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Abstract: We present a fast 3D analytical affine transformation (F3DAAT) method to obtain polygon-
based computer-generated holograms (CGHs). CGHs consisting of tens of thousands of triangles
from 3D objects are obtained by this method. We have attempted a revised method based on previous
3D affine transformation methods. In order to improve computational efficiency, we have derived
and analyzed our proposed affine transformation matrix. We show that we have further increased
the computational efficiency compared with previous affine methods. We also have added flat
shading to improve the reconstructed image quality. A 3D object from a 3D camera is reconstructed
holographically by numerical and optical experiments.
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1. Introduction

With the rapid development of display and computer technology, 3D display technol-
ogy has made great progress [1,2]. The current 3D display technologies generally include
binocular parallax display [3], volume 3D display [4], light field display [5] and holographic
3D display. Holographic 3D display is a technology to reconstruct 3D wave-front by using
light wave diffraction information based on the principle of wave optics. Because the
wave-front information of the 3D scene is reconstructed, it can provide all the depth cues
required by the human eye [6–8]. The wave-front recording process of holography can
be completed and simulated by a computer to generate the so-called computer-generated
holograms (CGHs). The use of CGHs avoids the setup of complicated optical paths in opti-
cal holography [9,10], as long as the mathematical description of the 3D scene is obtained
and transformed into the wave-front distribution in the hologram plane by algorithms.
Therefore, the algorithm of calculating CGHs is key, because it directly determines the
computational efficiency of the hologram and the quality of the reconstructed image [11,12].

Indeed, the mathematical description of a 3D scene can also be expressed in many
forms. According to the geometric information of its surface, it can be discretely expressed
as a collection of point sources, giving the so-called point-based method [13]. The wavefront
information of the whole 3D object is obtained by calculating and then adding the light
field distribution of the spherical wave emitted by each point light source in the hologram
plane. However, the required number of point sources is usually as high as millions,
leading to computational bottlenecks. By using a look-up tables (LUTs) [14–16] and graphic
processing units (GPUs) [17,18], we can accelerate the calculations greatly. Another popular
CGH calculation method is the use of polygons (usually represented by triangle meshes)
to approximate the surface of a 3D scene, giving to the polygon-based method [19–32].
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Compared with the point-based method, the number of polygons can be greatly reduced,
and the mature theory of computer graphics can be used to make the reconstructed scene
more realistic. There are other methods to decompose 3D objects, such as the layer-
based [33,34] or line-segment based method [35].

In polygon-based methods, the propagation of light field can be calculated for each
polygon by using the angular spectrum theory if the polygon is parallel to the hologram
plane [6]. The essence of polygon-based methods is the diffraction calculation between
non-parallel planes. Polygon-based methods can be divided into two categories; one is
the traditional method based on sampling [8]. This method needs to sample each tilted
polygon that is not parallel to the hologram in the spatial and frequency domains. Due
to the polygon rotation, sampling in the spatial and frequency domains creates uneven
sampling intervals between the two domains. Time-consuming interpolation is needed
to alleviate sampling distortion. The other method is the analytical method [8]. Unlike
the traditional method, sampling in the spatial domain to obtain the spectrum of a tilted
polygon is not needed. Instead, the spectrum of a tilted polygon can be expressed in
terms of the spectrum of a unit triangle (also called primitive triangle), which is known
analytically, through the 2D affine transform [23]. Therefore, only sampling is needed in the
frequency domain for each polygon, bypassing the need for interpolation in the traditional
method. Compared with the traditional method, the analytical method effectively reduces
the amount of calculations. However, shaping and texture mapping are not easily included
in the analytical methods as compared with the traditional methods [8].

