operator, and levy flight mutation (GLL) mechanism are
introduced to enhance the CSA (GLLCSA), and FS is used to extract the key features. To verify the
performance of the proposed GLLCSA, it is compared with eight other state-of-the-art methods.
Further, the GLLCSA-KELM-FS model and five other machine learning methods have been used
to predict the entrepreneurial intentions of 842 students from the Wenzhou Vocational College in
Zhejiang, China, in the past five years. The results show that the proposed model can correctly
predict the students’ entrepreneurial intention with an accuracy rate of 93.2% and excellent stability.
According to the prediction results of the proposed model, the key factors affecting the student’s
entrepreneurial intention are mainly the major studied, campus innovation, entrepreneurship practice
experience, and positive personality. Therefore, the proposed GLLCSA-KELM-FS is expected to be an
effective tool for predicting students’ entrepreneurial intentions.

Keywords: swarm intelligence; crow search algorithm; extreme learning machine; entrepreneurial
intentions prediction; machine learning

1. Introduction

Colleges, as the main front of college students’ entrepreneurship education, to further
promote the reform of college entrepreneurship education has become an important task for
the reform and development of higher education at present and in the future. The country
has provided broad development space and unlimited opportunities for college students
to start their businesses. However, the entrepreneurial rate of college students is not very
high, and the success rate is even lower. Innovation and entrepreneurship education in
colleges and universities are in full swing, but has it played its due role? What impact
do college innovation and entrepreneurship education have on students’ entrepreneurial
intentions? What is the impact of innovation and entrepreneurship education in colleges
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and universities on the entrepreneurial ability of college students? These are all topics
worthy of our study. At present, in my country, entrepreneurship education in colleges
and universities is still in the exploratory stage, and the training system for innovative
and entrepreneurial talents in colleges and universities is not yet perfect, and the effect is
not significant. Using entrepreneurial intentions data of college students in the process
of talent training in colleges and universities can help analyze the influencing factors
of entrepreneurial talent training in colleges and universities, formulate a scientific, en-
trepreneurial education system, accurately cultivate entrepreneurial talents, and ultimately
help college students make reasonable career choices.

In recent years, many researchers have carried out related research work on gradu-
ates’ entrepreneurial intentions. Salamzadeh et al. [1] used analysis data of 382 students
from two institutions in Malaysia and positively moderated the impact of the inputs on
entrepreneurship. Laouiti et al. [2] conducted a qualitative comparative analysis of fuzzy
sets and obtained the positive effect of gender on entrepreneurial intentions through a
sample survey of 531 students in France. Barba et al. [3] proposed a planned behavior
model to simulate 337 college students at the University of Oviedo and concluded that
college students’ high environmental awareness had an impact on entrepreneurial inten-
tions. Duong et al. [4] conducted a study of 685 undergraduate students with structural
equation modeling at various universities in Vietnam to show the impact of perceived
regulatory support on social entrepreneurial intentions. Suratno et al. [5] conducted a
questionnaire survey on 1000 students in Indonesia, and the results showed that family
economic education, peer groups, economic literacy, and entrepreneurial intention were
positively correlated. Ashraf et al. [6] used bounded rational planning behavior theory to
study the entrepreneurial intentions of young and senior students in Romania, Malaysia,
and Bangladesh, and the results showed that Facebook’s business factors had a potential
impact on students’ entrepreneurial intentions. Liu et al. [7] conducted a study on the
cultivation of the entrepreneurial intention of tourism and hotel majors from the perspec-
tive of social impact, indicating that Holmium provided some clues for improving the
entrepreneurial level of tourism and hotel majors. Leung et al. [8] conducted a question-
naire survey of 182 college students, and the results showed the difference between the
independent influence and the joint influence of psychiatric symptoms on entrepreneurial
intention. Iwu et al. [9] conducted a study on the entrepreneurial intention of students in a
South African university and showed that the perceived competence of the lecturer team of
entrepreneurial institutions was positively correlated with the entrepreneurial intentions of
students. The above research shows that the entrepreneurial intentions of students in dif-
ferent countries are related to social culture, economic development, and personal ideology.
However, the research methods are also different, but the main method is inseparable from
the questionnaire survey, whose relevant data are collected by employing a questionnaire
survey and then analyzed by statistical methods. Of course, some scholars build relevant
models through the collected data to carry out follow-up research work.

Artificial intelligence technology has been a hot technology in recent years and is
also widely used in students’ career planning and entrepreneurial intention prediction.
Wei et al. [10] proposed an effective, intelligent model based on an improved Harris hawk
optimizer (HHO) and kernel extreme learning machine to predict entrepreneurial intentions,
and it performed better than traditional approaches. Zhu et al. [11] proposed an orthog-
onal learning (OL) strategy to optimize the integrated-kernel extreme learning machine
model to evaluate Sino-foreign cooperative education projects and gained the best results
in the comparative experiments. Lin et al. [12] proposed an improved fuzzy k-nearest
neighbors framework to predict, in advance, college students’ intentions for a master’s
program. The results showed that the proposed model was more effective than other meth-
ods. Tu et al. [13] developed an adaptive support vector machine framework to predict the
entrepreneurial intentions of college students in advance. The results demonstrated that
the proposed method could be regarded as a promising success with excellent predictive
performance. Wei et al. [14] designed a support vector machine based on an improved grey
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wolf optimization to extract the factors that influence students’ final decisions to choose a
particular major. Gao et al. [15] proposed a predictive model based on the improved slime
mould algorithm and support vector machine for predicting graduate employment stability.
Mishra et al. [16] used a variety of data mining techniques to predict the employment
intention of computer application master students, and the results showed that the C4.5
decision tree had an accuracy of 70.19%. Jin et al. [17] used the improved C4.5 decision tree
algorithm combined with the Bayesian model to mine the data related to the employment
of students, and provided career guidance for the decision-making of promoting the em-
ployment of college students. Bell et al. [18] used principal component analysis, correlation
analysis, and multilevel regression to analyze 1185 student data to effectively predict the
entrepreneurial intentions across the university. Rahman et al. [19] used decision trees to
predict students’ entrepreneurial intentions by collecting entrepreneurship education data
from the University of Kuala Lumpur. Djordjevic et al. [20] used a classification decision
tree model based on the QUEST (Quick, Unbiased, Efficient, Statistical Tree) algorithm to
predict the entrepreneurial intentions of 5670 Serbian youths.

There are many different domains where advanced optimization algorithms have
been applied as solution approaches, such as online learning, scheduling, multi-objective
optimization, transportation, medicine, data classification, and others. Zhao et al. [21]
designed an online-learning-based evolutionary many-object algorithm to solve benchmark
problems. Pasha et al. [22] developed an integrated optimization method for tactical-level
planning in liner shipping with heterogeneous ship fleets and environmental consid-
erations. Dulebenets et al. [23] proposed a multi-object optimization model for emer-
gency evacuation planning in geographical locations with vulnerable population groups.
Dulebenets et al. [24] developed an adaptive polyploid memetic algorithm for scheduling
trucks at a cross. Rabbani et al. [25] used the NSGA-II and MOPSO algorithms for am-
bulance routing in disaster responses, considering the variable of the patient’s condition.
According to the “No Free Lunch” theorem [26], no single algorithm can solve all possible
problems. Lu et al. [27] extended a new version of the CSA to estimate the proton-exchange
membrane fuel-cell model parameter. Owing to its effectiveness in many problems, the
CSA was used in this study. However, the classical CSA has a problem of low convergence
speeds and becomes trapped in the local minimum easily when tackling a real-world
problem. Therefore, in this work, we have introduced three mechanisms, including the
gradient search rule (GSR), local escaping operator (LEO), and Levy mutation mechanism
(LM) into the CSA to improve its search capability, and then the proposed GLLCSA is used
to simultaneously optimize the parameters of the KELM classifier and feature space in the
data. The results show that the proposed GLLCSA-KELM-FS model can effectively predict
the entrepreneurial intentions of the school students, with an accuracy rate of 93.2%. In ad-
dition, the experimental results have found that the major selected, campus innovation and
entrepreneurship practice experience, and a positive personality are key factors that influ-
ence the entrepreneurial intentions of the school’s students. Therefore, this research plays a
key role in guiding relevant departments to guide students’ entrepreneurial intentions.

The main contributions of this study are as follows:

1. Incorporating the gradient search rule (GSR), local escaping operator (LEO), and Levy
mutation mechanism (LM) into the CSA to improve their search capabilities.

2. The performance of GLLCSA is effectively verified through benchmark function
experiments.

3. The GLLCSA-KELM-FS model is proposed to predict students’ entrepreneurial intentions.
4. Achieve an effective prediction of students’ entrepreneurial intentions and screen out

the key features.

