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Abstract: Aerodynamic drag plays an important role in high-speed skiing. The wind-induced thrust
or resistance of athletes, the sliding speed, and the work to overcome the aerodynamic drag are
greatly affected by wind; therefore, reducing wind-induced drag is a focus of sport science. This
paper proposes a method for evaluating the influence of wind on cross-country skiing performance,
which is based on the athlete’s aerodynamic-drag-work relative to the environmental wind field
and the establishment of a racetrack wind field model. Aiming at an athlete’s typical sport posture
in the Yabuli Ski Field, the impact of field wind on the skier’s speed, the work done by the athlete
to overcome aerodynamic drag, and the ratio of the field wind-induced work to the athlete’s total
work are analyzed. Through the analysis of the athlete’s work to overcome aerodynamic drag and
the wind resistance energy dissipation ratio in three training cases, it is shown that the field wind
has a great influence on the athlete’s performance during sliding, which verified the effectiveness of
the method. This method will provide coaches and sport researchers with accurate wind resistance
energy dissipation data and provide a scientific basis for routine athletic training.

Keywords: aerodynamic drag; sport posture; racetrack wind field model; wind resistance energy
dissipation; cross-country skiing

1. Introduction

Ski racing has a distinct competitiveness and unique characteristics. The performance
of a skier is not only related to the performance of the ski equipment and the state of the
sport at that time, but it is also closely related to the wind environment of the ski field
during the race. The field wind environment directly acts on the athlete’s body in the
form of wind load, which affects the athlete’s running drag and thus has an impact on
performance [1–5]. Effectively evaluating the impact of changing wind environments on
an athlete’s achievements is of great significance for objectively evaluating performance
and individual skill, optimizing the physical distribution of the athlete during the race, and
improving the athlete’s competitive skills.

In order to evaluate the influence of the field wind environment on cross-country
skiing athletes’ performance, the first step is to obtain the wind-induced aerodynamic drag
of the athletes in the ski field wind environment. In recent years, many researchers have
carried out research work on the acquisition of athletes’ wind-induced aerodynamic drag
through numerical calculation methods based on computational fluid dynamics (CFD) and
wind tunnel experiments [6–9]. Chen [10] used steady and unsteady models to simulate
2D athlete models, and the results indicated that wind and posture affect the aerodynamic
performance of a skier during the flight stage. Meyer [11] tested the aerodynamic charac-
teristics of skiers in a wind tunnel while holding nine different skiing postures, established
drag coefficient models, and analyzed the aerodynamic energy dissipation between dy-
namic and compact skiing techniques. Barry [12] conducted experiments on a team of four
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athletes in the Monash University Wind Tunnel to study the interactions of aerodynamic
drag between cyclists riding in a team as a function of their riding position. Mannion [13]
performed full-scale CFD simulations of the tandem cycling postures of upright, crouched,
time-trial, and frame-clench and studied the influence of the aerodynamic interactions
between both tandem athletes. Gardan [14] created a CFD model based on wind tunnel
tests to assess the effect of athlete posture and speed on their aerodynamic performance
during the early flight phase of ski jumping. Elfmark [15] studied the aerodynamics of the
alpine skiing tuck position through CFD numerical simulation, and the CFD simulation
results showed that the airflow around the lower legs had a noticeable impact on the skier’s
drag, accounting for 40–50% of the total drag area in the low tuck position and, based on
the study, found that the drag area could be reduced by adjusting the torso angle. Although
the aforementioned studies performed aerodynamic assessments of the wind-induced drag
of athletes, they overlooked the wind environment of the athletes’ sports site, which is
frequently subjected to weather conditions and venue terrain.

Another important step is to obtain the field wind environment, which changes with
time on complex terrain, so as to study the influence of the field wind environment on
athlete performance. Many scholars have carried out effective research on the establishment
of wind field models under complex terrain [16–20]. For example, Uchida [21] developed
the RIAM-COMPACT program based on the large-eddy simulation turbulent model to
successfully simulate field wind under complex terrain, and they analyzed the changes
in field wind caused by topographic effects. Huang [22] simulated the actual terrain
by establishing a terrain transition curve to build a buffer around the complex terrain,
and compared the numerical simulation results with the field measured data to verify
the feasibility of the mountain terrain modelling method based on the transition curve.
Ren [23] established a spatial wind field prediction model based on the “triangle edge
angle relationship” for the average wind speed and the spatial correlation analysis for
the fluctuating wind, which reproduced the spatial field wind under complex terrain.
At present, most research on wind field under complex terrain has concentrated on the
construction of bridges in mountainous regions and the site selection of wind farms [24–29],
and research less frequently involves sports science.

