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Abstract: Marine organisms are a valuable source of new compounds, many of which have remark-
able biotechnological properties, such as microalgae and cyanobacteria, which have attracted special
attention to develop new industrial production routes. These organisms are a source of many biologi-
cally active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics,
hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of
several technologies to improve biomass production, in the first step, industrial processes schemes
have been addressed with different accomplishments. It is critical to consider all steps involved
in producing a bioactive valuable compound, such as species and strain selection, nutrient supply
required to support productivity, type of photobioreactor, downstream processes, namely extraction,
recovery, and purification. In general, two product production schemes can be mentioned; one
for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding
purposes; the other for when the product will be used in the human health domain, such as antivirals,
antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general,
the usefulness of an application for each species of microalgae is determined by growth and product
production. Furthermore, the use of OMICS technologies enabled the development of a new design
for human therapeutic recombinant proteins, including strain selection based on previous proteomic
profiles, gene cloning, and the development of expression networks. Microalgal expression systems
have an advantage over traditional microbial, plant, and mammalian expression systems for new
and sustainable microalga applications, for responsible production and consumption.

Keywords: sustainable biotechnology; microalgal biomass; microalgal industrial applications; highly
valuable compounds; biorefineries; wastewater treatment; recombinant protein production

1. Introduction

Growing concern about the production of sustainable chemicals has led to the inves-
tigation of alternative feedstock to produce chemicals and fuel using a green technology
approach. There are numerous potential alternative feedstocks available today, including
industrial wastes, agricultural residues, lignocellulose material, aquaculture wastes, etc.
Such material can be transformed by microorganisms, which have been shown to have a
high potential for partially replacing today’s feedstocks for chemicals and fuel. Many fine
biochemicals, such as pigments and exopolysaccharides from Porphyridium cruentum [1]
and other value-added products such as tocopherols [2], are produced in various amounts
by microorganisms such as microalgae and cyanobacteria. Microalgae are microscopic
and unicellular eukaryotic species found individually or in chains or groups in the wa-
ter column and sediments. These organisms are capable of performing photosynthesis,
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important for life on the earth, producing close to half of the atmospheric oxygen by us-
ing carbon dioxide and sunlight. Microalgae, cyanobacteria, and bacteria are the base
of the food web, providing energy for all the trophic levels above them. Cyanobacteria
are microscopic organisms that perform photosynthesis as well, but they are prokaryotic
organisms. The production of microalgae or cyanobacteria, on the other hand, is entirely
dependent on the species, nutrients for mutation, cultivation conditions, particularly light
intensity and quality, as well as the mode of process operation and configurations. Finally,
all important factors affecting growth performance and productivity should adhere to the
best strategy for improved compound productivity. Some microalgal metabolites have
also been reported to act as antimicrobial agents, particularly in inhibiting the growth of
various bacteria and fungi. Marine algae antibacterial substances have been found to be
effective against some enterobacterial strains such as Escherichia coli, Salmonella typhoid,
Staphylococcus aureus, and Enterococcus faecalis [3]. Because of the enormous diversity of
marine organisms and the incalculable potential for discovering new antimicrobials, they
are very promising candidates for antibiotic isolation. Furthermore, extracts from marine
algae have been used to treat wounds, fever, and stomach aches, as well as harmful agents
such as leishmaniasis, chagas, and trypanosomiasis. Another novel natural biochemical
derived from algae has been used for cancer therapy (breast, cervical, and stomach cancer)
with a satisfactory reduction in side effects. Antiviral agents produced by microalgae
have also been discovered, which may represent other important biochemicals; these have
different chemical compositions and apoptosis-focused action mechanisms [4,5].

Microalgae has also demonstrated a high potential as an alternative feedstock for
third-generation biofuel production. Among the potential biofuels that can be produced
from microalgal biomass are biodiesel, bioethanol, biobutanol, biogas, and biohydrogen [6].
Because microalgae do not contain lignocellulosic material, production of biofuel from
microalgal biomass has been an alternative to terrestrial plant biomass, particularly carbo-
hydrates and lipids from algae, which makes production of biofuel easier than terrestrial
plants. Microalgal biomass can be used completely; however, the integration of production
schemes would be essential for the sustainable production of microalgae from primary raw
material, reused material, or waste material [7].

2. Applications of Biotechnology on Microalgae and Cyanobacteria Utilization

Table 1 summarizes the applications of microalgal biotechnology in various sectors:
bioenergy, health care (bioactive phenolic compounds) [8], environmental applications
(CO2 capture, sustainable production from waste material) [7], aquaculture, raw material to
elaborate balanced feed [9], cosmetics (the protein, lipids, ash, amino acids, carbohydrate
composition of microalgal biomass give suitable functional properties to cosmetic formu-
lation: moisture, brigthness, firmness of skin, skin protection) [10], and food. Microalgal
biotechnology can be described according to the sector of applicability by development
stages: the first stage, which can be considered a short period of 2–5 years, the second stage
with a medium period of time up to 5 years, and the third stage up to 7 years or longer,
developments which applications are expected to have the techological appropiation at
industrial level.

The period visualizing developments in the different sector of application is the time
necessary for each stage to complete before the next step.
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Table 1. Microalgal biotechnology developments visualized in terms of stages according to the
application sector.

Sector
Stages

First Stage Second Stage Third Stage

Bioenergy Bioprospecting of biofuels Optimization of the production
process

Use of biocatalysts, or new
routes of biofuels production

Health care, therapeutics Bioprospecting of health care
compounds Protein recombinant technology Clinical assays for biomedical

purposes

Environment Biodegradation and
biotransformation assays

Selection of phycoremediation
or wastewater treatment process

On-site applications in which an
integrated process has been

developed

Aquaculture
Selection of strains and

evaluation for specific fish or
crustacean aquaculture

Balanced diets design
Feed additive production and

implementation in aquaculture
farms

Cosmetics Bioprospecting of natural
products from microalgae Skin applications Medical care supplements for

skin applications

Foods Natural products Probiotics Food supplements

2.1. High Valuable Compounds from Microalgae
2.1.1. Pigments

Pigments in microalgae are important because they are cytoplasmic compounds with
a diverse chemical structural composition and three distinct activities, namely light energy
capture, electron transfer reactions, and antioxidant activities. All these reactions are part
of a complex photosynthetic chain mechanism system that performs functions such as
light harvesting, energy transfer, photochemical redox reactions, and photoprotection. It is
divided into three major pigment classes: chlorophylls, carotenoids, and phycobilins, all of
which are light energy harvesting molecules. These pigments could absorb light quanta and
then deliver photon energy to sites where the photosynthesis process began [11]. Table 2
compares the pigment components found in microalgae and cyanobacteria.