This paper is organized as follows. Section 2 briefly describes KELM and the CSA.
Section 3 introduces GLLCSA. Section 4 presents the GLLCSA-KELM-FS model. Section 5
evaluates the performance of the proposed GLLCSA. Section 6 uses the GLLCSA-KELM-
FS model to predict graduate entrepreneurial intentions. Section 7 draws conclusions
and outlooks.
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2. Background
2.1. Literature Review

According to the study, the performance of the classifier is affected greatly by its inner
parameters and the features in the data. Metaheuristics have great effectiveness in solving
this type of problem as shown in many works [28–32], such as object tracking [33,34], the
traveling salesman problem [35], gate resource allocation [36,37], multi-attribute decision-
making [38,39], the design of the power electronic circuit [40,41], fractional-order con-
trollers [42], medical diagnoses [43,44], big data optimization problems [45], green supplier
selections [46], economic emission dispatch problems [47], scheduling problems [48,49],
and combination optimization problems [50]. This study proposes an enhanced crow search
algorithm (CSA) [51] to simultaneously optimize the hyperparameters of the kernel extreme
learning machine (KELM) and the feature space for predicting the entrepreneurial intention
of college students. The CSA is a novel-inspired metaheuristic method proposed in 2016
and has resolved many complex optimization problems [51], with many researchers at-
tempting to boost it from different aspects [52–56]. For example, Adamu et al. [57] proposed
a hybrid particle swarm optimization with the CSA for feature selection, and the result
of the proposed model gained an accuracy of 89.67% on 15 datasets. Aliabadi et al. [58]
designed an improved CSA to optimize a hybrid renewable energy system in radial distri-
bution networks, and the results showed significant active losses and voltage deviations.
Al-Thanoon et al. [59] adopted the CSA for big data classification, and the results showed a
higher classification performance compared with other algorithms. Awadallah et al. [60]
developed a cellular CSA with topological neighborhood shapes to resolve three real-world
problems. Bakhshaei et al. [61] designed a boosted CSA-based tournament selection strat-
egy, and the results showed that the optimal determination of power exchange and the
incentive rate could lead to decreasing operation costs. Chaudhuri et al. [62] developed a
binary CSA with a time-varying flight length to solve the feature selection problem, and
the results showed that the proposed feature selection technique behaved better than other
approaches. Geetha et al. [63] designed an enhanced CSA for a forgery detection technique
in the image, and the results exhibited that the proposed classification performs better than
most algorithms. Guha et al. [64] used the CSA with chaotic mapping for fine-turning the
controller and varied the efficacy of the controller in its frequency regulation, as validated.
Gupta et al. [65] introduced a novel boosted CSA to predict Parkinson’s disease with an ac-
curacy of 100% and helped patients obtain proper treatment. Hossain et al. [66] developed
a hybrid support vector regression and CSA to handle the multi-objective optimization of
microalgae-based wastewater treatment. Ke et al. [67] proposed an enhanced CSA to deal
with energy optimization problems, and the results showed that the approach can better
obtain proper solutions with lower calculation times. Khattab et al. [68] developed a novel
crow spiral-based search algorithm to solve the design problem formulated, and the gained
results confirmed the success of the filter design. Kumar et al. [69] designed a hybrid CSA
with an arithmetic crossover to two real-world engineering optimization problems and
gained effective results. Li et al. designed [70] an improved CSA with an extreme learning
machine model to effectively forecast short-term wind power.

2.2. Kernel Extreme Learning Machine (KELM)

The extreme learning machine (ELM) [71] is a class of machine learning systems or
methods based on feed-forward neural networks. The traditional ELMs have a single
hidden layer, which is considered to have a low learning rate and generalization when
compared with other shallow learning systems, such as the single-layer perceptron and
support vector machine (SVM). The ELM algorithm randomly generates the connection
weight between the input layer and the hidden layer and the threshold of the neurons in
the hidden layer. Therefore, in the process of training, one only needs to set the number of
neurons in the hidden layer, and the unique optimal solution can then be obtained.

KELM was designed by adding a radial basis function (RBF) kernel that is based on
ELM [72]. The selection of RBF kernels aims to map samples into a high-dimensional
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mapping space, further solving nonlinear problems. In addition, the RBF kernel has few
parameters; only the penalty factor and kernel parameters need to be considered. However,
the choice of hyperparameters has a certain impact on the effect of model fitting. Therefore,
it is necessary to select an appropriate hyperparameter optimization method according to
the specific problem.

2.3. Crow Search Algorithm (CSA)

Recently, many metaheuristics have been proposed to solve global optimization prob-
lems, such as the slime mould algorithm (SMA) (https://aliasgharheidari.com/SMA.html,
accessed on 1 April 2020) [73], weighted mean of vectors (INFO) (https://aliasgharheidari.
com/INFO.html, accessed on 1 June 2022) [74], colony predation algorithm (CPA) [75],
Harris hawks optimization (HHO) (https://aliasgharheidari.com/HHO.html, accessed on
1 August 2019) [76], Runge Kutta optimizer (RUN) (https://aliasgharheidari.com/RUN.
html, accessed on 1 November 2021) [77], and the hunger games search (HGS) [78]. These
optimizers have shown great potential in many fields, such as medicine [79–81], en-
ergy [82,83], finance [84,85], education [86] and engineering [87,88]. The CSA is one of
these members, which focuses on the following behaviors by simulating crows: (a) Crows
live in groups; (b) crows call back to mind where they hide; (c) crows track mutual for theft;
(d) crows protect their food from theft [51].

Suppose there exists a space, and the number of crows (group size) is N and crowi in
the search space in time (iteration), which is defined by a vector xi,iteration(i = 1, 2, . . . , N;
iteration = 1, 2, . . . , iterationmax, xiteration =

[
xi,iteration

1 , xi,iteration
2 , . . . , xi,iteration

d

]
and

iterationmax is the maximum number of iterations. When iteration is going on, the hidden
position of crowi is represented by mj,iteration. This is by far the best position to have. In fact,
in the memory of each crow, what it considers to be in the optimal position is remembered.
After that, the crow moves through the spatial environment and then looks for a more
optimal location for the presence of food.

Suppose that in iter iteration, crowi wants to access its hidden location mj,iteration. In
this iteration, crowi decides to follow crowj and close to crowj

′s hideout. In this case, there
may be two states:

State 1: crowj does not know crowi is tracking it. As a result, crowi will be close to
crowj

′s hiding position. In this case, the new location of crowi is obtained as follows:

xi,iteration+1 = xi,iteration + ri × f li,iteration ×
(

mj,iteration − xi,iteration
)

(1)

where ri is a random value between [0, 1], and f li,iteration is the flight length of crowi when
iterating iter.

State 2: crowj knows crowi is tracking it. Therefore, to keep its food from being stolen,
crowj will deceive crowi by leaving for another location.

In general, state 1 and state 2 can be expressed as:

xi,iteration+1 = {
xi,iteration + ri × f li,iteration × (mj,iteration − xi,iteration) rj ≥ APj,iteration

arandowposition otherwise
(2)

Among them, rj is a random number that is evenly distributed between 0 and 1;
iteration represents crowj perception probability in iteration.

The MA should supply a good equilibrium between exploration and exploitation.
In the CSA, the perception/affinity probability (AP) parameter controls exploration and
exploitation. By abating the value of perception chance, the CSA tends to search for the
current good solution in the local area. Therefore, using a smaller AP value will enhance
the local search capability. On the other hand, with the increase in perception chance, the
ability to search for locally optimal solutions decreases and is replaced by an improved
ability to search in the global space.

https://aliasgharheidari.com/SMA.html
https://aliasgharheidari.com/INFO.html
https://aliasgharheidari.com/INFO.html
https://aliasgharheidari.com/HHO.html
https://aliasgharheidari.com/RUN.html
https://aliasgharheidari.com/RUN.html
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3. Proposed GLLCSA
3.1. Gradient Search Rule and Local Escaping Operator and Levy Flight Operator (GLL)

In this part, we will introduce the GLL mechanism, which aims to achieve better
performance for the CSA and prevent the CSA from sinking into the local optimum (LO).
In this paper, the GSR, LEO, and LM operators are used to improve the personal position
updating function of the CSA.