In conclusion, there are relatively mature techniques for determining the wind-induced
aerodynamic drag of athletes and constructing the model of the racetrack wind field,
which are fully merged in this study to evaluate the effect of the wind environment on
cross-country skiing performance. Through the establishment of a racetrack field wind
environment model and by obtaining an athlete’s wind-induced aerodynamic drag, this
study is based on the establishment of an energy dissipation model for cross-country skiers
to overcome aerodynamic drag during the race, thus establishing an evaluation method of
the field wind’s influence on cross-country skiing performance.

2. Calculation Method of Aerodynamic-Drag-Work by Athletes during Sliding
2.1. Overcoming Wind Resistance Energy Dissipation

Athletes experience aerodynamic-drag-work during sliding [30–32], which is formed
by the relative speed between the approaching wind and the athlete’s sliding movement.
Aerodynamic drag is as follows:

FD =
1
2

CD AρU2 (1)

where FD is the drag force experienced by the athlete [N]; CD is the drag coefficient of the
athlete’s posture, with its value often determined by the athlete’s posture and measured
using wind tunnel experiments; ρ is the air density [kg/m3]; U is the relative speed between
the approaching wind at the athlete’s position and the athlete’s movement [m/s]; and A
is the frontal area of the athlete’s sliding posture [m2], wherein the drag coefficient is not
greatly affected by the relative wind speed within the athlete’s sliding speed range.
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As shown in Figure 1, the athlete moves from point Pi to point Pi+1 in period time
∆ti (times ti to ti+1). The angle between the sliding direction and the direction of the
geographic coordinate system (x-axis) is γi, and the field wind direction is θi+1 at point Pi+1
and time ti+1. In a certain period of time ∆ti, the relative speed between the approaching
wind and the athlete’s movement in the direction of the athletes’ movement is expressed
as follows:

Ui = −Vi+ cos(θi+1 − γi) · ui+1 (2)

where Vi is the average sliding speed of the athlete during a certain period of time
∆ti [m/s], and ui+1, θi+1 is the wind speed and direction of the field wind where the
athlete is located at time ti+1, which is obtained by the instantaneous field wind interpola-
tion function. The specific calculation in the following ski field racetrack wind modelling
is proposed as follows. In a period of time ∆ti, the aerodynamic-drag-work to the athlete
during skiing is as follows:

Waero−i = FDi · ∆si (3)

where ∆si is the distance travelled by the athlete in the period of time ∆ti,

∆si = Vi∆ti (4)
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The magnitude and direction of the athlete’s sliding speed, the field wind speed
where the athlete is located, and the relative speed of the field wind and athlete all
change with time. Therefore, the field wind may promote or hinder the skaters’ sliding.
Equations (1) and (2) are rearranged to determine the calculations for FDi as follows:

FDi =
1
2

CDj Ajρ|(−Vi + cos(θi+1 − γi) · ui+1)|(−Vi + cos(θi+1 − γi) · ui+1) (5)

In a certain stage Sj, where the athlete’s sport posture remains unchanged, CDj and Aj
remain unchanged. Sport posture is the basis for dividing the entire track into different
stages. Therefore, CDj and Aj on different stages are different. For Sj, the skier has
experienced nj time periods ∆ti. According to Formulas (3)–(5), the aerodynamic-drag-
work to the athlete during the sliding can be expressed as follows:

Waero− j =

nj

∑
i=1

1
2

CDj Ajρ
∣∣(−Vj,i + cos

(
θj,i+1 − γi

)
· uj,i+1

)∣∣(−Vj,i + cos
(
θj,i+1 − γi

)
· uj,i+1

)
Vi∆ti (6)

For the entire racetrack of the ski field, it can be divided into m stages according to
different sports postures. The aerodynamic-drag-work to the athlete during the entire
racetrack is as follows:

Waero =
m

∑
j=1

nj

∑
i=1

1
2

CDj Ajρ
∣∣(−Vi + cos

(
θj,i+1 − γi

)
· uj,i+1

)∣∣(−Vi + cos
(
θj,i+1 − γi

)
· uj,i+1

)
Vi∆ti (7)
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The aerodynamic drag dissipation that the athlete overcomes during the sliding can
be expressed as follows:

Eaero = −Waero (8)

2.2. Wind Resistance Energy Dissipation Ratio

The difference between the aerodynamic drag energy dissipation overcome by the ath-
lete in field wind and the aerodynamic drag energy dissipation that the athlete overcomes
in the static air is called the athlete overcoming field wind resistance energy dissipation.
The ratio of overcoming field wind resistance energy dissipation to the absolute value
of overcoming aerodynamic drag energy dissipation in static air is the athletes’ wind
resistance energy dissipation ratio.

The wind resistance energy dissipation ratio of the athletes in stage Sj can be expressed
as follows:

rw− j =
Eaero− j − Est− j∣∣Est− j

∣∣ (9)

The athletes’ wind resistance energy dissipation ratio in the whole racetrack can be
expressed as follows :

rw =
Eaero − Est

|Est|
(10)

In Formulas (9) and (10), Est− j and Est are the energy dissipations of athletes in static air
overcoming aerodynamic drag in stage Sj and athletes in still air overcoming aerodynamic
drag in the whole racetrack, respectively.

Est− j = −Wst− j (11)

Est = −Wst (12)

In Formulas (11) and (12), Wst− j and Wst are the work done by the aerodynamic drag
formed by the relative speed of the static air and the athlete in stage Sj and in the entire
track, respectively, which can be expressed as follows:

Wst− j =
n

∑
i=1
−1

2
CDj AjρV3

i ∆ti (13)

Wst =
m

∑
j=1

n

∑
i=1
−1

2
CDj AjρV3

i ∆ti (14)

The wind resistance energy dissipation ratio reflects the influence of the field wind
environment on the energy dissipation of the athletes during sliding and reflects the assist
or resistance effect of the field wind environment. When the wind resistance energy
dissipation ratio of the athletes in Formulas (9) and (10) is positive, it means that the field
wind environment mainly hinders the athlete’s sliding. When this parameter has a negative
value, it means that the field wind environment mainly promotes the athlete’s sliding.

3. Racetrack Wind Field Model

To master the influence of the ski field wind on the athlete’s sliding, it is necessary to
obtain the field wind parameters of the ski racetrack, such as the wind speed and wind direc-
tion. Field wind information can be collected in real time by installing several anemometers
near the ski racetrack, and the field wind information of the racetrack location outside the
anemometer needs to be calculated by establishing a ski field racetrack wind model. The
racetrack wind field model is based on the measured data of several anemometers installed
around the racetrack and is a mathematical expression of the field wind parameters for the
entire racetrack formed by a mathematical regression calculation.

As shown in Figure 2, anemometers are installed at the starting points of different
stages in the entire track, and the position of the anemometer is marked as Pj (j = 1 ∼ m).
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For the starting and ending points of a certain stage Sj, the wind speed and wind direction
monitoring values at height h from the ground at the corresponding position are u∗j,i, u∗j+1,i,

θ∗j,i, θ∗j+1,i. As shown in Figure 3a, at the position of the curved stage, the wind speed
∧

uj,i
at point G0 (xj,i, y0) of the ski field racetrack coordinate system is approximately equal to
the wind speed uj,i at point G (xj,i, yj,i) of the geographic coordinate system. As shown
in Figure 3b, at time i, the triangular similarity relationship between wind speed ˆuj,i at
the athlete’s position xj,i (xj,i ∈ [xpj , xpj+1 ]) in Sj stage and the wind speed u∗j,i, u∗j+1,i at the
monitoring point positions xpj

, xpj+1
is as follows:

u∗j,i − u∗j+1,i

Lj
=

ˆuj,i − u∗j+1

xpj+1 − xj,i
(15)

In the formula, Lj is the linear distance (Lj = xpj+1 − xpj ) between the start point and
the end point of the two anemometer positions in stage Sj. Formula (15) is rearranged. The
wind speed at different positions in the ski field racetrack coordinate system is as follows:

ˆuj,i =

(
u∗j,i − u∗j+1,i

)(
xpj+1 − xj,i

)
xpj+1 − xpj

+ u∗j+1 (16)

According to the wind speed relationship between point G0 of the ski field racetrack
coordinate system and point G of the geographic coordinate system in Figure 3a, the wind
speed at different positions near ground h in the stage is expressed as follows:

uj,i =

(
u∗j,i − u∗j+1,i

)(
xPj+1 − xj,i

)
xPj+1 − xPj

+ u∗j+1 (17)

The wind direction of the racetrack wind field model is obtained using the same
mathematical method as in Figure 3a. The wind direction at different positions near the
ground h in the stage can be expressed as follows:

θj,i =

(
θ∗j,i − θ∗j+1,i

)(
xPj+1 − xj,i

)
xPj+1 − xPj

+ θ∗j+1 (18)

The same method is used to establish the racetrack wind field model of other stages
and to obtain the wind environment information at any position in the entire track.
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4. The Process of Evaluating the Overcoming Wind Resistance Energy Dissipation

The model of wind resistance energy dissipation expresses the aerodynamic-drag-
work to athletes in a mathematical way, which reflects the restriction of the external field
wind and relative wind speed on sport. It is an effective method to analyse the influence
of the field wind on athlete performance, and the specific steps of wind resistance energy
dissipation assessment are as follows:

1. Classify the typical sport postures of a certain athlete in a lap on the racetrack, and
divide the entire racetrack into m stages according to the different ski sport postures,
with the sport posture in each stage staying essentially the same.

2. According to the different postures of the athletes, the drag coefficient CDj of the
typical sport posture is obtained through wind tunnel experiments.

3. According to the real-time monitoring data of anemometers at multiple locations of
the racetrack, the instantaneous wind speed ui+1 and wind direction θi+1 at different
locations of the track are obtained using the racetrack wind field model.

4. According to the athlete’s sliding speed Vi collected on site during the sliding, com-
bined with the above parameters, Formulas (6) and (7) are used to calculate the
athlete’s aerodynamic-drag-work Waero− j and Waero during sliding.

5. According to Formulas (9)–(14), the athlete’s wind resistance energy dissipation
ratio is calculated, and the influence of the field wind environment on the athlete’s
achievement is then evaluated.

The above steps can be expressed as a flowchart, as shown in Figure 4.
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5. Application Case
5.1. Sport Scene and Test System

The Yabuli Ski Field is located in Yabuli Town, Shangzhi City, Heilongjiang Province,
with a total length of 1.2 km. The test subject is Athlete A, Athlete A is a male, aged 17 years,
is 178 cm in height and weighs 62 kg. The racetrack and athletes are shown in Figure 5.
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As shown in Figure 5, the Yabuli Ski Field racetrack is divided into five stages:
S1 stage is uphill, S2 stage is downhill, S3 stage is undulating (including uphill and down-
hill), S4 stage is a gentle downhill, and S5 stage is flat. According to the cross-country
skiing instructor’s guidance and the typical freestyle cross-country skiing sport posture,
the corresponding skiing posture of each stage was determined. The S1 stage corresponds
to the free uphill sport posture, the S2 and S4 stages correspond to the free downhill sport
posture, the S3 stage corresponds to the two-step one support sport posture, and the S5
stage corresponds to the free flat road sport posture. The four typical cross-country skiing
sport postures are shown in Figure 6.
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The athlete’s sliding trajectory is shown in Figure 5. The athlete starts from the initial
position of point S and returns to this point every lap for one training case. S5P1 is the
athlete’s starting stage (the stage between point S and P1) and S5P5 is the athlete’s sliding
end stage (the stage between point S and P5). Three training tests were conducted on
athlete A on the afternoon of 13 January 2020. The field wind environment information
selected the wind speed data of the corresponding period.

Five anemometers were set at the critical points of the racetrack. The British GILL
ultrasonic anemometer was selected, with an accuracy of 0.01 m/s and a wind direction
resolution of 1◦. The Hi-Target Qbox 8 high-precision Beidou magic box was selected for
the of the collection athlete’s sport parameters, and the anemometer and GPS collection
frequency were uniformly set at 1 Hz.