Table 2. Differences in pigment characteristics (chlorophyll, carotenoids, and phycobilins).

Characteristics Chlorophyll Carotenoids Phycobilins

Common found place Green plant and cyanobacteria
Brown algae (phaeophyta)
and green algae (chlorophyta)
red algae (rhodophyta)

Red algae (rhodophyta) and
cryptomonads and cyanobacteria

Structural formulae
description

Tetrapyrrole ring with a
central magnesium atom

Polyene chain consisting of
9–11 double bonds and
terminating in rings

Tetrapyrrole unit with open chain
of four pyrrole rings (tetrapyrrole)

Absorption wavelength
450–475 nm
(blue/blue–green); 615–675
nm (red)

400–550 nm (blue to green
light) 500 nm to 650 nm (green–red)

Water solubility Insoluble in water Insoluble in water Soluble in water

Examples Five types of chlorophylls a, b,
c and d

Xanthophylls (molecules
containing oxygen) and
carotenes (oxygen free
molecule).

phycoerythrin, phycocyanin,
allophycocyanin

Functions
Colour pigment used in
photosynthesis as a
photoreceptor

Biological abilities, including
photosynthesis,
photoprotection, plant
coloration, and cell signaling.

Supplement the light-capturing
ability especially red, orange,
yellow, and greenlight.
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Pigments are considered natural food colorants, and pigments extracted from mi-
croalgae and cyanobacteria have emerged as an appealing source to replace synthetic
coloring. Apart from that, the sustainable and renewable properties of microalgalculture,
combined with a diverse pigment profile, have made microalgae a popular choice for
the above-mentioned applications. All these pigments have been shown to be capable of
being produced on a large scale from cyanobacterial and microalgal cultures grown under
optimal conditions [12,13].

Microalgae and cyanobacteria, as well as macroalgae, are a reliable source of natural
bioactive compounds. Among pigments, carotenoids have shown significant commercial
and industrial applications, with global demand increasing year after year. It was predicted
that it would increase by 33 percent or reach 2.0 billion dollars in 2026 compared with
2019 [14]. This subsequently highlighted the promising market value with a variety of
business opportunities. Along with these global market trends, green extraction technolo-
gies have emerged, which could provide new advantages in the sustainable production of
these high-value products. Extraction technologies that have been widely reported in the
extraction process for pigment carotenoids from algae samples include pressurized liquid
extraction, supercritical fluid extraction, and subcritical fluid extraction [15].

Chlorophylls

Chlorophylls (chl) are the primary light-harvesting toward energy-transforming pig-
ments in photosynthetic organisms and are structurally arranged by non-covalentl bond to
specific apoproteins [16].

Chlorophyll molecules, in general, have a tetrapyrrole ring with a central magnesium
atom. Chlorophyll molecules are classified as chl a, b, c, and d, with structural differences
in the side-group substituents on the tetrapyrrole ring. Apart from chl c, the chlorophylls
a, b, and d are distinguished by the presence of long-chain terpenoid alcohol [17]. All
chlorophylls have two major absorption bands, 450–475 nm for blue or blue–green and
615–675 nm for red, which results in the chlorophyll green color characteristic. Chl a is
part of the core reaction center, a pigment–protein complex, located in the light-harvesting
antennae component, accompanied by chl b or chl c. The accessory pigments, chl b, c, and
d extend the broad range of light absorption. Thus, more energy can be captured from
sunlight by the photosynthetic organism [18].

Chlorophyll derivatives (chl a, chl b, and chl c) in microalgae and cyanobacteria
are promising for health-promoting activities such as anti-inflammatory properties, anti-
colorectal cancer, human hygiene properties, anti-stomach disorder activities, and anti-bad
breath protection [19]. A summary of previous research and development on the medical
applications of chlorophyll and its derivatives has been published to provide a better
understanding of science-based health claims [20].

Chlorophyll and its derivatives have structural functional properties and pharma-
ceutical properties. Photosynthesis is a process that converts solar energy into chemical
energy by harvesting light energy along with water and carbon dioxide to produce oxygen
and carbohydrates as byproducts. Based on the structural properties of chlorophyll, it
contained a heme moiety part that was like the hemoglobin structure, which may serve to
facilitate CO2/O2 exchange by conferring the functionality to be used in the treatment of
ulcers, stimulation of cell growth, acceleration of tissue formation, and increasing the rate
of healing. Other chlorophyll derivatives have antioxidant and antimutagenic properties
by trapping mutagens in the gastrointestinal tract [21].

Carotenoids

Carotenoids are a large group of biological chromophores with an absorption range of
400 to 550 nm, at which wavelength the carotenoids have strong absorption, giving them
their yellow–orange color [22]. Carotenoids play three major roles in the photosynthetic
organism: (i) as accessory light-harvesting pigments by transferring electrons to chl a [23];
(ii) structural entities within the light-harvesting and reaction center pigment–protein
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complexes [24], and (iii) molecules involved in the protection against oxygen reactive
species [25].

Carotenoids have two profiles: a primary activity involved in photosynthetic processes
and a secondary activity produced by microalgae under the following stress conditions [26].
There are over 400 known carotenoids, with -carotene and astaxanthin being the most
common carotenoid produced on a large scale. Dunaliella salina, which grows under high
salinity and light intensity conditions, produced 14 percent of the dry biomass weight
of carotenes [27]. In addition to their biological role, carotenoids have piqued the in-
dustry’s interest in health applications due to their bioactive potential as antioxidants,
anti-inflammatory agents, and anti-tumor agents when compared to others. Consumption
of a diet supplemented with -carotene has been linked to cancer prevention in some tis-
sues [28]. The freshwater microalgae Haematococcus pluvialis, which contains more than
3% dry weight biomass, is the best source of astaxanthin production on a large scale [29].
Cyanobacteria and microalgae can grow in a variety of environments. The ability to modify
the metabolism process in cyanobacteria or microalgae under different growth conditions
has resulted in the improvement and optimization of a specific compound over two or
three industrial bioprocess stages.