The GSR strategy has shown great capability in many tasks [89–93]. In this study, the
GSR strategy is mixed with the position update of the CSA to enhance the global search
capability. The algorithm creates a population search method with strong robustness. The
GSR can be expressed as:

GSR = randn× ρ1 ×
2∆x× xn

(xworst − xbest + ε)
(3)

where randn is a normally distributed random number, ∆x means the value of the increment,
and ε is a number from 0 to 0.1. xbest and xworst, respectively, represent the best and worst
solutions gained in the search process. Equation (3) is better updated for the current
solution. In addition, to better enhance the overall effect of the algorithm, ρ1 is then
introduced into the equation to modify the GSP, as detailed below. The purpose of the
optimization algorithm is to be able to search both locally as well as globally to achieve
optimal results. Therefore, the GSR is updated by adaptive coefficients. Further, ρ1 is
regarded as the vital variable in GBO to achieve this purpose, and it can be expressed as:

ρ1 = 2× rand× α− α (4)

α = |β× sin(
3π

2
+ sin(β× 3π

2
))| (5)

β = βmin + (βmax − βmin)× (1− (
m
M

)
3
)

2
(6)

where βmin and βmax are equal to 0.2 and 1.2, respectively; m expresses the number of
iterations; M represents the blanket number of iterations.

The GSR mechanism can be used to enhance the ability to search in the global space
from the principle of the CSA. In Equation (3), ∆x is determined by distinguishing the best
solution (xbest) and a selected position (xi

r1) (see Equations (7)–(9)) at random. Parameter
δ is defined by Equation (9). To improve exploration, a random number (rand) is mixed
in Equation (9).

∆x = rand(1 : N)× |step| (7)

step =

(
xbest − xi

r1
)
+ δ

2
(8)

δ = 2× rand× (|
xi

r1 + xi
r2 + xi

r3 + xi
r4

4
− xi

n|) (9)

where rand(1 : N) is a vector composed of N dimensions; r1, r2, r3, and r4 (r1 6= r2 6= r3 6=
r4 6= n) are unequal integers chosen from 1 to N at random; step is the size of the step
determined by xbest and xi

r1.
On the other hand, the local escaping operator (LEO) is mixed in the CSA to improve

the search performance in the local space. The principle is to transform the moving direction
of the current solution into the direction toward the optimal solution so far into the local
space, thus speeding up the algorithm convergence. Furthermore, LEO can be expressed
in Equation (10):

LEO = rand× ρ2 × (xbest − xn) (10)
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where rand is a random number from 0 to 1; ρ2 is based on a random number on α, which
makes the vector have different step sizes. ρ2 is given by:

ρ2 = 2× rand× α− α (11)

Finally, Equations (12) and (13) aim to update the position of the current vector (xi
n)

established by the GSR and LEO mechanism.

X1i
n = xi

n − GSR + LEO (12)

X1i
n = xi

n − randn× ρ1 ×
2∆x× xi

n(
ypi

n − yqi
n + ε

) + rand× ρ2 ×
(

xi
r1 − xi

r2

)
(13)

The position of the best vector (xbest) is replaced by the current vector (xi
n) in Equation (13),

and the new vector (X2i
n) can generate as follows:

X2i
n = xbest − randn× ρ1 ×

2∆x× xi
n(

ypi
n − yqi

n + ε
) + rand× ρ2 ×

(
xi

r1 − xi
r2

)
(14)

where

ypi = rand×
([

zi+1 + xi]
2

+ rand× ∆x

)
(15)

yqi = rand×
([

zi+1 + xi]
2

− rand× ∆x

)
(16)

The above-mentioned method of updating the location uses a searching direction at
the local space. In Equations (13) and (14), there are advantages and disadvantages in
the search, respectively. Equation (13) is better in global space but worse in local space,
and Formula (14) is vice versa. Therefore, the CSA is based on Equations (13) and (14) to
balance the exploration and exploitation capabilities. Thus, based on the positions X1i

n,
X2i

n, the vector Xi
n and Xi+1

n can be defined as:

xi+1
n = ra ×

(
rb × X1i

n + (1− rb)× X2i
n

)
+ (1− ra)× X3i

n (17)

X3i
n = Xi

n − ρ1 ×
(

X2i
n − X1i

n

)
(18)

where ra and rb are two random numbers in [0, 1].

xi+1 = {
xi + ri × f li × (mj − xi) rj ≥ AP
ra × (rb × X1 + (1− rb)× X2) + (1− rb)× X3 rj < AP

(19)

xi
LEO = xi + f1 ×

(
u1 × xbest − u2 × xi

k

)
+ f2 × ρ1 ×

(
u3 × (X2− X1) + u2 ×

(
xi

r1 − xi
r2

))
/2 (20)

where f1 is the uniform random number in [−1, 1]; f2 expresses the random number of the
standard normal distribution; u1, u2, u3 are all random numbers in Equations (21)–(23):

X3i
n = Xi

n − ρ1 ×
(

X2i
n − X1i

n

)
(21)

u1 =

{
2× rand i f µ1 < 0.5

1 otherwise
(22)

u2 =

{
rand i f µ1 < 0.5

1 otherwise
(23)

u3 =

{
rand i f µ1 < 0.5

1 otherwise
(24)
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where rand is the random number from 0 to 1, and µ1 is a number in [0, 1]. The above
equations are further expressed as follows:

u1 = L1 × 2× rand + (1− L1) (25)

u2 = L1 × rand + (1− L1) (26)

u3 = L1 × rand + (1− L1) (27)

where L1 is a binary parameter with a value of 0 or 1. If parameter µ1 is less than 0.5, the
value of L1 is 1, otherwise, it is 0.

To determine the solution xp in Equation (20), the following scheme is suggested:

xi
k =

{
xrand i f µ2 < 0.5

xi
p otherwise (28)

xrand = Xmin + rand(0, 1)× (Xmax − Xmin) (29)

where xrand is a new solution, xi
p is a randomly selected solution of the population

(p ∈ [1, 2, . . . , N]), and µ2 is the random number in the range of [0, 1]. Equation (27)
can be simplified as:

xi
k = L2 × xi

p + (1− L2)× xrand (30)

where L2 is a binary parameter with a value of 0 or 1. If µ2 is less than 0.5, the value of L2
is 1, otherwise, it is 0.

Moreover, the Levy mutation mechanism (LM) is adopted to update xi, which is
expressed as Equation (31).

xi
new = xi × (1 + 0.5× L(β)) (31)

where β is an index of stability. The Levy random number can be described by the following
formula:

Levy(β) ∼ φ× µ

|v|1/β
(32)

where µ and v are standard normal distributions, Γ is known as the standard Gamma
function, β = 1.5, and φ denotes as below:

φ = [
Γ(1 + β)× sin(π × β/2)

Γ
((

1+β
2

)
× β× 2

β−1
2

) ]
1/β

(33)

where L(β) is the randomly spread number drawn from the Levy distribution. The LM
operator is likely to generate a different offspring because of its heavy-tailed distribution.
Hence, it can help all individuals avoid the local optima without striking a blow. Thus, the
implementation of GLLCSA can be indicated in detail as below.

3.2. GLLCSA

We combined all the above strategies, and the pseudo-code for the whole GLLCSA
framework is shown in Algorithm 1. Figure 1 is the flowchart of GLLCSA. In the proposed
GLLCSA, almost all parameters are affected by the GLLCSA group size. However, the new
tactic will not increase the complexity of the original algorithm too much. GLLCSA adopts a
gradient search strategy, which includes the Newton method to change the gradient descent
rate, and it can coordinate the rationality of each object and improve the authenticity of the
algorithm simulation.
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Algorithm 1: Pseudo-code of GLLCSA

Step 1. Initialization
Randomly initialize the location of N-group crows in the search space
Assess the location of crows
Initialize the memory of crows
Specify the best and worst solutions xm

best and xm
worst

Step 2. Main loop
while (iteration < iterationmax)

for i = 1:N
Randomly choose a crow to follow
Define perception probability
if rj ≥ APj,iteration

Calculate the position using Equation (1)
else

for d = 1:D
if FES/iterationmax

xd = a random position of search space
else

Select randomly r1 6= r2 6= r3 6= r4 6= n in the range of [1, N]
Calculate the position using Equation (19)

end if
end for

end if
Local escaping operator
Calculate the position using Equation (20)
Update the positions xi

best and xi
worst

Create the new position xnew using Equation (30)
if xnew better than xi

xi = xnew
end if

end for
Inspect the feasibility of the new positions
Assess the new location of the crows
Update the memory of each crow

end while
Step 3. Return g_best

According to Figure 1, the time complexity of GLLCSA relates to the following fac-
tors: initialization, fitness evaluation, individual location update, ranking, gradient search
mechanism, local operator, and levy flight mutation. On account of the time consumption
of fitness, an evaluation is decided by the concrete optimization problem. The compu-
tational complexity analysis centers on the other six aspects. Assuming the population
and initialization of the solutions with N agents, the computational complexity of the
sorting mechanism is O(N) + O(N × logN). The computational complexity of the individual
location update is O(G × N × D), where G is the highest iteration number and D is the
dimension. The complexity of the GSR, LEO, and LM update stages is O(G × N × D).
Therefore, the computational complexity of GLLCSA is O(N + N*logN) + O(G*D(2*N + 1)),
which is the same as the original CSA.
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4. Proposed GLLCSA-KELM-FS Model