Pan et al. [25,26] have developed an analytical method utilizing 3D affine transfor-
mation. They have defined a pseudo inverse matrix to map the spatial triangle with a
three-dimensional right primitive triangle (which has an analytical spectrum expression).
The major issue of the technique is the inaccuracy caused by the inversion of the pseudo
matrix. Zhang et al. [28,29] have derived a correct analytical expression in the context of
2D affine transformation [23] and proposed a method to achieve 3D transformation from
an arbitrary triangle to a primitive triangle through a 3D rotation of the arbitrary triangle
and the use of a 2D affine matrix [29]. Although this method avoids the time-consuming
calculation of the pseudo inverse matrix, the process is rather complex. Zhang et al. [8]
also have proposed a method called the fast 3D affine transformation (F3DAT) method by
translating the primitive triangle to avoid the use of the pseudo inverse matrix to improve
the computational efficiency.

In the wave-optics based approach, it can provide accurate depth cues. However, view-
dependent properties’ rendering requires additional calculations. Rendering technology of
computer graphics makes the reconstructed 3D scene more realistic [36–38]. Matsushima
et al., have discussed the methods of shading and texturing [20–22] and created a large-scale
full-color CGH successfully [39]. Subsequently, many methods have been proposed to
improve the quality of reconstructed images through texturing [36,37], shading [22,38], and
resolution improvement [40]. Additionally, the use of the silhouette method for hidden
surface removal has been described [41].

In this study, based on the three-dimensional affine theory [25,29], we present a fast
3D analytical affine transformation (F3DAAT) method to obtain a full-analytical spectrum
of a spatial triangle. We obtain the analytical expression of a 3D affine matrix algebraically,
and the spectrum of tilted triangles can be obtained directly. Compared with previous
methods, we show improved computational efficiency. In addition, in order to improve
the image quality, we add flat shading to make the reconstructed image more realistic. We
also demonstrate reconstructed 3D objects composed of tens of thousands of polygons
numerically as well as the use of a spatial light modulator (SLM) for optical reconstruction.

In Section 2, we briefly introduce the basic principle of the polygon-based method. In
Section 3, we present the theory of F3DAAT. In Section 4, we demonstrate the reconstruction
of 3D objects numerically and optically. The computational efficiency is also compared
with previous methods. The results of adding flat shading are also illustrated.
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2. Conventional Polygon-Based Method

Figure 1 shows the basic principle of the polygon-based method. The surface of a
3D object is discretized into many polygons (usually triangles). The hologram is assumed
to be on the plane z = 0 . The total complex field distribution on the hologram plane
fHOLO(x, y, z = 0) can be expressed as the superposition of the polygon fields from each
polygon, fHOLO,i(x, y):

fHOLO(x, y) =
N

∑
i=1

fHOLO,i(x, y), (1)

where N is the number of polygons and fHOLO,i(x, y) is the complex field on the hologram
plane from the ith polygon. Since the complex field distribution of each triangle on the
hologram can be expressed by the inverse Fourier transform of its spectrum:

fHOLO,i(x, y) = F−1{FHOLO,i(u, v)}, (2)

where F−1{·} represent the inverse Fourier transform and FHOLO,i(u, v) represents the
spectrum of the ith polygon on the hologram. Therefore, the key to the polygon-based
method is how to obtain the spectrum of each triangle on the hologram plane.
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As shown in Figure 2, a polygon on the source coordinate system (xs, ys, zs) is not
necessarily parallel to the hologram plane (x, y); one needs to rotate the polygon to parallel
local coordinate system

(
xp, yp, zp

)
to be parallel to the hologram plane in order to calculate

the diffracted field toward the hologram through standard diffraction theory [6]. The
spatial frequencies (us, vs) can be expressed as:

us = a1up + a2vp + a3wp, (3a)

vs = a4up + a5vp + a6wp, (3b)

where ai are the elements of the rotation matrix. (us, vs) (corresponding to
(
ksx, ksy

)
in

Equation (10a,b) in Ref. [8]) are the spatial frequencies corresponding to source coordinates
(xs, ys, zs).