Cyanobacteria could also produce a wide range of terpenoids and carotenoids via
the carotenogenesis biosynthetic pathway. Anabaena and Nostoc species, for example,
converted phytoene to lycopene via a reaction catalyzed by a phytoene desaturase [30].
Lycopene is an important molecule in the synthesis of β-carotene from lycopene, which
is catalyzed by lycopene cyclase [31], while γ-carotene is an intermediate in the synthesis
of β-carotene in two steps catalyzed by lycopene cyclase [32]. The genes involved in
carotenogenesis are conserved in photosynthetic aquatic organisms. However, carotenoids
are only expressed and produced by a few cyanobacteria and microalgae species. In the
biotechnological industry, the expression of certain genes during carotenogenesis is critical
to increase carotenoids productivity. Genetic engineering was used in another study to
improve carotenoids production in cyanobacteria [33]. The approach of genetic alteration
has received a lot of attention in recent years, and a few examples have already been
described in cyanobacteria. As a result, effective genetic engineering for other microalgae
or cyanobacteria can be explored further by emphasizing the bioactivities of compounds
they produce.

Phycobiliproteins

The major antennae component of cyanobacteria and red algae contain phycobilins
(phycoerythrobilin, phycocyanobilin, and phycourobilin), which are packed into complex
structures called phycobilisomes. These complexes are linked to photosynthetic mem-
branes [34]. Phycobilisomes are linear tetrapyrroles with a magnesium atom attached.
The wavelength absorption range of these accessory pigments is 500–650 nm, with colors
ranging from blue–green to green, yellow, orange, and red. Phycobiliproteins, unlike
chl proteins and carotenoid proteins, are water soluble, and the pigments are covalently
bound to apoproteins. In general, cyanobacterial species have three important protein-
pigment complexes that are covalently linked to chromophores: C-phycocyanin (PC, λmax
610–620 nm), allophycocyanin (APC, λmax 650–655 nm), and phycoerythrin (PE, λmax
540–570 nm) [35].

Phycocyanin is a blue pigment that has important applications as a food supple-
ment and a fluorescent biomedical marker in a variety of pharmaceutical applications.
Phycocyanin is made up of a protein moiety (and apoprotein subunits) and bilin-type
chromophores. Phycocyanin accounts for approximately 0.439 g/g of cyanobacteria
biomass [36], but the concentration of phycocyanin in the cell is completely dependent on
environmental growth conditions. Phycocyanin is thought to be an accessory pigment that
absorbs light energy and transfers it to chlorophyll-a [35]. Phycocyanin has been proposed
by several authors as a carbon storage material [37] or as a nitrogen source during nitrogen
deficiency [38]. Some cyanobacteria species, such as Calothrix sp. [39], Oscillatoria sp., [40],
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Phormidium sp., [41], and Synechocystis sp., have previously been proposed as a source for
industrial production of phycocyanin [42].

Previous research found that highly purified phycocyanin (PC) extracted from the
thermophilic cyanobacterium Thermosynechococcus elongatus had anti-cancer activity
against three cancer cell lines: colorectal adenocarcinoma, hepatocellular carcinoma, and
mammary gland breast carcinoma. An in vitro assay demonstrated the cytotoxic effect
against cancer cells, yielding these results [35]. In another study, the combination effect
of PC and betaine also showed a good result on the growth of A549 lung cancer, with a
decrease in cancer cell viability of up to 60% through in vivo studies [43]. Previous research
revealed that this PC has two protein bands visible in SDS-PAGE analysis: -phycocyanin
(15 kDa) and β-phycocyanin (16.5 kDa) [35]. Another study found that using PC had an
effective inhibitory effect on A53Tα-synuclein and Aβ40/42 fibril formation at low stoichio-
metric ratios [44]. Further research should be conducted to identify natural biomolecules
that can be used to develop therapeutic aids for protein-related diseases characterized by
an inadequacy in protein folding, such as cataracts, Alzheimer’s disease, and Parkinson’s
disease [44].

2.1.2. Superoxide Dismutase

To maintain the balance of reactive oxygen species, microalgae and cyanobacteria have
an effective protective mechanism against highly reactive species produced during the
electron harvest–transport chain (ROS). A high accumulation of ROS causes an imbalance
in ROS production, resulting in oxidative stress. Some enzyme activities involved in
cyanobacteria photosynthesis are mentioned to share a protective mechanism against ROS
but act in different ways [45].

Superoxide dismutase (SOD) is an enzyme found in plants, algae, microalgae (includ-
ing the Antarctic marine microalgae Chaetoceros brevis), and cyanobacteria that catalyzes
the disproportionation of the anion radical to molecular oxygen and hydrogen peroxide.
This enzyme protects cells, at least in part, from reactive oxygen species formed during pho-
tosynthesis; under normal conditions, the enzymatic protection mechanism maintains the
balance of reactive species. ROS are either free radicals, reactive anions containing oxygen
atoms, or molecules containing oxygen atoms that can either produce or be chemically acti-
vated by free radicals. The main cause of cell damage is the alteration of macromolecules
caused by ROS, such as polyunsaturated fatty acids in membrane lipids, essential proteins,
and DNA (Figure 1).

SOD expression is highly regulated, with specific metalloforms acting as inducible
protectors in specific cellular compartments. SOD works efficiently during photosynthesis,
but little is known about its response to irradiance and oxygen accumulation stresses when
these microorganisms grow in photobioreactors. When SOD has maximum accumulation
into the cell, SOD accumulation during growth requires a stress event because SOD ex-
pression is highly regulated and inducible. Okamoto et al. [46] discovered a significant
increase in SOD activity when the microalgae Tetraselmis gracilis was exposed to high
cadmium levels. CCAP 19/18 was also reported in another study on the enhancement of
SOD production from Dunaliella salina. The study found that cultivating these microalgae
under high light intensity and nitrogen-depleted conditions resulted in a higher level of
SOD than the control condition [47]. There are few reports on the production of SOD in
photobioreactors, whether an environmental stress is required, such as increasing light
irradiance to the culture, or whether oxygen accumulation in the PBR is required. Microal-
gae and cyanobacteria grown in photobioreactors under stress conditions could be a good
alternative for producing this valuable fine product.