In this section, the proposed GLLCSA-KELM-FS model is introduced in detail, as
shown in Figure 2. First of all, the input data needs to be preprocessed; the first is the
normalization operation and feature selection to eliminate the redundant partial features.
The ten-fold cross-validation was used to avoid overfitting. For the KELM technique, the
input data was mapped into the hidden layer space through the RBF kernel, including
the hyperparameters C and γ to be optimized and the n features. The proposed GLLCSA
was adopted to optimize the two hyperparameters involved. Specifically, the dataset was
divided into 10 parts, with 9 parts selected as training data and 1 part used as the test data,
in turn. Further, the nine pieces of data were divided into five pieces again, and four pieces
of data were selected, in turn, as training data, which were combined with GLLCSA and
used to train the KELM model. We evaluated the trained KELM model with one copy as
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the test data and obtained an optimal KELM model. Finally, for this model, the original
reserved one test data was used to evaluate the performance of the resulting KELM model.
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5. Test Experiments of Benchmark Function Sets

In the experimental part, the GLLCSA was evaluated for a variety of aspects through
a set of experiments on benchmarks and practical problems. To ensure the fairness of
the experiment, we adopted the same environment and parameter settings in the same
experiment. The population size and the maximum number of iterations were set to
30 and 500, respectively. Each algorithm ran independently on each function for a specified
number of times to reduce the weight of unpredictability. In this experiment, two main
metrics were used to test and estimate the proposed algorithm’s performance: the average
result (AVG) and standard deviation (STD). In addition, we placed the optimal results
obtained in each test function in bold.

5.1. Benchmark Functions

To compare the proposed algorithm and other algorithms, this experiment used 30 clas-
sical functions, including the unimodal functions, multimodal functions, hybrid functions,
and composition functions. These 30 functions are all taken from CEC 2014 [94]. F1–F3 rep-
resent the unimodal functions, F4–F16 are simple multimodal functions, F17–F22 are hybrid
functions, and F23–F30 are composition functions. Thirty different types of benchmarks
allow a more comprehensive evaluation of the performance of the proposed algorithms.

5.2. Comparison with Classical Algorithms

In this section, we compare GLLSCA with BA [95], SCA [96], PSO, MFO, GWO,
CESCA [12], OBLGWO [97], IGWO [86], CGPSO [98], CBA [99], and RCBA [100] on
CEC 2014 to test its performance. Among them, Functions (1)–(7) are unimodal func-
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tions to test the local search ability of the function. Functions (8)–(13) are multimodal
functions to test the global search ability of the function. Functions (14)–(23) are hybrid
functions, which are applied to test the global and local comprehensive ability of the func-
tion. Functions (24)–(30) are composition functions, which can be used to fully test the
performance of the algorithm in all aspects. Some of the parameter settings for the different
algorithms are shown in Table 1. The unimodal and multimodal functions have been
obtained in a great deal of literature, as shown in Tables 2–4. The parameter dim expresses
the dimension of the selected objective function. The parameter Range is responsible for
the boundary of the function search space, and the parameter Fmin is applied to represent
the optimal value of the function.

Table 1. Parameters for involved methods.

Method Parameters

RCBA Qmin = 0; Qmax = 2
CBA Qmin = 0; Qmax = 2

CGPSO w = 1; c1 = 2; c2 = 2
IGWO β = 10; ω = 15; a ∈[0, 2]

OBLGWO a ∈[0, 2]; a2 ∈[−1, −2]; b = 1
CESCA a = 2; r3 = chaotic sequence
GWO a ∈[0, 2]
MFO b = 1; t = [−1, 1]; a ∈[−1, −2]
PSO w = 1; c1 = 2; c2 = 2
SCA a = 2
BA A = 0.5; r = 0.5

Table 2. Unimodal benchmark functions.

Function Dim Range fmin

f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

f2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 [−10, 10] 0

f3(x) = ∑n
i=1

(
∑i

j−1 xj

)2
30 [−100, 100] 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) = ∑n−1
i=1 [100

(
xi+1 − x2

i
)2

+ (xi − 1)2] 30 [−30, 30] 0

f6(x) = ∑n
i=1([xi + 0.5])2 30 [−100, 100] 0

f7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Table 3. Multimodal benchmark functions.

Function Dim Range fmin

f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

f2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 [−10, 10] 0

f3(x) = ∑n
i=1

(
∑i

j−1 xj

)2
30 [−100, 100] 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) = ∑n−1
i=1 [100

(
xi+1 − x2

i
)2

+ (xi − 1)2] 30 [−30, 30] 0

f6(x) = ∑n
i=1([xi + 0.5])2 30 [−100, 100] 0

f7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0
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Table 4. Simple multimodal functions.

Function Dim Range fmin

f14(x) = ( 1
500 + ∑25

j=1
1

j+∑2
i−1(xi−aij)

6 ) 2 [−65, 65] 1

f15(x) = ∑11
i=11 [ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

] 4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5, 5] 0.398

f18(x) = [1 + (x1 +x2 + 1)2(19− 14x1 + 3x2
1

−14x2 + 6x1x2 + 3x2
2)]× [30

+(2x1 − 3x2)
2

×(18− 32x1 + 12x2
1 + 48x2

−36x1x2 + 27x2
2)]

2 [−2, 2] 3

f19(x) = −∑4
i=1 ciexp(−

3
∑

j=1
aij

(
xj − pij

)2
) 3 [1, 3] −3.86

f20(x) = −∑4
i=1 ciexp(−

6
∑

j=1
aij

(
xj − pij

)2
) 6 [0, 1] −3.32

f21(x) = −∑5
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.1532

f22(x) = −∑7
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.4028

f23(x) = −∑10
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.5363

Moreover, the value of dim is set to 30, the population size is set to 30, and the maximum
number of iterations is 1000. In addition, we performed 30 tests for each function.

5.3. Results on 30D Functions

The proposed GLLCSA displays the lowest average value of the 30 functions, and
the detailed comparison results of GLLCSA and the other eleven peers can also be seen in
Table 5. In other words, the improved algorithm can obtain better results than the other
algorithms on every test function. Moreover, the results of F2, F3, F5, F7, F8, F10, F14, F17,
F18, F21, F23–F29 bear out the ability of this method to obtain the highest quality solutions.
Compared with the other competitive algorithms, the statistical performance of GLLCSA is
verified by the CEC 2014 benchmark functions. For further statistical comparison, according
to the ARV index, the ranking of the 12 algorithms is shown in Table 6. According to the
statistical value of ARV, when searching for the minimum value of the function, GLLCSA
is better than the other methods, followed by IGWO, CGPSO, OBLGWO, PSO, BA, GWO,
RCBA, CBA, MFO, SCA, and CESCA. In Table 7, the Wilcoxon signed-rank test [101] is
given, which indicates whether the difference between GLLCSA and the other algorithms
is significant. As can be seen from the table, the experimental results of GLLCSA have a
better performance than SCA and CESCA in all test functions. In conclusion, compared
with SCA, CESCA, and the other nine algorithms, the GLLCSA achieves the best results for
these test functions. In addition, to display the significant advantages of GLLSCA, Figure 3
shows the convergence rates of IGWO, CGPSO, OBLGWO, PSO, BA, GWO, RCBA, CBA,
MFO, SCA, and CESCA on 30 benchmarks. As shown in the figure, for the problems of F2,
F3, etc., it can be seen from the convergence curve that, compared with the other algorithms,
GLLCSA can improve both the convergence speed and the convergence accuracy based on
the original SCA. Furthermore, the GLLCSA can reach the optimal solution when dealing
with F5, F8, F10, F17, F18, F21, F27, F28, and F29. Since both F12 and F13 are multimodal
functions, it is obvious to notice that there are many locally optimal solutions for these two
functions. Although GLLCSA also falls into the optimal local solution, its convergence
speed and accuracy are optimal when compared to the other algorithms. It is proved that
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the CSA based on GLL has a good exploration in avoiding LO. Therefore, the GLLCSA has
more advantages than the original CSA.

Table 5. Comparison results of the GLLCSA and the other eleven peers.