(
up, vp, wp

)
(corresponding to

(
kpx, kpy, kpz

)
in Equation (10a,b) in Ref. [8])

are spatial frequencies corresponding to parallel local coordinates
(
xp, yp, zp

)
. Upon a

differential operation in Equation (3a), we have:

∆us = a1∆up + a2∆vp + a3∆wp = a1∆up + a2∆vp − a3·
(
up·∆up + v·∆vp

)√
1

λ2 − up2 − vp2
, (4)

where wp =
√

1
λ2 − up2 − vp2 with λ being the wavelength of the light source. Since

the spatial frequencies
(
up, vp

)
are uniformly distributed, we have ∆up = constant,

∆vp = constant. For simplicity, let us assume ∆up = 1, ∆vp = 1, and Equation (4) then can
be rewritten as follows:
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∆us = a1 + a2 − a3·
(
up + vp

)√
1

λ2 − up2 − vp2
6= constant. (5)
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Figure 2. Coordinate systems of the traditional polygon-based method: source coordinate system
(xs, ys, zs), parallel local coordinate system

(
xp, yp, zp

)
and hologram plane (x, y). Adapted from

Zhang et al. [8].

Since ∆us(the derivative of us) is not constant, Equation (5) indicates that for an
arbitrary set of spatial frequencies

(
up, vp

)
corresponding to the parallel local coordinates,

spatial frequency (us, vs) after rotation has highly nonlinear properties. Because uniform
sampling is necessary for the FFT to work correctly in the traditional method, interpolation
process is required for spatial frequencies (us, vs) after rotation. This procedure would add
substantially to the computational time [30]. Comparing with the traditional method, the
analytical method avoids the use of the FFT in obtaining the spectrum of the polygon in the
source coordinates and the interpolation process is therefore not required. The analytical
method can obtain the analytical expression of the tilted triangle spectrum directly by using
affine transformation and a given spectrum expression of a primitive triangle. In this paper,
we analytically solve the affine matrix, which avoids the most time-consuming steps in
previous methods [8,25,29] and further improves the computational efficiency over the
previous methods.

3. Theory

The aim of the polygon-based method is the calculation of the polygon field in the
plane of the hologram. However, we cannot obtain the polygon field or its spectrum directly
by using standard diffraction theory, which is valid only between parallel planes. One
of the conventional approaches to solve this problem is to map the desired light field or
its spectrum using affine relations. The traditional affine transformation method is based
on procedures such as rotation and translation to establish the relationship between the
input and output coordinates, with the output represented by a set of known inputs and
affine relations. Hence, the essence of affine transformation method is a mapping method,
and the core problem of affine transformation is to find the affine matrix. In our proposed
theory, we will find the affine matrix algebraically in a universal way.

In the traditional 3D affine transformation algorithm, there is a global coordinate
system (x, y, z) as the output coordinate system, as shown in Figure 3. The hologram plane
(x, y) is located in z = 0, and the tilted triangle Π with vertexes (x1, y1, z1), (x2, y2, z2) and
(x3, y3, z3) is located in the global coordinate system.
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Figure 3. Tilted triangle Π in global coordinate system (x, y, z) and hologram plane (z = 0).

We now define the affine coordinates (s, t, p) as our input coordinates, as shown in
Figure 4. A primitive triangle ∆ with vertexes (s1, t1, p1), (s2, t2, p2) and (s3, t3, p3) is in the
affine coordinate system, and the analytical expression of the primitive triangle spectrum is
obtained by using two-dimensional Fourier transform for p = 0. The spectrum of the tilted
triangle is finally obtained from the affine relationship between the primitive triangle ∆
and the tilted triangle Π with the analytical expression of the primitive triangle spectrum
derived from the Fourier transform.
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Figure 4. Primitive triangle ∆ in affine coordinate system (s, t, p).