Extracts of cyanobacteria and eukaryotic algae (red, green, and brown algae, diatoms,
Euglena, and Charophyta) have been found to contain SOD [48–50]. In general, these SOD
were resistant to cyanide and antibodies against Cu, Zn, indicating the presence of Fe-
and/or Mn-enzymes and the absence of Cu, Zn-SOD enzymes, although an aerial green
alga lacks Cu, Zn-superoxide dismutase, aquatic angiosperms and ferns, such as other
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land plants do. Thus, the distribution of Cu, Zn-superoxide dismutase reflects the organ-
ism’s phylogeny.
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Sport injuries, knee joint osteoarthritis, rheumatoid arthritis, and intestinal cystitis
have all proven to be effective anti-inflammatory treatments. Other diseases, such as
Alzheimer’s disease, Parkinson’s disease, cancer, and aging, have been reported or impli-
cated because of oxidative stress and the release of an excessive amount of ROS. SOD can
be used to treat these diseases; in fact, microalgae can be a good source of SOD.

2.1.3. Antibacterial, Antiviral, Anticancer, and Anti-Inflammatory Activities

Bioactive compounds derived from different microalgae have been identified as
promising substances for use as antibacterial, antiviral, anti-inflammatory, and antifungal
agents [51]. Several microalgae, particularly extremophile strains, have been shown to
have a diverse distribution of metabolites that can be used as antimicrobials. The genetic
diversity of cyanobacterial and microalgal organisms is linked to their biosynthetic path-
way diversity. Cyclic peptides are secondary metabolites produced by cyanobacteria that
construct libraries of their biosynthetic pathways to produce analog compounds. The
antibacterial activity of pitipeptolide A is determined by post-translational n-methylation
of phenylalanine. Some cyanobacterial genera produce alkaloids, hapalindole-type com-
pounds composed of an indole moiety and a cyclized isoprene. Calothrixin A, another
alkaloid, has potent inhibitory activity against tumor cell lines at nanomolar concentrations;
their activity is related to DNA topoisomerase inhibition [52].

Streptococcus pneumoniae, Escherichia coli, Staphylococcus aureus, and other transmitted
healthcare microbes such as Acinetobacter baumanii, Klebsiella sp., and Pseudomonas aeruginosa
have all been shown to be inhibited by microalgal metabolites [53,54]. Several factors,
including the solvent used during the extraction process, can influence the antimicrobial
efficiency of microalgal metabolites. Mashhadinejad et al. [55] discovered that different
solvents had varying inhibitory effects on Gram-positive and Gram-negative bacteria such
as Bacillus subtilis, Staphylococcus sp., E. coli, and P. aeruginosa.

It has been reported that the presence of metabolites and lipid content accumulated
in microalgal cells influences the efficiency of microbial inhibition by microalgal extract.
Polysaturated and unsaturated fatty acids found in microalgae have been found to be
antimicrobial, particularly against Gram-positive bacteria. Other compounds found in
microalgae include hexadecanoic acid (16:0) and octadecadienoic acid (C18:2), which have
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been shown to have antimicrobial activity [56,57]. Other metabolites found in microalgae
include astaxanthin, violaxanthin, squalene, lutein, and sulphate polysaccharides, which
have been shown to have high antioxidant and antimicrobial activity. Table 3 summarizes
metabolites from different microalgal biomass.

Table 3. Metabolite extracted from different microalgal biomass.

Microalgae Metabolite Compound References

Chlorella zofingiensis Astaxanthin [58]
Chlorella minutissima Phytol [59]
Spirulina Polysaccharides [60]
Spirulina platensis Phycocyanin, oleic acid, linolenic acid [61,62]
Dunaliella sp. Diacylglycerol [63]
Nannochloropsis Diacylglycerol [64]
Dunaliela salina Palmitic acid [65]

2.2. Biofuels from Microalgae

Microalgal biomass contained several major biomolecules, such as lipid and carbohy-
drate, which could be converted into third-generation biofuels. The amount of lipids in
microalgal biomass varies by species. Several studies have investigated the lipid content
range of 20–50 percent in various microalgal species. Microalgal lipid extracted from
biomass can then be converted into biodiesel via a catalytic chemical reaction using either
a chemical or an enzyme as a catalyst [66]. Microalgal-based biodiesel is thought to be
competitive with terrestrial crops due to the high growth rate, high lipid intracellular accu-
mulation, and non-seasonal production. Furthermore, microalgal growth can be performed
on bioremediation processes, wastewater treatment, or CO2 sequestration [67], or in limited
growth conditions for other microorganisms [68].

Other liquid biofuels, such as bioethanol and biobutanol, can also be produced by
utilizing microalgal biomass. The production of these biofuels involves the fermentation
of microalgal carbohydrate polymer using microorganisms such as yeast and bacteria as
biocatalysts [69]. Prior to the fermentation process, the biomass must be pretreated and
the carbohydrate extracted (Figure 2). Yeast, such as Saccharomyces cerevisiae, which is a
common microorganism used in fermentation, will consume the carbohydrate and convert
it into bioethanol via anaerobic fermentation during the fermentation process. Several
studies have been conducted to investigate the potential of microalgal carbohydrate as a
bioethanol feedstock using various pretreatment methods (Table 4). Clearly, the majority of
the research indicated that different pretreatment processes could have a significant impact
on the release of microalgal carbohydrates and bioethanol production.
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Table 4. Bioethanol production from different microalgal biomass feedstock.