F1 F2 F3

AVG STD AVG STD AVG STD

GLLCSA 1.238849 × 106 6.536334 × 105 8.409119 × 103 7.920252 × 103 3.205022 × 102 1.699287 × 101

RCBA 1.322760 × 106 4.175292 × 105 2.985654 × 104 1.333570 × 104 3.281185 × 102 1.067689 × 101

CBA 4.274593 × 106 1.314117 × 106 9.365674 × 103 8.092198 × 103 4.450858 × 103 5.531420 × 103

CGPSO 9.372242 × 106 2.632222 × 106 1.568360 × 108 2.017935 × 107 2.220444 × 103 5.134707 × 102

IGWO 1.756705 × 107 7.284733 × 106 2.995857 × 106 1.823980 × 106 6.274603 × 103 2.779490 × 103

OBLGWO 1.631687 × 107 7.688354 × 106 1.592044 × 107 1.091297 × 107 9.317280 × 103 2.669594 × 103

CESCA 1.284071 × 109 1.868461 × 108 7.707841 × 1010 3.975591 × 109 1.047442 × 105 1.330180 × 104

GWO 7.610796 × 107 4.502244 × 107 2.038592 × 109 2.085598 × 109 2.983399 × 104 9.196130 × 103

MFO 9.988797 × 107 1.240090 × 108 1.467643 × 1010 1.151737 × 1010 1.061701 × 105 5.512228 × 104

PSO 8.717867 × 106 2.411178 × 106 1.469586 × 108 1.591299 × 107 9.769192 × 102 1.039244 × 102

SCA 2.405193 × 108 7.441417 × 107 1.657061 × 1010 3.648448 × 109 3.778071 × 104 5.992623 × 103

BA 8.248853 × 105 3.347618 × 105 5.541545 × 105 2.912975 × 105 5.419018 × 102 3.886761 × 102

F4 F5 F6

AVG STD AVG STD AVG STD
GLLCSA 5.169091 × 102 3.806454 × 101 5.199997 × 102 4.725102 × 10−4 6.270897 × 102 3.332504 × 100

RCBA 4.776711 × 102 2.908743 × 101 5.200835 × 102 7.971845 × 10−2 6.378213 × 102 3.243160 × 100

CBA 4.993125 × 102 2.933371 × 101 5.201765 × 102 1.778137 × 10−1 6.427952 × 102 2.813514 × 100

CGPSO 4.834582 × 102 5.395728 × 101 5.209736 × 102 3.816708 × 10−2 6.238705 × 102 2.721322 × 100

IGWO 5.304485 × 102 2.917210 × 101 5.205215 × 102 1.173440 × 10−1 6.189358 × 102 2.456891 × 100

OBLGWO 5.487494 × 102 3.820381 × 101 5.209499 × 102 6.195169 × 10−2 6.197624 × 102 4.844151 × 100

CESCA 1.213248 × 104 1.380450 × 103 5.210273 × 102 4.423163 × 10−2 6.422656 × 102 9.575703 × 10−1

GWO 6.626774 × 102 1.336610 × 102 5.209206 × 102 1.472290 × 10−1 6.141932 × 102 3.014494 × 100

MFO 1.363746 × 103 9.310686 × 102 5.203519 × 102 1.788243 × 10−1 6.235336 × 102 4.669785 × 100

PSO 4.654370 × 102 3.324394 × 101 5.209432 × 102 4.365825 × 10−2 6.223294 × 102 2.925522 × 100

SCA 1.412809 × 103 2.817093 × 102 5.209057 × 102 6.801991 × 10−2 6.346151 × 102 2.021926 × 100

BA 4.259904 × 102 3.313659 × 101 5.209642 × 102 4.520320 × 10−2 6.344476 × 102 3.482229 × 100

F7 F8 F9

AVG STD AVG STD AVG STD
GLLCSA 7.000141 × 102 1.328128 × 10−2 8.659866 × 102 1.797264 × 101 1.042875 × 103 2.441964 × 101

RCBA 7.000608 × 102 1.958573 × 10−2 1.020876 × 103 5.029168 × 101 1.176788 × 103 6.280943 × 101

CBA 7.000146 × 102 1.813612 × 10−2 1.006982 × 103 4.961612 × 101 1.148943 × 103 6.143216 × 101

CGPSO 7.023717 × 102 1.416684 × 10−1 9.911781 × 102 1.515705 × 101 1.119379 × 103 3.173188 × 101

IGWO 7.009874 × 102 7.254470 × 10−2 8.821336 × 102 1.573112 × 101 1.012470 × 103 1.942523 × 101

OBLGWO 7.012162 × 102 1.091624 × 10−1 9.177031 × 102 3.428652 × 101 1.070271 × 103 4.491907 × 101

CESCA 1.408830 × 103 4.842119 × 101 1.215613 × 103 1.626564 × 101 1.298773 × 103 2.019193 × 101

GWO 7.226746 × 102 2.021748 × 101 8.857211 × 102 1.855631 × 101 1.004773 × 103 3.139114 × 101

MFO 8.136821 × 102 6.471887 × 101 9.413879 × 102 4.323163 × 101 1.125361 × 103 5.746786 × 101

PSO 7.022715 × 102 1.409068 × 10−1 9.722301 × 102 1.766974 × 101 1.120378 × 103 2.327605 × 101

SCA 8.255920 × 102 2.778636 × 101 1.046443 × 103 1.799333 × 101 1.173766 × 103 1.806722 × 101

BA 7.006022 × 102 1.979492 × 10−1 1.008752 × 103 5.409854 × 101 1.168861 × 103 6.375010 × 101

F10 F11 F12

AVG STD AVG STD AVG STD
GLLCSA 2.264201 × 103 4.533532 × 102 4.687098 × 103 5.546305 × 102 1.200648 × 103 2.673387 × 10−1

RCBA 5.480741 × 103 6.379767 × 102 5.750590 × 103 6.862040 × 102 1.200654 × 103 2.777282 × 10−1

CBA 5.401931 × 103 5.701332 × 102 5.919613 × 103 7.504374 × 102 1.201058 × 103 4.862861 × 10−1

CGPSO 5.373383 × 103 6.931602 × 102 5.913799 × 103 5.650266 × 102 1.202491 × 103 3.331429 × 10−1

IGWO 3.657471 × 103 5.814534 × 102 4.484245 × 103 6.286188 × 102 1.200666 × 103 3.219966 × 10−1

OBLGWO 4.092823 × 103 8.204995 × 102 4.991144 × 103 7.370112 × 102 1.202322 × 103 7.309448 × 10−1

CESCA 8.924540 × 103 3.024366 × 102 9.111373 × 103 3.446813 × 102 1.203574 × 103 3.191205 × 10−1

GWO 3.274683 × 103 4.986018 × 102 3.847539 × 103 6.349137 × 102 1.201314 × 103 1.120997 × 100

MFO 4.477430 × 103 7.369407 × 102 5.435942 × 103 7.729281 × 102 1.200503 × 103 2.801502 × 10−1

PSO 5.182674 × 103 6.313629 × 102 5.960069 × 103 5.555818 × 102 1.202506 × 103 2.160367 × 10−1

SCA 6.980019 × 103 5.441916 × 102 8.084621 × 103 3.387779 × 102 1.202449 × 103 2.569528 × 10−1

BA 5.392300 × 103 8.934519 × 102 5.657819 × 103 7.223520 × 102 1.201083 × 103 3.178071 × 10−1
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Table 5. Cont.