Through affine transformation
→
rg

t = R
→
ra

t +
→
C , we can map affine coordinates (s, t, p)

into global (output) coordinates (x, y, z), where
→
rg

t = (x, y, z)t is the coordinate vector of

tilted triangle Π in the global coordinate system,
→
ra

t = (s, t, p)t is the coordinate vector of
primitive triangle ∆ in the affine coordinates and the superscript t denotes the transpose

operation. R is a 3 × 3 matrix and
→
C is a 3 × 1 vector. We let (s1, t1, p1) = (0, 0, 0),

(s2, t2, p2) = (1, 0, 0) and (s3, t3, p3) = (0, 1, 0). Therefore, we can write in terms of matrix
multiplication as shown in Equation (6), where T is the affine transformation matrix and G
and A represent matrices consisting of vertexes of tilted triangle Π and primitive triangle
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∆, respectively. By calculating the twelve parameters of affine matrix T, we can uniquely
determine the 3D affine transformation:

G =


x1 x2 x3
y1 y2 y3
z1 z2 z3
1 1 1

= TA =


r11 r12 r13 c1
r21 r22 r23 c2
r31 r22 r33 c3
0 0 0 1




s1 s2 s3
t1 t2 t3
p1 p2 p3
1 1 1

. (6)

The key to the affine transformation algorithm is to find the elements of affine matrix
T. There is no inverse for 4 × 3 matrix A, because inverse only exists for square matrices.
The affine matrix T has been found by using the pseudo inverse matrix of A [25]. The
accurate method is to avoid the use of pseudo matrices and to find the affine transformation
matrix T through direct calculation of T = GA−1. There are twelve unknown elements
in affine matrix T, and so we have to solve twelve equations to get these twelve elements.
However, each matrix G and A only contain three vertexes in Equation (6). From this,
we can only get nine equations to solve for the nine elements; the remaining elements
in the affine matrix T cannot be determined. In light of this, we introduce a new set of
vertexes (s4, t4, p4)

t in matrix A and a 4 × 1 vector [d1, d2, d3, d4]
t in matrix G to determine

all the unknown twelve elements of the affine matrix T. Therefore, we extend G and A to a
4× 4 matrix G1 and A1, respectively. In light of this, Equation (6) becomes:

G1 =


x1 x2 x3 d1
y1 y2 y3 d2
z1 z2 z3 d3
1 1 1 d4

= TA1 =


r11 r12 r13 c1
r21 r22 r23 c2
r31 r22 r33 c3
0 0 0 1




s1 s2 s3 s4
t1 t2 t3 t4
p1 p2 p3 p4
1 1 1 d4

. (7)

In order to simplify calculations and improve the calculation efficiency, the best choice
is let d1 = d2 = d3 = d4 = 0 and (s4, t4, p4) = (0, 0, 1). Then, A1 becomes

A1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0

. (8)

Through simple calculations, we can obtain det(A1) = −1, indicating the existence
of the inverse matrix of A1. Then, we can find the affine transformation matrix T by
T = G1 A1

−1. Note that the vertex (s4, t4, p4)
t only represents a point located in the primi-

tive coordinate system independent of the primitive triangle, and the value of (s4, t4, p4)
t

and d4 must be chosen such that det(A1) 6= 0 to make sure the inverse of A1 exists. d1∼3
can take any value; different values of d1∼3 make a different affine transformation matrix
T and the Jacobian determinant also changes at the same time. Again, we have chosen
Equation (8) for ease of calculations and there is no effect on the final results that we end
up solving. According to the above discussion, the affine transformation matrix T can be
obtained by Equation (7):

T = G1 A1
−1 =


−x1 + x2 −x1 + x3 0 x1
−y1 + y2 −y1 + y3 0 y1
−z1 + z2 −z1 + z3 0 z1

0 0 0 1

. (9)

For primitive triangle ∆, assuming that its surface function has strength of one within the
triangle and zero outside, its spectrum analytical expression F∆(us, vt) can be obtained (see
Appendix A):

F∆(us, vt) =
x

∆
1 · e−j2π(uss+vtt)dsdt

=
1

2π2

[
e−j2πvt

(us − vt) · vt
− e−j2πus

(us − vt) · us
− 1

us · vt

], (10)
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where us, vt are the spatial frequencies corresponding to affine coordinates s and t. The
singular points us = 0, vt = 0 or us − vt = 0 have been discussed in Appendix A. Through
affine transformation, the spectrum distribution of tilted triangle Π on the hologram plane
is (see the derivation of this equation in Appendix B):