Microalgae Strain Pretreatment Condition Bioethanol References

Chlorella Dilute acid 5% sulphuric acid 0.28 g/g biomass [70]

Mixed microalgae Dilute sulphuric acid 0.5 N H2SO4 at 120 ◦C for 4 h 0.18 g/g biomass [71]

Chlorella sp. Dilute alkaline treatment at 2% NaOH for 2 h at 120 ◦C 0.081 g/g biomass [72]

Chlorococcum infusionum 0.74% NaOH at 120 ◦C for 30 min 0.26 g/g biomass [73]

Nannochloropsis gaditana 1 M NaOH, 120 ◦C for 30 min 0.094 g/g biomass [74]

Defatted Nannochloropsis oculata 4% H2SO4 0.062 g/g sugar [75]

Dunaliella tertiolecta Pretreatment using 1% (v/v) sulfuric acid at 120 ◦C for
15 min 0.62 g/g biomass [76]

Another study on the fermentation of lipid-extracted Chlorella sp. KR-1 biomass found
that when the fermentation was performed using S. cerevisiae KCTC 7931 under separate
hydrolysis and fermentation (SHF) processes, approximately 0.4 g/g sugar of bioethanol
corresponding to 0.16 g/g biomass was produced. Other studies on bioethanol production
from microalgal species such as Tetraselmis suecica, Dunaliella tertiolecta, Chlamydomonas sp.,
and Stigeoclonium sp. have also been published [77–80].

Biobutanol, on the other hand, is produced through the conversion of microalgal
carbohydrate by Clostridium sp. under strictly anaerobic fermentation conditions. Various
products such as butyric acid, acetic acid, acetone, ethanol, and butanol are produced during
the fermentation process, which involves two major metabolic pathways: acidogenesis
and solventogenesis [81]. Acidogenesis is a biological conversion reaction by bacteria of
carbohydrate or monomer sugar into volatile fatty acids such as acetic acid and butyric
acid. As the second phase of ABE fermentation, the biological reaction is continuing to
solventogenesis, which is a biochemical reaction by Clostridium species to produce acetone
and butanol. There have been few studies on biobutanol production from microalgal
biomass to date. For instance, Hong et al. [82] reported that approximately 3.48 g/L of
biobutanol was produced from the fermentation of Gelidium amansii pretreated with 2%
sulfuric acid. Another study on ABE fermentation of Chlamydomonas reinhardtii CCAP
11/32C produced 10.31 g butanol/g biomass under optimal conditions. The study also
found that pretreatment processes could significantly influence biobutanol production [83].
Investigation on biobutanol from enzymatic hydrolyzed Nannochloropsis sp. also indicated
that approximately 2.61% of butanol was produced from the ABE fermentation [84]. In
addition, the production of butanol from different microalgae such as Chlorella sp. and
Borodinellopsis texensis CCALA [85] has been reported. A study reported that microalgae
cultivated using wastewater could accumulate high carbohydrate content, a procedure that
can be useful for butanol production from Borodienllopsis texensis CCALA.

3. Implementation of an Efficient Production System: Mixotrophic Cultivation of
Microalgae for Biodiesel Production

The main cultivation systems for microalgae are open (such as raceway) and closed
photobioreactors. The selection of a cultivation system depends on several factors, which
can be chosen in order of application and economic objectives. Combining the selection
criteria of the cultivation system in order of importance the selection can be as: the algal
species, the desired final product, water supply, availability of sunlight, the cost of facilities,
availability of nutrients, climatic conditions, and CO2 supply [86]. The amount of nutrients
and certain metals (i.e., iron and magnesium) must be optimal because they are important
for the growth of microalgae and CO2 fixation efficiency. A well-designed cultivation sys-
tem can improve the efficiency of CO2 capture by microalgae [86]. Another important factor
when selecting a cultivation system is the likelihood of contamination by other microorgan-
isms. For example, algal species like Chlorella, Dunaliella, and Spirulina can grow only in
specific environments, hence are not likely to be contaminated by other microalgae when
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cultivated in an open-air system, and low possibility of bacterial contamination. In contrast,
some marine microalgae such as Tetraselmis, Skeletonem, and Isochrysis are susceptible to
foreign invasion and some additional manipulation should be considered [87].

Light as a source of energy for photosynthetic organisms is the main limiting factor in
the development of a cultivation system for microalgae. The photosynthesis rate is directly
proportional to the light intensity above the light compensation point (not photosynthesis
inhibition and not overshadowed by other cells). Mostly in microalgae, the photosynthetic
system becomes saturated to a radiation close to 30% of the total solar irradiance, i.e.,
between 1700–2000 µEm−2s−1. Some species of phytoplankton grow to optimal intensities
of 50 µEm−2s−1 and are photoinhibited to 130 µEm−2s−1. The most significant issues for
commercial cultivation of photosynthetic cells are photoinhibition and light limitation.
One possible solution is to use photosynthetic cell heterotrophic metabolism to replace
or supplement energy and carbon material from organic sources. According to some re-
search, heterotrophic and autotrophic metabolic activities coexist, resulting in mixotrophic
growth [88]. The relative contribution of photoautotrophic metabolism to biomass produc-
tion increases with an increase in the coefficient of absorption of light or an increase in the
supply of CO2 and a decrease in the supply of the organic carbon source. Certain cellular
components can accumulate during heterotrophic growth [89,90].

It was assumed that autotrophic and heterotrophic growth in Euglena gracilis [91]
and Spirulina platensis [92] occur simultaneously and independently in cells growing in
mixotrophic condition. In general, by mathematical terms, the mixotrophic growth is the
sum of the growths in autotrophic and heterotrophic conditions, and can be expressed as:

dXM
dt

=
dXA

dt
+

dXH
dt

(1)

where XM are cells growing in mixotrophic conditions, XA are cells growing in autotrophic
conditions, and XH are cells growing in heterotrophic conditions. However, it is difficult
to know how many cells are growing in autotrophy or heterotrophy at any time during
the cell growth. To simplify the conceit, cells growing in autotrophic mode can be defined
as an α fraction of the total cell biomass and a β fraction of cells growing in heterotrophic
metabolic conditions. In other words, Equation (1) may describe as.

dXM
dt

= α
dXM

dt
+ β

dXM
dt

(2)

The values of α and β can be calculated on the basis of a ratio of the autotrophic growth
rate dXA/dt and heterotrophic growth rate dXH/dt, both of which proceed, or are suggested
to proceed, during mixotrophic cultivation dXM/dt.