5.2. Experimental Results of Drag Coefficient

According to the athlete’s physical information, such as weight, height, and body
shape, a 1:4 scale model of their typical posture was obtained by 3D scanning the athlete’s
appearance using 3D printing technology, which was used as a wind tunnel experimental
model for drag coefficient testing. The 3D scanning was carried out with a German An-
throscan Bodyscan 3D body scanner, and optical triangulation technology was adopted to
obtain the 3D data and texture. The measurement range was 2100 mm (height) × 1000 mm
(depth) × 1200 mm (width), and the average maximum girth error was 1 mm.

The drag resistance coefficient experiment of the sport posture was completed in
the variable boundary layer wind tunnel laboratory of NEFU; the size of the test section
was 5 m (length) × 0.8 m (width) × 1.0 m (height), and the maximum wind speed was
70.5 m/s (continuously adjustable). A force transducer was used to measure the model
drag force parallel to the direction of the approaching wind. As shown in Figure 7, the
model and force transducer were connected by a circular platform; the platform edge was
smooth and sharp to minimize the circumfluence phenomenon when the wind passes
through the platform.
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Figure 7. Scale models in the wind tunnel.

Experiments on the drag coefficient were performed at high wind speeds (22 m/s) so
that the Reynolds number of the wind tunnel model would be as close as possible to that of
an actual athlete. Numerous studies have demonstrated that the Reynolds number has a
negligible influence on the scale model, and many researchers have utilized scale models
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to study the drag coefficient [4,33]. The sampling frequency of the force data was 100 Hz,
and the sampling duration was 20 s in the stable phase. The frontal area of the athlete was
obtained by extracting the contour line of the athlete’s sport posture. The measurement
results of the drag coefficient CD and the frontal area A are shown in Table 1.

Table 1. Frontal area, drag coefficient, and drag area for the four athletic postures.

Posture A (m2) CD CDA (m2)

free uphill 0.398 0.929 0.370
free downhill 0.241 0.701 0.169

two-step one support 0.475 0.691 0.328
free flat 0.405 0.853 0.345

5.3. Analysis of Work by Overcoming Wind Resistance and Wind Environment Influence

According to Formulas (7), (10), (12), and (14), three training cases were calculated.
The three training results for the athlete are listed in Table 2.

Table 2. Three training results for the athlete.

Case 1 2 3

static air work (J) 11,328.98 9961.88 11,306.24
field wind work (J) 10,619.22 10,560.39 10,247.76

rw (%) 6.68 −5.67 10.33
average velocity

(m/s) 6.04 6.14 5.99

time (s) 186 183 188
distance (m) 1122.66 1124.36 1125.78

rw It can be seen from Table 2 that the athlete’s sliding distances are similar in training
case 1, case 2, and case 3. The athlete’s sliding performance is determined according to the
sliding time, and the lowest time is the best. The athlete’s training performance from high
to low is case 2, case 1, and case 3. In the ideal state, the more work this athlete does to
overcome aerodynamic drag in static air, the better their performance, and so the sliding
time of training case 1 should be less than training case 2. However, the rw of training
case 1 is 6.68%, and the field wind hinders the athlete, while the rw of training case 2 is
−5.67%, and the field wind supports the athlete. In training case 3, the work to overcome
aerodynamic drag in static air is less than that in training case 1, and the rw is 10.33%. The
field wind will hinder the athlete from sliding more, and training case 3 will take longer. In
conclusion, the field wind has a great influence on the athlete’s performance. The wind
resistance energy dissipation ratio shows that the field wind has a promoting effect on
the athlete in training case 2, which is one of the factors that resulted in training case 2
having the best performance among the three cases. In addition, the field wind in training
case 1 and case 3 has a hindering effect on the athlete, and the field wind in training case 3
has a greater effect on the athlete, which is also the reason the performance of the athlete
in training case 3 is worse than that in training case 1. Therefore, the wind resistance
energy dissipation ratio is an important indicator to evaluate the impact of field wind on
an athlete’s performance. When evaluating an athlete’s actual performance, the promotion
or hindrance of the field wind to the athlete should be considered.