F13 F14 F15

AVG STD AVG STD AVG STD
GLLCSA 1.300472 × 103 9.313515 × 10−2 1.400288 × 103 9.356412 × 10−2 1.517640 × 103 5.369255 × 100

RCBA 1.300516 × 103 1.258235 × 10−1 1.400301 × 103 9.462535 × 10−2 1.535055 × 103 7.526856 × 100

CBA 1.300500 × 103 1.300693 × 10−1 1.400337 × 103 1.336849 × 10−1 1.565395 × 103 1.637156 × 101

CGPSO 1.300397 × 103 8.786822 × 10−2 1.400265 × 103 1.205785 × 10−1 1.517596 × 103 1.308620 × 100

IGWO 1.300567 × 103 9.829856 × 10−2 1.400408 × 103 2.718569 × 10−1 1.517348 × 103 4.795016 × 100

OBLGWO 1.300547 × 103 9.772622 × 10−2 1.400399 × 103 1.833313 × 10−1 1.514798 × 103 4.483673 × 100

CESCA 1.308031 × 103 4.006350 × 10−1 1.651215 × 103 2.028249 × 101 4.185567 × 105 1.487072 × 105

GWO 1.300518 × 103 4.894826 × 10−1 1.402728 × 103 4.920171 × 100 1.623933 × 103 3.774340 × 102

MFO 1.302118 × 103 1.252521 × 100 1.428573 × 103 2.037037 × 101 1.684422 × 105 3.135423 × 105

PSO 1.300356 × 103 6.946997 × 10−2 1.400291 × 103 1.227007 × 10−1 1.516541 × 103 1.248870 × 100

SCA 1.302885 × 103 3.565020 × 10−1 1.443320 × 103 8.453708 × 100 4.119474 × 103 2.407495 × 103

BA 1.300512 × 103 1.304709 × 10−1 1.400322 × 103 1.697501 × 10−1 1.527377 × 103 4.307567 × 100

F16 F17 F18

AVG STD AVG STD AVG STD
GLLCSA 1.612099 × 103 3.725020 × 10−1 2.433739 × 104 1.713144 × 104 3.336244 × 103 1.560479 × 103

RCBA 1.613338 × 103 4.361413 × 10−1 1.412722 × 105 8.486928 × 104 8.386815 × 103 8.935484 × 103

CBA 1.613470 × 103 3.302232 × 10−1 2.864083 × 105 1.670469 × 105 6.016752 × 103 3.769997 × 103

CGPSO 1.611763 × 103 5.165442 × 10−1 3.211343 × 105 1.769758 × 105 2.393177 × 106 7.877471 × 105

IGWO 1.611779 × 103 6.182681 × 10−1 9.053915 × 105 5.364536 × 105 1.934529 × 104 2.330403 × 104

OBLGWO 1.611928 × 103 5.049315 × 10−1 1.459806 × 106 1.005176 × 106 5.569811 × 104 7.941705 × 104

CESCA 1.613590 × 103 1.581820 × 10−1 8.364791 × 107 2.638806 × 107 4.593663 × 109 1.237270 × 109

GWO 1.610966 × 103 4.998869 × 10−1 1.209797 × 106 1.614760 × 106 1.289388 × 107 2.785751 × 107

MFO 1.612805 × 103 5.643754 × 10−1 3.956083 × 106 7.375744 × 106 8.815251 × 106 4.711840 × 107

PSO 1.612148 × 103 5.400342 × 10−1 2.987927 × 105 2.161928 × 105 2.046221 × 106 5.303946 × 105

SCA 1.612776 × 103 2.943395 × 10−1 5.762196 × 106 2.784132 × 106 1.676141 × 108 8.080917 × 107

BA 1.613249 × 103 2.844609 × 10−1 8.508355 × 104 5.457347 × 104 9.682249 × 104 3.786119 × 104

F19 F20 F21

AVG STD AVG STD AVG STD
GLLCSA 1.936009 × 103 4.355061 × 101 2.350262 × 103 1.405669 × 102 1.211144 × 104 6.294113 × 103

RCBA 1.935123 × 103 3.611263 × 101 2.465127 × 103 1.176717 × 102 8.261323 × 104 3.897679 × 104

CBA 1.942633 × 103 4.215181 × 101 3.049421 × 103 1.366173 × 103 1.244635 × 105 6.750097 × 104

CGPSO 1.917583 × 103 2.272685 × 100 2.469900 × 103 1.300228 × 102 1.409690 × 105 9.042172 × 104

IGWO 1.917540 × 103 1.321243 × 101 3.492227 × 103 1.902589 × 103 3.034434 × 105 2.487823 × 105

OBLGWO 1.927023 × 103 4.013226 × 101 6.189628 × 103 3.018964 × 103 5.345087 × 105 4.128952 × 105

CESCA 2.256105 × 103 4.942950 × 101 3.595022 × 105 1.398009 × 105 4.080719 × 107 1.524933 × 107

GWO 1.949393 × 103 3.049284 × 101 1.404652 × 104 6.998666 × 103 5.552885 × 105 9.333324 × 105

MFO 1.987788 × 103 8.918167 × 101 5.535291 × 104 3.913887 × 104 8.545256 × 105 9.825313 × 105

PSO 1.917247 × 103 2.179412 × 100 2.326747 × 103 5.786955 × 101 1.019012 × 105 5.885849 × 104

SCA 1.983328 × 103 2.776081 × 101 1.504831 × 104 4.617492 × 103 1.421241 × 106 7.574494 × 105

BA 1.926877 × 103 2.439285 × 101 2.456193 × 103 1.454076 × 102 6.724830 × 104 2.886316 × 104

F22 F23 F24

AVG STD AVG STD AVG STD
GLLCSA 2.760574 × 103 2.228345 × 102 2.500000 × 103 7.709365 × 10−10 2.600000 × 103 3.588642 × 10−7

RCBA 3.350704 × 103 3.621294 × 102 2.615252 × 103 5.521060 × 10−3 2.682070 × 103 3.811663 × 101

CBA 3.388456 × 103 2.979146 × 102 2.615852 × 103 2.821484 × 10−1 2.680590 × 103 3.078898 × 101

CGPSO 2.858516 × 103 2.290369 × 102 2.500003 × 103 3.329995 × 10−3 2.600025 × 103 1.197872 × 10−2

IGWO 2.568791 × 103 1.619749 × 102 2.620536 × 103 2.940441 × 100 2.600006 × 103 6.146081 × 10−3

OBLGWO 2.786901 × 103 2.091463 × 102 2.606628 × 103 3.617981 × 101 2.601120 × 103 6.132652 × 100

CESCA 5.696038 × 103 1.286220 × 103 3.136433 × 103 1.242696 × 102 2.660849 × 103 2.318336 × 101

GWO 2.585365 × 103 1.821056 × 102 2.635366 × 103 1.134288 × 101 2.600002 × 103 1.015076 × 10−3

MFO 3.067188 × 103 2.667965 × 102 2.665304 × 103 4.109527 × 101 2.676468 × 103 2.593551 × 101

PSO 2.872826 × 103 1.962133 × 102 2.615934 × 103 5.329976 × 10−1 2.626891 × 103 5.838959 × 100

SCA 2.992704 × 103 1.455672 × 102 2.664581 × 103 1.270815 × 101 2.600096 × 103 1.020093 × 10−1

BA 3.453378 × 103 3.118798 × 102 2.615248 × 103 2.521083 × 10−3 2.670639 × 103 3.944067 × 101

F25 F26 F27

AVG STD AVG STD AVG STD
GLLCSA 2.700000 × 103 5.744707 × 10−12 2.700426 × 103 1.071929 × 10−1 2.900000 × 103 2.240433 × 10−10

RCBA 2.735860 × 103 2.147012 × 101 2.751366 × 103 1.065771 × 102 3.902577 × 103 4.983783 × 102

CBA 2.727914 × 103 1.170224 × 101 2.710743 × 103 5.599137 × 101 3.975665 × 103 4.477796 × 102

CGPSO 2.700000 × 103 1.890297 × 10−5 2.793359 × 103 2.527157 × 101 3.038354 × 103 2.739283 × 102

IGWO 2.709510 × 103 2.831350 × 100 2.700683 × 103 1.629874 × 10−1 3.108218 × 103 2.481974 × 100

OBLGWO 2.700000 × 103 0.000000 × 100 2.700556 × 103 1.453861 × 10−1 3.009723 × 103 2.542824 × 102

CESCA 2.719608 × 103 8.971841 × 100 2.712316 × 103 1.442380 × 100 4.032420 × 103 1.596939 × 102

GWO 2.708322 × 103 5.306966 × 100 2.773555 × 103 4.461346 × 101 3.342896 × 103 1.415047 × 102

MFO 2.717403 × 103 8.811953 × 100 2.702266 × 103 1.020229 × 100 3.640968 × 103 2.082932 × 102

PSO 2.711836 × 103 5.348456 × 100 2.770458 × 103 4.667645 × 101 3.467269 × 103 2.969203 × 102

SCA 2.724541 × 103 7.587825 × 100 2.702440 × 103 5.636831 × 10−1 3.538978 × 103 3.131578 × 102

BA 2.729845 × 103 1.327662 × 101 2.700501 × 103 1.446831 × 10−1 3.893218 × 103 4.118836 × 102



Appl. Sci. 2022, 12, 6907 16 of 26

Table 5. Cont.