α =
dXA/dt

dXM/dt
(3)

β =
dXH/dt

dXM/dt
(4)

The values of α or β are 0.0 when growth occurs in the absence of organic carbon and
light energy, whereas, the summation of α and β are 1.0, signifying growth in mixotrophic
conditions. In other words, the fractions α and β during mixotrophic growth vary as
follows [93]:

(i) For the autotrophic fraction

The condition α ≤ 1 at initial time (to) signifying that light is unlimited and the organic
carbon source consumption is negligible.

The condition 0 < α < 1 at any time (ti).
The condition α ≈ 0 at final time (tf) light irradiance is limiting and growth is almost

entirely dependent on organic carbon source consumption. In other words:



Appl. Sci. 2022, 12, 6887 11 of 22

YX/S =
Xi − X0

S0 − Si∫ XMi+1

XMi

∆XM =
YX/S(S0 − Si)

1− αi

∫ ti+1

ti

∆ti (5)

where YX/S is the yield of biomass (X) produced by substrate (S) consumed.

(ii) For the heterotrophic fraction

The condition β = 0 at time = to that light is unlimited and organic carbon source
consumption is negligible

The condition 0 < β < 1 at any time = ti

and with the condition β ≈ 1 at final time = tf signifying that light irradiance is limiting
and growth depends on organic carbon source consumption. In other words:
the light saturation constant, K =

YkJ A
V , biomass produced per energy unit and illuminated

area, this constant can be used as photobioreactor design criteria, because it involves the
light energy absorbed by a specific microalgal specie and the amount of light irradiated in
a specific photobioreactor geometry.∫ XMi+1

XMi

∆XM=
Klo

1− βi

∫ ti+1

ti

∆ti (6)

And then, βi at any time can be calculated

βi = 1− Klo
XMi+1 − XMi

(ti+1 − ti) (7)

Kinetic of Biofuels Production by Microalgae

Microalgae can be grown in three ways: photoautotrophically, heterotrophically,
and mixotrophically [94,95], as shown in Table 5. Due to the lower production costs,
photoautotrophic cultivation using sunlight as an energy source is preferred over the other
two types of cultivation [94]. In the course of mixotrophic cultivation, microalgal cells
absorb both CO2 and organic carbon [94,96]. Several reports on the cultivation of microalgal
species in mixotrophic conditions with various organic carbon sources have been published.
In general, the amount of biomass increases significantly under mixotrophy. The carbon
mass balance can be summarized as follows: total carbon of microalgal biomass equals
sum of inorganic carbon source (CO2) plus carbon from organic source. However, due to
further limitations on an important growth factor, such as nitrogen limitation or nitrogen
starvation, some molecular components are stored in special compartments.

Biodiesel production kinetics can be described as follow:
Considering Equation (1), biodiesel is produced under mixotrophic condition, some

amount is produced autotrophically and other parts heterotrophically; mathematically
lipid production may be described by Equation (2).

However, lipid content is a part of biomass produced in both metabolic routes of
growth, which depends essentially on the microalgal specie and the type of organic carbon
source. Biodiesel production may be described in terms of αb and βb as the fraction of lipids
in autotrophic and heterotrophic growth, respectively:

dBM
dt

= αbα
dXM

dt
+ βbβ

dXM
dt

(8)

The fractions αb and βb are the fractions of biomass that represent total lipid content in
microalgae grown under mixotrophic conditions.
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Table 5. Biomass and lipid productivity under different production strategies.

Microalgal Specie
Biomass
Productivity
mg/L/d

Carbon Source Metabolic
Cultivation

Lipid
Content
%

PFA
Content
mg/g

Reference

C. vulgaris 137.43 molasses Mixotrophic 39 59.7 [94]

C. vulgaris 91.57 CO2 Autotrophic 19 36 [94]

Scenedesmus dimorphus 119.25 Sugar cane Bagasse Mixotrophic 40.02 [97]

Scenedesmus dimorphus 140.37 Apple-pomace
hydrolysate Mixotrophic 41 64 [95,96]

Scenedesmus dimorphus 96.4–96.55 CO2 Autotrophic 28 37.65 [95]

Chlorella vulgaris Sorghum bagasse Mixotrophic 34.4 [96]

Arthrospira platensis 1330 Sucrose Mixotrophic 3.68 mg/g cell [98]

Arthrospira platensis 153 CO2 Autotrophic 3.12 mg/g cell [98]

Graesiella sp. 170 CO2 + Glucose Mixotrophic 45.8 1.47 [88]

Graesiella sp. 120 CO2 Autotrophic 19.4 16.66 [88]

Dictyosphaerium sp. 230 CO2 + Glucose
10 g/L Mixotrophic 32 [99]

Dictyosphaerium sp. 230 CO2 + Glucose
20 g/L Mixotrophic 42 [99]

4. Other Important Applications of Microalgal Biotechnology

Microalgae are a diverse group of photosynthetic microorganisms that grow in a
variety of metabolic modes (autotrophic, heterotrophic, and mixotrophic). These cells are
represented by dozens of families, both eukaryotes and prokaryotes, all over the world.
Their classification has been based on biochemical profiles, pigments, microstructures, and
sizes ranging from 2 to 200 microns, among other factors [100–102]. Microalgae play a
critical role in the fixation of carbon and nitrogen, making them the primary producers
of excellence by maintaining the homeostasis of biological systems and trophic chains.
They may also act as regulators of rising carbon emissions, allowing climate change to be
mitigated [103,104].

Humans have increased their use of microalgae in recent years; they are among the
three most abundant groups (diatoms, green algae, and cyanobacteria), and they are the
most widely used in biotechnological processes [105]. Three applications of microalgae
have had an impact due to their importance in economic activities: (1) animal feed additives,
(2) phycoremediation, and (3) waste management (Table 1).