For training case 1, the relative speed between the approaching wind and the athlete’s
movement (U) and the relative speed between the static air and the athlete’s movement
(−V) are shown in Figure 8.
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Figure 8. The relative speed between the approaching wind and the athlete’s movement (U) and the
relative speed between the static air and the athlete’s movement (−V) in training case 1.

Figure 8 shows that the athlete is greatly affected by the field environmental wind
during sliding. In stage S2, the difference between U and −V is clear, and the maximum
difference is 6.00 m/s, which indicates that the field wind has an impact on the speed
of the athlete. It can be seen that the relative speed between the approaching wind and
the athlete’s movement and the relative speed between the static air and the athlete’s
movement chart can also be used to qualitatively analyse the influence of the field wind on
the athlete’s speed.

In each stage of training case 1, the athlete overcomes aerodynamic drag to do positive
and negative work, as well as work in downwind and upwind conditions; the average speed
and corresponding work of the athlete in each stage are depicted in Figures 9a,b and 10.
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For the athlete sliding a lap in training case 1, the work to overcome the aerodynamic
drag was 3581.92 J under downwind conditions, and the work to overcome the aerodynamic
drag was 7747.06 J under upwind conditions, accounting for 31.62% and 68.38% of the
total work to overcome the aerodynamic drag, respectively. In the initial stage S5P1 , the
work to overcome the aerodynamic drag was 2570.47 J, and rw was 19.62%. As shown in
Figure 10, the average speed of the athlete in the uphill stage S1 is 3.43 m/s. The relative
speed between the approaching wind and the athlete’s movement is relatively small, and
the work to overcome the aerodynamic drag is the lowest, the work is 907.24 J and the rw is
4.29%. The downhill stage S2 is mainly affected by the downwind conditions, and the rw is
−23.5%. The field wind plays a major role in assisting the athlete, the athlete overcomes
the aerodynamic drag to do some of the negative work, and the athlete can slide relatively
easily in this stage. Because of the fluctuation of the terrain in stage S3, the athlete’s sport
posture is converted into a two-step one support, the drag area is enlarged, and the work to
overcome the aerodynamic drag does the most work, at 3317.17 J, and the rw is 22.96%. The
athlete’s average speed in stage S4 is relatively fast and the sliding distance is longer, so the
work to overcome the aerodynamic drag is more than that in the other stages, and the rw is
2.27%. The athlete is less affected by the field wind in stage S5P5 and the rw is 0.09%.

6. Conclusions

This paper proposes a method for evaluating the influence of field wind on cross-
country skiing performance, which is based on the athlete’s aerodynamic-drag-work rela-
tive to the environmental wind field and the establishment of a racetrack wind field model.
Through three training cases of a cross-country skier in the Yabuli Ski Field, the athlete’s
wind resistance energy dissipation is discussed based on the typical sport posture of cross-
country skiers, and the effectiveness of the method is verified. The specific conclusions are
as follows:
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1. The wind resistance energy dissipation assessment method proposed in this paper can
analyse the impact of field wind on an athlete’s speed, whereby the work to overcome
the aerodynamic drag and the ratio of the field wind environment play roles during
skiing. This indicates that the method has strong practicability for evaluating the ski
field environment on an athletes’ skills and tactics.

2. The field wind has a great effect on an athletes’ performance. When evaluating the
real performance of the athlete, it is necessary to consider the promotion or hindrance
of the field wind to the athlete, and the wind resistance energy dissipation ratio is an
important indicator to evaluate the impact of field wind on the athletes’ performance.
The relative speed between the approaching wind and the athlete’s movement and
the relative speed between the static air and the athlete’s movement chart can be used
to qualitatively analyse the influence of the field wind on the athletes’ speed.

3. In addition to the athlete’s sliding speed and field wind environment, the aerodynamic
drag to the athlete’s work is also an important factor affecting an athlete’s drag area
under a typical sport posture. It is necessary to improve the skiers’ skiing posture in
complex terrain stages and to reduce the impact of wind-induced aerodynamic drag
on sport achievement. The evaluation of wind resistance energy dissipation is closely
related to the accuracy of the related equipment in the field test. In future research, the
accuracy of GPS, anemometers, and other equipment should be improved to obtain
more accurate information about an athlete’s wind resistance energy dissipation.
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