FHOLO(u, v)=
x

Π
f
(→

rg

)
·e−j2π(ux+vy+wz)dxdy

=
x

∆
f (R
→
ra +

→
C)·e−j2π(ux+vy+wz)·J·dsdt,

(11)

where u, v, w again are spatial frequencies of the global coordinate system, f
(→

rg

)
= f (x, y, z)

is the surface function of the tilted triangle
→
rg=(x, y, z),

→
ra=(s, t, p) and the Jacobian determi-

nant J = r11r22 − r12r21. Then, the spectrum distribution on the hologram FHOLO is:

FHOLO(u, v) = J·e−j2π(ux1+vy1+wz1)·F∆(us, vt), (12)

which has been derived in Appendix C. Note that for an arbitrary tilted polygon, we can
set an arbitrary point instead of point (x1, y1, z1) of the polygon. For a different choice, it
will change the affine transform matrix, but the Jacobian determinant in Equation (12) also
changes at the same time, giving the same result in Equation (12).

As shown in Figure 5a, the zero frequency in the global coordinate system is

(u0, v0, w0)
t =

(
0, 0, 1

λ

)t
. According to the spatial frequency relationship given by

Equation (28) in Appendix C, as shown in Figure 5b, the zero frequency in the affine
coordinate system

(
us0, vt0, wp0

)t is
(
us0, vt0, wp0

)t
= R−1(u0, v0, w0)

t: us0
vt0
wp0

 =

r11u0 + r21v0 + r31w0
r12u0 + r22v0 + r32w0
r13u0 + r23v0 + r33w0

 =

 r31
λr32
λr33
λ

. (13)
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From the above equation, we can see that the zero frequency in the affine coordinate
system has a frequency offset, and this offset will be represented in the reconstruction
image with a phase factor. To eliminate this offset, as shown in Figure 5c, we can subtract
this frequency offset

(
∆us, ∆vt, ∆wp

)t according to u′s0
v′t0
w′p0

 =

 us0
vt0
wp0

−
∆us

∆vt
∆wp

 =

0
0
1
λ

, (14)
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where ∆us =
r31
λ , ∆vt =

r32
λ , ∆wp = r33

λ −
1
λ . Therefore, the spatial frequencies in the “offset”

affine coordinate system can be rewritten as

u′s = r11u + r21v + r31w− r31
λ

v′t = r12u + r22v + r32w− r32
λ

w′p = r13u + r23v + r33w− 1
λ (r33 − 1)

. (15)

The spectrum of a tilted triangle on the hologram plane now has been completely ana-
lyzed, and we can directly obtain the spectrum distribution through the initial parameters.
For a single tilted triangle, we have FHOLO(u, v) = FHOLO,i(u, v) as in Equation (2), and for
a 3D object we use Equation (1). The complex field distribution of a 3D object reconstructed
by the hologram can be expressed as the superposition of a tilted triangle complex field on
reconstructed image plane z = zr:

fre(x, y, zr) = F−1
{

e−j2πwzr ·FHOLO(u, v)
}

, (16)

where zr is the distance between the reconstructed image plane z = zr and the hologram
plane z = 0. Through the above steps, we can obtain the reconstructed complex field
distribution of the 3D object through only one Fourier transform. In the next section, we
will verify our proposed method through numerical simulations and optical experiments.

4. Simulations and Optical Experiment
4.1. Numerical Reconstruction

Based on the 3D mesh in Figure 1, the Stanford bunny consists of 59,996 polygons,
and we have reconstructed the bunny using our proposed method. The actual size of the
bunny was 3.11 × 3.08 × 2.41 mm3. We have increased its size to 6.56 × 6.49 × 5.08 mm3

before the generation of the hologram. In order to improve the computational efficiency
and image quality, we have implemented back-face culling by judging normal. The normal
vector of a hologram is

→
nh, and

→
nu is the normal vector of a tilted triangle. If

→
nh·
→
nh ≥ 0, the

tilted triangle will be calculated, and tilted triangles that do not meet the condition will
be discarded.