F28 F29 F30

AVG STD AVG STD AVG STD
GLLCSA 3.000000 × 103 1.767349 × 10−10 4.193382 × 103 1.228891 × 103 1.194432 × 104 1.085100 × 104

RCBA 5.621571 × 103 9.888195 × 102 1.177843 × 107 1.281848 × 107 2.326497 × 104 6.945118 × 104

CBA 5.447547 × 103 6.556685 × 102 3.404018 × 107 3.303410 × 107 1.352624 × 104 8.715829 × 103

CGPSO 3.135128 × 103 7.400602 × 102 2.924359 × 104 1.324794 × 105 9.272246 × 103 9.042430 × 103

IGWO 3.835163 × 103 2.206870 × 102 1.038071 × 106 4.039714 × 106 2.714712 × 104 1.318391 × 104

OBLGWO 3.528511 × 103 5.198397 × 102 4.052395 × 106 4.378362 × 106 1.957810 × 104 1.178368 × 104

CESCA 5.350238 × 103 2.666407 × 102 1.839221 × 107 2.762806 × 106 1.493175 × 106 3.109234 × 105

GWO 3.863889 × 103 1.781469 × 102 1.755562 × 106 4.039784 × 106 4.526500 × 104 2.666792 × 104

MFO 3.899794 × 103 1.681019 × 102 2.847450 × 106 3.878730 × 106 5.845920 × 104 4.496513 × 104

PSO 6.991791 × 103 9.394121 × 102 8.591454 × 104 1.586345 × 105 1.367568 × 104 5.707805 × 103

SCA 4.765201 × 103 2.990578 × 102 1.009283 × 107 4.606232 × 106 2.364850 × 105 9.906369 × 104

BA 5.195068 × 103 7.406253 × 102 4.474452 × 107 4.143041 × 107 1.646326 × 104 2.423418 × 104

Table 6. Comparison results of ranking between GLLCSA and other eleven peers.

Function Ranking ARV

GLLCSA 1 2.300000 × 100

RCBA 8 6.566667 × 100

CBA 9 6.866667 × 100

CGPSO 3 5.200000 × 100

IGWO 2 4.766667 × 100

OBLGWO 4 5.366667 × 100

CESCA 12 1.136667 × 101

GWO 7 6.333333 × 100

MFO 10 8.166667 × 100

PSO 5 5.566667 × 100

SCA 11 9.433333 × 100

BA 6 6.066667 × 100

Appl. Sci. 2022, 12, 6907 17 of 28 
 

Table 6. Comparison results of ranking between GLLCSA and other eleven peers. 

Function Ranking ARV 
GLLCSA 1 2.300000 × 100 

RCBA 8 6.566667 × 100 
CBA 9 6.866667 × 100 

CGPSO 3 5.200000 × 100 
IGWO 2 4.766667 × 100 

OBLGWO 4 5.366667 × 100 
CESCA 12 1.136667 × 101 
GWO 7 6.333333 × 100 
MFO 10 8.166667 × 100 
PSO 5 5.566667 × 100 
SCA 11 9.433333 × 100 
BA 6 6.066667 × 100 

 
Figure 3. Convergence curves of 9 selected benchmark functions. Figure 3. Convergence curves of 9 selected benchmark functions.



Appl. Sci. 2022, 12, 6907 17 of 26

Table 7. Wilcoxon test results of GLLSCA and other peers.

Function RCBA CBA CGPSO IGWO OBLGWO CESCA GWO MFO PSO SCA BA

F1 6.73 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.85 × 10−2

F2 1.36 × 10−5 4.41 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F3 8.22 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.84 × 10−5

F4 8.94 × 10−4 1.65 × 10−1 1.32 × 10−2 1.25 × 10−1 1.29 × 10−3 1.73 × 10−6 3.88 × 10−6 3.52 × 10−6 5.31 × 10−5 1.73 × 10−6 1.92 × 10−6

F5 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F6 1.73 × 10−6 1.73 × 10−6 6.64 × 10−4 1.73 × 10−6 8.47 × 10−6 1.73 × 10−6 1.73 × 10−6 8.31 × 10−4 1.49 × 10−5 1.92 × 10−6 5.75 × 10−6

F7 1.73 × 10−6 4.91 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F8 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.88 × 10−4 2.60 × 10−6 1.73 × 10−6 2.26 × 10−3 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F9 1.73 × 10−6 2.88 × 10−6 1.92 × 10−6 9.71 × 10−5 6.42 × 10−3 1.73 × 10−6 8.92 × 10−5 3.52 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

F10 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.60 × 10−6 2.13 × 10−6 1.73 × 10−6 1.80 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F11 2.37 × 10−5 1.24 × 10−5 1.73 × 10−6 2.13 × 10−1 1.71 × 10−1 1.73 × 10−6 5.79 × 10−5 8.31 × 10−4 1.73 × 10−6 1.73 × 10−6 5.79 × 10−5

F12 8.94 × 10−1 5.29 × 10−4 1.73 × 10−6 4.65 × 10−1 2.35 × 10−6 1.73 × 10−6 9.27 × 10−3 2.18 × 10−2 1.73 × 10−6 1.73 × 10−6 2.84 × 10−5

F13 1.41 × 10−1 4.53 × 10−1 7.73 × 10−3 9.63 × 10−4 1.32 × 10−2 1.73 × 10−6 1.25 × 10−1 1.73 × 10−6 2.22 × 10−4 1.73 × 10−6 2.89 × 10−1

F14 4.53 × 10−1 9.37 × 10−2 3.00 × 10−2 1.59 × 10−1 9.63 × 10−4 1.73 × 10−6 3.61 × 10−3 1.73 × 10−6 7.97 × 10−1 1.73 × 10−6 6.73 × 10−1

F15 1.73 × 10−6 1.73 × 10−6 8.61 × 10−1 7.19 × 10−1 1.47 × 10−1 1.73 × 10−6 2.41 × 10−3 1.73 × 10−6 4.28 × 10−1 1.73 × 10−6 2.88 × 10−6

F16 1.73 × 10−6 1.92 × 10−6 1.48 × 10−2 2.85 × 10−2 1.65 × 10−1 1.73 × 10−6 1.73 × 10−6 8.92 × 10−5 7.04 × 10−1 2.60 × 10−6 1.73 × 10−6

F17 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.86 × 10−5

F18 1.32 × 10−2 1.20 × 10−3 1.73 × 10−6 2.35 × 10−6 1.73 × 10−6 1.73 × 10−6 1.36 × 10−5 3.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F19 3.39 × 10−1 1.78 × 10−1 9.10 × 10−1 7.19 × 10−2 1.11 × 10−2 1.73 × 10−6 4.49 × 10−2 2.41 × 10−3 6.58 × 10−1 6.16 × 10−4 8.13 × 10−1

F20 5.29 × 10−4 5.22 × 10−6 5.32 × 10−3 2.60 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 7.66 × 10−1 1.73 × 10−6 1.48 × 10−2

F21 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F22 5.22 × 10−6 1.92 × 10−6 9.78 × 10−2 2.96 × 10−3 4.78 × 10−1 1.73 × 10−6 3.85 × 10−3 3.72 × 10−5 4.95 × 10−2 3.59 × 10−4 1.73 × 10−6

F23 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F24 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.11 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F25 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.56 × 10−6 6.38 × 10−6 1.73 × 10−6 4.17 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F26 1.83 × 10−3 4.68 × 10−3 2.13 × 10−6 3.18 × 10−6 4.90 × 10−4 1.73 × 10−6 3.18 × 10−6 1.73 × 10−6 6.89 × 10−5 1.73 × 10−6 9.37 × 10−2

F27 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.70 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F28 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 8.73 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F29 1.73 × 10−6 1.73 × 10−6 1.20 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.99 × 10−1 1.73 × 10−6 1.73 × 10−6

F30 2.54 × 10−1 4.72 × 10−2 1.41 × 10−1 1.48 × 10−4 2.11 × 10−3 1.73 × 10−6 5.75 × 10−6 5.22 × 10−6 6.27 × 10−2 1.73 × 10−6 3.39 × 10−1

+/−/= 23/1/6 24/0/6 21/5/4 20/4/6 22/3/5 30/0/0 24/5/1 28/2/0 20/3/7 30/0/0 23/2/5
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6. Predicting Entrepreneurial Intention of Students
6.1. Data Collection

The data for the study was derived from 842 graduates from Wenzhou Vocational
and Technical College in Zhejiang, China, over five years. The dataset covers a total of ten
features, including gender, political affiliation (PA), major, place of student’s source (PSS),
family financial situation (FFS), practical experience in innovation and entrepreneurship on
campus (PEIEC), training course of innovation and entrepreneurship (TCIE), grade point
average (GPA), scholarship awards (SA) and proactive personality (PP). In the program, the
above ten features are marked with F1–F10, in turn. A detailed description of the dataset
can be found in reference.