4.1. Additives for Animal Feeding

The use of microalgae as nutritional additives for animal feed and human consumption,
for instance, is recognized by the production of omega-3 polyunsaturated fatty acids [106].
Of all the species studied, the most widely used are the genera Chlorella, Tetraselmis, Isochry-
sis, Pavlova, Phaeodactylum, Chaetoceros, Nannochloropsis, Skeletonema, and Thalassiosira for
aquaculture activities, mainly because of their high nutritional content, presence of vita-
mins, minerals, pigments, and antioxidant compounds [107,108]. Several microalgae such
as Aphanizomenon, Chlorella, and Arthrospira, are high protein-rich species, making them es-
sential in a world where population density continues to increase [109,110]. Instead, lipids
and highly polyunsaturated fatty acids such as docosahexaenoic acid (DHA), eicosapen-
taenoic acid (EPA), and arachidonic acid (ARA) have been found in microalgae; similarly, a
high concentration of linoleic and linolenic acids has been found in several species of mi-
croalgae such as Spirulina [111,112]. Other essential compounds obtained from microalgae
are β-carotene, lutein, astaxanthin, chlorophyll, phycobiliprotein, among others, such as
vitamin precursors, antioxidants, immune system promoters, and anti-inflammatory agents
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have been obtained from several microalgal genera such as Anabaena, Nonstock, Botryococ-
cus, Synechococcus, Chlamydomonas, Scenedesmus, Perietochloris, and Porphyridium [113,114].
Nannochloropsis biomass has shown functional properties in the inclusion to balanced diets
of the tropical edible fish Atractosteus tropicus, Gill 1863 [115].

4.2. Phycoremediation

The phycoremediation of wastewater using microalgae is a highly efficient and eco-
nomically viable process that allows the removal of chemical pollutants and nutrients
by using them as energy sources, as well as the use of CO2 to produce biomass with
multiple applications using biotechnology and bioprocesses such as biofuel production,
feed additive extraction, and so on [116]. To achieve maximum efficiency in the phycore-
mediation process, it is critical to use the most efficient metabolic growth mode, which
can be classified into three types that correspond to the use of a single source of carbohy-
drates, though in waste management or phytoremediation, these processes proceed with a
mixture of carbohydrates or a non-common carbohydrate, respectively: (1) autotrophic,
(2) heterotrophic, and (3) mixotrophic [117]. Photo-autotrophic microalgae require light,
water, atmospheric CO2, and nutrients to grow, resulting in high lipid, carbohydrate, and
protein production. In the dark, heterotrophic microalgae can produce carbohydrates and
lipids by using organic and inorganic CO2. This type of microalgae has the advantage
of simple maintenance and operation, as well as low production costs; however, it has
the disadvantages of a limited number of microalgal species that can be used, the addi-
tion of nutrients, contamination with opportunistic bacteria, and the inability to produce
sunlight-induced metabolites [118]. Mixotrophic microalgae, on the other hand, combine
the capabilities of autotrophic and heterotrophic microalgae at the same time and use a
variety of organic carbon sources such as glycerol, carbohydrates (hexoses and pentoses),
amino acids, organic acids, and low-cost substrates such as agro-industrial residues [117],
making them the most interesting for use in industrial processes by reducing cultivation
costs and achieving maximum production, as proven by species namely Crypthecodinium
cohnii, Chlorella vulgaris, and Chlorella sorokiniana [87,118,119].

4.3. Waste Management

One of the most important applications of microalgae, such as Chlorella vulgaris, that
has recently been developed is wastewater treatment [120]. The advancement of this
technology allows microalgae to absorb various types of contaminants in water from mu-
nicipal, industrial, agro-industrial, and livestock wastewaters, producing algal biomass
and allowing the water to be safely disposed. It should be noted that the use of microal-
gal treatment plants has a positive effect because bioenergy is produced, allowing for a
more effective, sustainable, simple, economical, and environmentally friendly remediation
process [121,122].

The advantage of using microalgae for wastewater treatment is that it allows the
process of bioenergy production during remediation to be channeled through the following
processes [123]: (1) biohydrogenesis, which involves converting waste to carbohydrates
and ethanol; (2) complete solventogenesis, which involves converting waste to butyrate
and butanol; (3) methanogenesis, which involves converting waste to simple sugars and
methane; (4) bioelectrogenesis, which involves converting waste to simple sugars and
CO2 (glycolysis, ATP production, and gluconeogenesis); (5) incomplete solventogenesis, in
which wastes are converted into carbohydrates and ethanol; (6) anoxic respiration, in which
wastes are converted into volatile fatty acids (VFA) and polyhydroxyalkanoates (PHA);
and (7) lipogenesis, in which microalgal biomass and lipids are produced (fatty acids).

Of course, the efficiency of the remediation method will be determined by the species of
microalgae (microorganism partners) that are handled, in addition to the pretreatment [124].
For example, in wastewater treatment, the use of Clostridium with acid pretreatments and a
bacterial consortium (symbiotic processes) is highly efficient [125]. However, to achieve
maximum metabolic efficiency, the remediation process with microalgae requires various
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pretreatments such as thermal, chemical (acidic and alkaline), oxygen, and infrared light,
among others [126]. To improve the efficiency of the remediation process, several types of
bioreactors have been developed, including suspension, embedded bed, biofilm, fluidized
bed, reverse flow, anaerobic sludge bed, extended bed, and granular sludge, immobilized
systems, and membrane-based systems [127]. Another benefit of using microalgae in
wastewater treatment is the removal of toxic minerals such As, Br, Cd, Hg, Pb, Sc, and Sn
ions, as well as the production of biomass (organic matter) that can be used in fermentation
processes [128,129].

During the degradation process, wastewater (domestic or industrial) acts as an electron
donor (anolyte fuel) to generate reduced equivalents through the action of microalgal and
bacterial consortia (microbial fuel cells, MFC) at a very high metabolic rate for extended
periods of time. However, environmental variables such as pH, temperature, salinity, light,
water flow rate, microelements, C:N:P ratio, etc., must be controlled [130,131].