After back-face culling, the bunny only contains 31,724 polygons. However, in
Section 3 the result of Equation (12) is based on the assumption that the amplitude distri-
bution of a triangle is a unit constant and the reconstructed results will lack realism. As
shown in Figure 6, in order to reproduce the details of the 3D object, we assign the surface
function of the tilted triangle I(x, y) as follows:

I(x, y) =
[ →
nux,

→
nuy,

→
nuz

]
·[cosα, cosβ, cosγ]t + bias = constant, (17)

where
→

nux,
→

nuy,
→

nuz are the components of unit normal vector
→
nu of the xyz-axis in the

global coordinate system, and bias represents ambient reflected light. cosα, cosβ and cosγ
are the direction cosine values of illumination directions. In our case, bias = 0.2, α = 60◦,
β = 60◦, γ = 5◦.

The surface function usually refers to the strength information, and the amplitude is
expressed as

√
I(x, y). The surface function of the titled triangle I(x, y) is a constant for

each tilted triangle according to Equation (17), so that we can let I = I(x, y) (I is a constant
here) and by using the property of Fourier transform:

√
I· f (x, y) = F−1

{√
I·F(u, v)

}
, the

spectrum in the hologram of a tilted triangle with added flat shading and the elimination
of the “offset” is based on Equation (12), together with Equation (15), we have:

FHOLO(u, v) =
√

I·J·e−j2π(ux1+vy1+wz1)·F∆(us′, vt′). (18)
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Figure 7 shows the numerical reconstructions of the bunny based on our proposed
F3DAAT method. Figure 7a is the result of calculating Equation (12), and we can see that
because the amplitude of each mesh is the same constant the reconstruction result is a lack
of realism. Additionally, the bunny has self-occlusion, so that back-face culling by judging
normal will have some errors for some polygons. Due to the wrong judgment, visible
polygons and invisible polygons are superimposed together and the reconstructed part of
the image is shown in the red box on Figure 7a. Figure 7b,c are the reconstruction results
based on Equation (18), and from these two reconstructed images we can clearly see the
details of various parts of the bunny. Figure 7b focuses on the bunny’s leg, shown in the
yellow box, and Figure 7c focuses on the bunny’s ear, shown in the yellow box.
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We have also scanned a human face called “Alex” with a 3D camera, and the 3D mesh
of “Alex” is shown in Figure 8a, which consists of 49,272 meshes. In this case, there is no
need to use back-face culling, because the data is the result from actual image scanning. We
have calculated the CGH of “Alex”, and its holographic reconstructed image is shown in
Figure 8b.
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Figure 8. Numerical reconstruction of “Alex”: (a) 3D mesh of Alex and (b) numerical reconstruction.
The geometric surface with the texture image in (a) is from a publicly accessible geometric archive
from the 3D Scanning Laboratory in Stony Brook University [42].

4.2. Comparison with Previous Methods

The Pseudo Inverse Matrix Method by Pan et al. [25,26] sets up an affine transformation
matrix that contains all the information on the transformation. However, they have defined
the primitive triangle located at zs = 0, i.e., the plane of the source local coordinate
system, leading to the concept of a pseudo inverse matrix to perform matrix inversion.
The introduction of the pseudo inverse matrix has produced calculation errors and slowed
down the calculation speed. Zhang et al. [29] have introduced a Full Analytical 3D Affine
Method to avoid the use of the pseudo inverse matrix. The method includes three core steps:
rotation transformation for the tilted triangle until it is parallel to the hologram plane, 2D
affine transform of the rotated triangle and finally the computation of the field distribution
on the hologram by using the angular spectrum (AS) method for diffraction. Zhang et al. [8]
also have proposed a Fast 3-D Affine Transformation (F3DAT) method based on the 3D
affine transformation by Pan et al., to improve the computation efficiency. In the method,
they have defined the primitive triangle located at zs 6= 0, allowing the affine matrix to be
fully inverted. The result of the F3DAT method provides a faster calculation time compared
with that of the pseudo inverse matrix method and full analytical 3D affine method.