6.2. Condition Configuration

This experiment is carried out in the same simulation environment based on the
Windows 10 system and using MATLAB 2016a. The experimental setting is important
for computational sciences, such as drug discovery [102,103], information retrieval ser-
vices [104–106], network analysis [107,108], active surveillance [109], and disease predic-
tion [110–112]. For the sake of fairness, this experiment used statistical methods, including
means and standard deviation, to analyze ten identical experiments. Specifically, aver-
age result (Avg) and standard deviation (Std) represent the average prediction result and
standard deviation of each model under ten experiments, respectively. To find the best
model, we evaluated each model using 10-fold cross-validation, which was adopted in
many studies [43,44,113]. Moreover, the prediction results were analyzed by using the
common metrics [114–116], including accuracy (ACC), sensitivity (Sens), specificity (Spec),
and the Matthews correlation coefficient (MCC).

6.3. Experiment Results

In this section, we performed statistical analyses on the comparison results of the
proposed GLLCSA-KELM-FS model with the other five models, including GLLCSA-KELM,
CSA-KELM, CSA-KELM, RF, and FKNN. Among them, Table 8 shows the average results
of the ten experiments of GLLCSA-KELM-FS and the other five models. The best results are
in bold. It can be seen that the accuracy rate of the GLLCSA-KELM-FS model in predicting
the entrepreneurial intention of graduates is as high as 93.20%, while the accuracy rates
of the other five models are 90.17%, 88.22%, 88.81%, 89.42%, and 87.29%, respectively. For
the sensitivity metric, the result of KELM is 0.99% higher than that of GLLCSA-KELM-FS.
Regarding the specificity and MCC metrics, the GLLCSA-KELM-FS model achieves the
best results.

Table 8. The Avg results of four indicators for GLLCSA-KELM-FS and the other five models.

Models
ACC Sensitivity Specificity MCC

Avg

GLLCSA-KELM-FS 93.20% 92.93% 91.00% 85.19%
GLLCSA-KELM 90.17% 91.66% 88.94% 80.51%

CSA-KELM 88.22% 92.08% 83.87% 76.69%
KELM 88.81% 93.92% 83.65% 77.99%

RF 89.42% 93.60% 85.02% 78.98%
FKNN 87.29% 91.71% 84.26% 75.52%

Table 9 shows the standard deviation results of the ten experiments between GLLCSA-
KELM-FS and the other five models. It is easily obtained that the GLLCSA-KELM-FS
model has the best stability in the ACC, sensitivity, and MCC metrics. On the specificity
index, the RF model has the best stability. For a better description, Figure 4 shows the
above-mentioned histograms of Avg and Std in detail. It can be seen that the accuracy,
specificity, and MCC of the proposed GLLCSA-KELM-FS model are higher than the other
models. For stability, the specificity of the GLLCSA-KELM-FS model is only inferior to



Appl. Sci. 2022, 12, 6907 19 of 26

RF. The key features of the graduates’ entrepreneurial intentions screened by FS in the
experiment are shown in Figure 5, in which the occurrences of features F3, F6, and F10
are 9, 8, and 8, respectively, which can be used as the key features to classify and measure
students’ entrepreneurial intentions.
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Table 9. The Std results of four indicators for GLLCSA-KELM-FS and the other five models.

Models
ACC Sensitivity Specificity MCC

Std

GLLCSA-KELM-FS 2.18 × 10−2 2.26 × 10−2 6.30 × 10−2 5.11 × 10−2

GLLCSA-KELM 3.07 × 10−2 4.33 × 10−2 5.81 × 10−2 6.32 × 10−2

CSA-KELM 4.35 × 10−2 5.82 × 10−2 9.13 × 10−2 8.46 × 10−2

KELM 3.25 × 10−2 3.14 × 10−2 6.53 × 10−2 6.03 × 10−2

RF 3.73 × 10−2 3.33 × 10−2 5.56 × 10−2 7.34 × 10−2

FKNN 5.49 × 10−2 5.20 × 10−2 1.00 × 10−1 1.02 × 10−1

Table 10 shows the two-tailed t-test results of GLLCSA-KELM-FS and the other com-
parative methods, including the p-value, statistical t-values (t) and degree of freedom (df).
The p-value of GLLCSA-KELM-FS and the other five methods are 0.0882, 0.0187, 0.0158,
0.0647 and 0.0200, respectively. At a significance level of 0.05, GLLCSA-KELM-FS performs
significantly better than the CSA-KELM, KELM, and FKNN.

Table 10. The t-test results of the ACC of GLLCSA-KELM-FS and the other methods.

GLLCSA-KELM-
FS vs.

GLLCSA-KELM

GLLCSA-KELM-
FS vs.

CSA-KELM

GLLCSA-KELM-
FS vs.

KELM

GLLCSA-KELM-
FS vs.

RF

GLLCSA-KELM-
FS vs.

FKNN

One or two-tailed
p-value Two-tailed Two-tailed Two-tailed Two-tailed Two-tailed

t 1.803 2.584 2.665 1.968 2.552
df 18 18 18 18 18

p-value 0.0882 0.0187 0.0158 0.0647 0.0200
Significantly

different (p < 0.05) No Yes Yes No Yes

6.4. Discussion

According to the above research results, graduates’ entrepreneurial intention is affected
by many factors. Among them, the major (F3), campus innovation and entrepreneurship
practice experience (F6), and positive personality (F10) have the greatest impact. Usu-
ally, the majors chosen by students have the necessary connections to their subsequent
entrepreneurial intentions. Of course, the practical experience of campus innovation
and entrepreneurship also promotes students’ entrepreneurial preferences. Students who
have participated in entrepreneurial practice have significantly stronger entrepreneurial
motivation than students without entrepreneurial experience. In addition, it was found
that entrepreneurial talents have the characteristics of “endogenous growth”, and en-
trepreneurial cognition and student behavior are easily affected by positive personality.
There is also a moderating effect between the active personality with the growth ability in
the new environment and the students’ entrepreneurial intention. The stronger the active
personality, the stronger the motivation for entrepreneurial behavior, and the stronger the
entrepreneurial practice ability. The difficulty of this paper mainly lies in the construction
of the GLLCSA-KELM-FS model. First, the design of GLLCSA was an important difficulty.
Second, how to filter out the key features from complex datasets was another important
difficulty. Finally, how to combine GLLCSA with KELM and FS was the key to solving
these problems.

This paper also has some limitations. First, the sample data is limited. An appropri-
ate amount of datasets can effectively avoid underfitting imagination and improve the
accuracy of model fitting. Secondly, the characteristics of the graduates’ entrepreneurial
intentions involved in this paper still need to be further explored. Finally, the generality
of the fitted model needs to be further verified. Owing to the optimization potential,
the proposed GLLCSA can be also applied to other complex tasks, such as the recom-
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mender systems [117–119], location-based services [120,121], human motion capture [122],
text clustering [123], kayak cycle phase segmentation [124], drug-disease associations pre-
diction [125], practical engineering problems [126,127], medical diagnosis [28,128], fault
diagnosis [129] and solar cell parameter identification [130].

7. Conclusions and Future Works

This paper constructs a reliable student entrepreneurial intention prediction model,
namely the GLLCSA-KELM-FS model. On the one hand, the model optimizes two hy-
perparameters of KELM through GLLCSA, aiming to obtain the best fitting model. On
the other hand, it uses FS to extract the key features that affect students’ entrepreneurial
intentions. The main innovation of this paper was to introduce the GLL mechanism to
effectively improve the performance of the CSA and obtain the best combination of KELM
parameters. The benchmark function comparison experiments effectively verified the per-
formance of GLLCSA. Further, GLLCSA-KELM-FS was used to predict the entrepreneurial
intentions of 842 students from Zhejiang Wenzhou Vocational College over the past five
years. Compared with the five other machine learning methods, the GLLCSA-KELM-FS
model can correctly predict students’ entrepreneurial intentions with an accuracy of 93.2%.
In addition, the key factors affecting the school’s entrepreneurial intention are the major
studied, campus innovation and entrepreneurship practice experience, and positive per-
sonality. This research can deeply dig into how colleges and universities can cultivate
students’ entrepreneurial ability more scientifically through the relevant factors so as to
help them position their careers more concretely and rationally. Moreover, it can be used to
help cultivate entrepreneurial talents so that they can make more conscious and focused
career decisions.

In the follow-up research, the generality of the proposed GLLCSA-KELM-FS will be
further improved, and the employment intention of more college students will be predicted.
Furthermore, it can also be used to solve other problems, such as disease diagnoses and
financial risk predictions [131,132]. Further, the GLLCSA method can also be used to
optimize the hyperparameters of other models and solve more complex optimization
problems [133,134].
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