Biodiesel, on the other hand, can be produced from the production of microalgal
biomass from wastewater treatment, where microalgae fix inorganic or organic CO2 to
produce fatty acids (biofixation) via the autotrophic/heterotrophic biosynthetic pathway
of lipids, and it is converted into a biofuel via transesterification processes. Scenedesmus
microalgae, for example, were cultured in wastewater fermented with swine feces, allowing
for high lipid production and waste removal [132]. Furthermore, several microalgal species,
including Chlamydomonas reinhardtii and Chlorella vulgaris, contain a high concentration
of glycogen, starch, cellulose, agar, and other compounds that can be converted into
bioethanol during fermentation [133,134]. However, tolerance to high CO2 concentrations
is a limitation for biofixation; as a result, many microalgal species have been studied, with
the most efficient being Chlorella spp., Arthrospira (formerly Spirulina) spp., Scenedesmus
dimorphus, Botryococcus braunii, and Nannochloropsis oculate [135–141].

5. New Tools to Improve Microalgal Applications: Recombinant Protein Production
in Microalgae

The recombinant protein industry has developed more than 170 recombinant proteins
used in medicine. Third generation has transformed the therapeutic recombinant protein,
in which third generation focus on new routes of administration and increasing efficiency
and safety [142,143].

In the biotechnological industry: medical biotechnology, enzyme technology, biopoly-
mers, bioplastics, biofuels, bioremediation, and agricultural biotechnology have seen an
intense productivity improvement by the selection of higher producing microbial strains
with the application of recombinant DNA technology. New technologies should search new
targets for strain improvement programs [144]. The eukaryotic systems used for pharma-
ceutical production include mammalian cell cultures, bacteria, insect cells, yeast, and plants,
however with some limitations [145–148]. Some limitations such as complex nutritional,
maintenance, and sterile conditions in mammalian expression systems, in plant expression
systems have technical and regulatory concerns for full scale production [147,149–151].

In this sense, microalgae and cyanobacteria are diverse organisms with properties
relevant for large-scale production systems, making them an attractive host for recombinant
protein production [152,153]. Proteins, peptides, unsaturated fatty acids, vitamins, pig-
ments, and other valuable compounds can be produced at lower producing costs [145,154].

Recently, a geminiviral vector has been used for the effective expression of therapeutic
proteins in microalgae, with two advantages over other receptors: the innocuity of several
strains and an excellent platform for the development of biological products [155]. For
example, the SARS-CoV-2 receptor binding domain (RBD) and the basic fibroblast growth
factor (bFGF) were subcloned in a geminiviral vector and used for nuclear transformation
to temporary express these proteins in C. reinhardtii and C. vulgaris, respectively [156].
Some advantages are important for the use of C. reinhartii and C. vulgaris, they are safe to
consume as dietary supplements, easy cultivation, lack of pathogens, simple culture media,
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and growth in sterile conditions; these properties make an attractive heterologous protein
production system [151,155,157–160].

Microalgal metabolism has been manipulated to produce high-valuable compounds
according to photobioreactor engineering. In other strategies, transcriptional remodeling
of lipid metabolism in Chlamydomonas, some regulators have been identified [161]. For
example, Jia et al., [162] demonstrated that in Chlamydomonas, overexpression of a gene
encoding a DofF transcription factor significantly increased intracellular lipid content.
Some stress regulators have been identified, TF-encoding genes (an important strategy
used by plants to adapt to environmental changes) [163], the Myb transcription factor
in response to Pi starvation response [164], and lipid remodeling regulator 1 (LRL1) in
response to P-depleted condition [165].

The green alga Chlamydomonas reinhardtii produces H2 gas in anaerobic conditions,
reactions catalyzed by hydrogenase enzymes, another important application possible in
microalgae. The expression of the HYDA genes is influenced by anoxia condition. In the
presence of O2, transcriptional control of HYDA1 or HYDA2 genes is paralyzed, seems to
be regulatory sequences involved in the hypoxia response [164]. It is necessary to isolate
mutants that express hydrogenase in the presence of O2 to dismiss the enzymes sensitive
to oxygen [166]. By identifying mutant strains with constitutively expressed HYDA gene
transcripts would be a very useful tool in assisting with the difficult task of producing
O2-tolerant hydrogenase enzymes [165]. These technologies generate a valuable platform to
produce relevant industrialize biotechnology with significant yields and financial feasibility.

6. Concluding Remarks

Some microalgae have been cultivated successfully as large-scale or commercially
available products: Chlorella vulgaris and Chlamydomonas reihardtii for bioethanol produc-
tion [167], β-carotene and coenzyme Q produced by Isochrysis galbana [168,169], Tetraselmis
sp. produce skincare substances that reduce the size of melanocytes and the amount of
hyperpigmentation [170], halotolerant marine microalgae, such as Chaetoceros mulleri and
Tisochrysis lutea, produce sterols used in the pharmaceutical industry [171], the pigment
Astaxanthin successfully commercialized produced by Heamatococcus pluvialis [172], and
Chlorococcum sp. produce carotenoids and phytoene [173]. Although there are some suc-
cessful samples of microalgal cultures, some technologies can help to improve biomass are
high-valuable compounds production, revalorize waste material by microalgal metabolism,
and integrate a downstream process to obtain several products in one cultivation.

Microalgae and cyanobacteria have numerous biotechnological applications in a vari-
ety of industries (Figure 3). Microalgal processes can be divided into two main systems
based on their technological application: closed and open The closed system can be used
for high valuable compounds, such as the production of food additives, nutraceuticals,
pharmaceutical, and recombinant protein; these types of photobioreactors can be assembled
with a full control equipment of pH, temperature, CO2 supply, light supply, medium sup-
ply, broth recovery, oxygen control, and sterile conditions, and all are susceptible for high
purity compound production. Close photobioreactors can be used to develop recombinant
therapeutic protein production, which can be a cost-effective production system compared
with mammalian cell culture. Open systems in the other part of applications are useful to
produce large amounts of biomass without the need for sterility. The focus in the latter
system is a biorefinery process, in which the main product can be biofuels—biodiesel, and
biohydrogen—but other compounds such as glycerin, biosurfactants, health products, and
feed protein can also be obtained. Microalgal growth has been used in wastewater treatment
and phycoremediation processes, clean water recycling in aquaculture, and sustainable
fish and vegetable production, such as aquaponics technology. For extremely valuable
compounds, OMICS technologies in microalgae require the discovery of new genetically
modified microalgae capable of producing pharmaceuticals for human health applications;
these systems may have technical advantages as well as cost-effective processes.
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