In the present proposed fast 3D analytical affine transformation (F3DAAT) method,
we have obtained the affine matrix directly and derived an analytical expression of the
spectrum of the primitive triangle. The more meshes that are calculated the more time
F3DAAT will save. We have generated the holograms with a resolution of 1024 × 1024, and
the hardware includes Intel Core i7-11700 @ 4.8GHz, 16G-byte RAM under the environment
of MATLAB 2018b.

The Stanford bunny consisting of 31,724 meshes (after back-face culling) takes 893 s
for the calculation, and the calculation of “Alex” of 49,272 meshes takes about 1288 s
(See Figure 9). Additionally, shown in Figure 9 where we have used “Alex”, we can see that
the computational efficiency of F3DAAT has increased by almost two times compared with
the previous methods. The calculation of the four methods is based on the same hardware
condition and only CPU is used for the calculation. In one of the most recent studies,
Wang et al. [43] proposed a polygon-based method using LUTs (look-up tables) with prin-
cipal component analysis to speed up the calculation of CGHs. However, the method in the
process of pre-computing the affine matrix still needs to solve a pseudo inverse matrix, and
our proposed method is more general and efficient for solving the mapping relationship
between the two coordinate systems, the global and the affine coordinate systems.
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4.3. Optical Experiment

The optical experiment is shown in Figure 10. We have reconstructed 3D objects by
loading the phase of the CGHs from the computer onto the spatial light modulator (SLM).
The SLM in our experiment is a HOLOEYE PLUTO2 (NIR-011) phase-only SLM with a
resolution of 1920 × 1080 (Full HD 1080p) and a pixel pitch of 8 µm and the active area
is 15.36 mm × 8.64 mm. The laser is a green light with a wavelength of 532 nm. The
spatial filter is used to generate a collimated light for the illumination of the hologram.
The polarizer is for adjusting the polarization state of the light to work with the phase-
only SLM. A camera (MMRY UC900C Charge-coupled Device) is used to receive the
reconstructed image in the image plane of the imaging lens (focal length is 150 mm).
Optical reconstructions of the bunny and the face of “Alex” are shown in Figure 11a,b,
respectively.
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5. Conclusions

In conclusion, we have proposed an improved algorithm to obtain a full-analytical
spectrum of a tilted triangle based on 3D affine transformation. Our method avoids the
time-consuming steps such as the need to solve for the pseudo inverse matrix or the
complex process of 3D rotation and transformation. We have verified our method by
calculating complex 3D objects composed of tens of thousands of meshes. In addition, we
have added flat shading for realistic image presentation. We have successfully obtained
the reconstructed images by numerical and optical reconstructions. Through comparison,
it is found that our method improves the computational efficiency by about two times
compared with the previous affine methods.
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Appendix A. Full Results of the Analytical Spectrum Expression of Primitive Triangle

Case 1: when us 6= vt 6= 0, the integration result of Equation (10) is:

F∆(us, vt) =
x

∆
1·e−j2π(uss+vtt)dsdt

=
1

2π2

[
e−j2πvt

(us − vt) · vt
− e−j2πus

(us − vt) · us
− 1

us · vt

]
.

(A1)

Case 2: when us = 0, vt 6= 0, the integration result of Equation (10) is:

F∆(us, vt) =
x

∆
1·e−j2πvttdsdt = −e−j2πvt + j2πvt

2π2 · vt2 . (A2)



Appl. Sci. 2022, 12, 6873 13 of 16

Case 3: when us = 0, vt 6= 0, the integration result of Equation (10) is:

F∆(us, vt) =
x

∆
1·e−j2πussdsdt = −e−j2πus + j2πus

2π2 · us2 . (A3)

Case 4: when us − vt = 0, us 6= 0, the integration result of Equation (10) is:

F∆(us, vt) =
x

∆
1·e−j2πus(s+t)dsdt =

e−j2πus − 1
2π2 · us2 . (A4)

Case 5: when vt = 0, us = 0, the integration result of Equation (10) is:

F∆(us, vt) =
x

∆
1dsdt = 1/2. (A5)

Appendix B. Derivation of the Spectrum Distribution of Tilted Triangle Π on the
Hologram Plane

In Figure A1a, we show tilted triangle Π in the global coordinate system. In Figure A1b,
we represent Π as a collection of discrete parallel planes Πi. Πi has a length of ∆y, as
shown in Figure A1b. The spectrum of Πi can be expressed as FΠi (u, v) = F{Πi}. Therefore,
the spectrum of Πi in the hologram plane is FHOLO,Πi (u, v) = FΠi (u, v)·e−j2πwzi . Hence, the
spectrum of Π in the hologram plane can be written as:

FHOLO,Π(u, v) = ∑
i

FHOLO,Πi (u, v) = ∑
i

FΠi (u, v)·e−j2πwzi . (A6)

Now
FΠi (u, v) =

x

Πi
fi(x, y; zi)·e−j2π(ux+vy)dxdy, (A7)

where fi(x, y; zi) is the surface function of Πi. We put Equation (A7) into Equation (A6)
to achieve:

FHOLO,Π(u, v) = ∑
i

FHOLO,Πi (u, v)

= ∑
i
[
x

Πi
fi(x, y, zi)·e−j2π(ux+vy)dxdy]e−j2πwzi

=
x

Πi
∑

i
fi(x, y; zi)·e−j2π(ux+vy)dxdy e−j2πwzi

≈
x

Π
f (x, y, z)·e−j2π(ux+vy+wz)dxdy,

(A8)

where f (x, y, z) is the surface function of Π. Equation (A8) is presented in Equation (11).
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Additionally, the relationships between the spatial frequencies of the global coordinate 
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𝑅𝑅−1(𝑢𝑢, 𝑣𝑣,𝑤𝑤). We can write as follows: 
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Note, that we have chosen 𝑝𝑝 = 0, by using Equations (A9) and (A10), the exponential 
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Appendix C. Derivation of the Analytical Spectrum Expression of Tilted Triangle on
the Hologram

According to affine transformation,
→
rg

t = R
→
ra

t +
→
C. Therefore, the coordinate relationships

between the global coordinate system (x, y, z) and affine coordinate system (s, t, p) are:

x = r11s + r12t + r13 p + c1,
y = r21s + r22t + r23 p + c2,
z = r31s + r32t + r33 p + c3.

(A9)

Additionally, the relationships between the spatial frequencies of the global coordinate
system (u, v, w) and the affine coordinate system

(
us, vt, wp

)
are
(
us, vt, wp

)
= R−1(u, v, w).

We can write as follows:
us = r11u + r21v + r31w,
vt = r12u + r22v + r32w,
wp = r13u + r23v + r33w.

(A10)

Note, that we have chosen p = 0, by using Equations (A9) and (A10), the exponential
term in Equation (11) can be rewritten as:

e−j2π(ux+vy+wz)

= e−j2π[u(r11s+r12t+r13 p+c1)+v(r21s+r22t+r23 p+c2)+w(r31s+r32t+r33 p+c3)]

= e−j2π(uc1+vc2+wc3)·e−j2π[u(r11s+r12t)+v(r21s+r22t)+w(r31s+r32t)]

= e−j2π(uc1+vc2+wc3)·e−j2π[s(r11u+r21v+r31w)+t(r12u+r22v+r32w)]

= e−j2π(ux1+vy1+wz1)·e−j2π(sus+tvt).

(A11)

In Equation (A11), we have used the elements in the affine matrix T already solved in
Equation (9), i.e., c1 = x1, c2 = y1, c3 = z1. Then, according to Equations (11) and (A11), the
analytical spectrum of the tilted triangle can be rewritten as:

FHOLO(u, v) =
s

∆ f (R
→
ra +

→
C)·e−j2π(ux+vy+wz)·J·dsdt

= J·e−j2π(ux1+vy1+wz1)·
s

∆ 1·e−j2π(sus+tvt)dsdt
= J·e−j2π(ux1+vy1+wz1)·F∆(us, vt),

(A12)

which is presented in Equation (12).
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