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Abstract: Weld seam identification with industrial robots is a difficult task since it requires manual
edge recognition and traditional image processing approaches, which take time. Furthermore, noises
such as arc light, weld fumes, and different backgrounds have a significant impact on traditional
weld seam identification. To solve these issues, deep learning-based object detection is used to
distinguish distinct weld seam shapes in the presence of weld fumes, simulating real-world industrial
welding settings. Genetic algorithm-based state-of-the-art object detection models such as Scaled
YOLOvV4 (You Only Look Once), YOLO DarkNet, and YOLOV5 are used in this work. To support
actual welding, the aforementioned architecture is trained with 2286 real weld pieces made of mild
steel and aluminum plates. To improve weld detection, the welding fumes are denoised using the
generative adversarial network (GAN) and compared with dark channel prior (DCP) approach. Then,
to discover the distinct weld seams, a contour detection method was applied, and an artificial neural
network (ANN) was used to convert the pixel values into robot coordinates. Finally, distinct weld
shape coordinates are provided to the TAL BRABO manipulator for tracing the shapes recognized
using an eye-to-hand robotic camera setup. Peak signal-to-noise ratio, the structural similarity index,
mean square error, and the naturalness image quality evaluator score are the dehazing metrics utilized
for evaluation. For each test scenario, detection parameters such as precision, recall, mean average
precision (mAP), loss, and inference speed values are compared. Weld shapes are recognized with
95% accuracy using YOLOVS5 in both normal and post-fume removal settings. It was observed that
the robot is able to trace the weld seam more precisely.

Keywords: robotic welding; GAN; Scaled YOLOv4; TAL BRABO robotic manipulator; PSNR; SSIM;

recall; mean average precision

1. Introduction

Robotic welding is one of the most prominent industrial applications that performs
repetitive tasks, and it has been utilized extensively in the automotive industry for decades.
There is a significant demand for autonomous robotic welding [1] since the majority
of joints in industry are irregular in shape. This has encouraged most businesses and
researchers in robotic welding to use intelligent strategies to improve the quality and
consistency of robotic welding. Furthermore, it is believed that robots can perform high-
quality welding much more consistently than experienced workers. Additionally, robots
can be programmed to work 24/7, maximizing productivity. There are numerous issues
with weld seam identification, especially in the presence of industrial noise such as arc
lights, flash, and welding fumes which are toxic to people, so robots are not capable of
executing efficient path planning [2]. This research aims to remove weld fumes and identify
weld shape using deep learning techniques to solve the aforementioned issues. Since deep
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learning models have better generalisation and regularisation ability, in this work, the
generalisation ability of a YOLO-based detector is tested in different backgrounds with
non-homogenous weld fumes. Weld seam detection can be divided into two categories:
active vision and passive vision approaches [3]. The passive vision method using a 2D
camera is used in this research, which decreases the cost and complexity of the experimental
setup [4].

In the past few decades, research in robotic welding has been performed using con-
ventional and deep learning methods for seam identification and tracking. Shah et al. have
successfully detected autonomous weld seams and tested tracking of straight, zigzag, and
half-moon shapes. The authors calculated accuracy in terms of position and distance error,
which was calculated between the obtained output and actual weld seam path shape [5].
Li et al. used the optical triangulation method for detecting the position of weld seams
using a structured light vision sensor [6]. Shao et al. performed calibration using a CCD
camera and calculated the measurement error for arc-welding robots. The particle filter
and Hough transform were used to detect the weld seam without any error between the
welding position and the seam position. They were able to achieve a detection accuracy
of 0.08 mm with 0.1 mm width for a narrow butt joint [7]. Lei et al. calculated the weld-
ing position using a vision sensor by implementing camera calibration and performed
conventional image processing for circular weld seam detection. The image was found
to dynamically change, which could be improved by machine learning techniques [8].
Yin et al. proposed two step calibration approaches, namely, camera calibration and light
plane calibration for the autonomous detection of the weld seam and quality control. The
authors were able to achieve a 0.2 mm tracking error [9]. Zou et al. proposed automatic
weld seam detection using a deep convolutional neural network (CNN) to improve the
tracking accuracy. The multi-correlation filter was implemented in real-time to detect the
weld seam and position the weld torch, and the tracking error was found to be less than
1 mm for straight and curved weld seams [10]. Zhang et al. study the problem of domain
generalization in object detection using sample reweighting method called region-aware
proposal reweighting (RAPT). Extensive experiments were conducted on different datasets
and various architectures [11].

According to the discussion above, there has been limited study on identifying weld
seam shapes, which will be useful when the robot is unable to detect the welding area
and can also be utilized as a first step in autonomous robotic welding. There are limited
datasets for the welding process, particularly datasets with different shapes; hence, an
attempt has been made to create datasets similar to the industrial process for weld shape
detection. Additionally, major works on image denoising using GAN were tested on
public datasets, and very few works were applied for custom datasets. So, GAN was used
for weld fume removal in the current literature by applying image-to-image translation.
Additionally, many authors used an expensive real-time experimental setup, including
lasers and CCD cameras. As a result, a look-alike industrial welding setup has been
demonstrated utilizing a simple 2D camera with two phases—dehazing using DW-GAN
and a YOLO-based object detector—which is the major contribution of this work. Initially,
mild steel and aluminium weld plates are recognized using several YOLO algorithms. If
the image contains weld fumes, it is transferred to the dehazing step, where the fumes
are removed using discrete wavelet-based GAN and dark channel prior methods. Further
ablation studies and generalisation have been carried out for the deep learning models used
in this work. After removing the fumes, the weld seam is retrieved using contour detection
with binary thresholding, and its pixel coordinates are recorded as.csv files for subsequent
processing. A neural network technique is applied to simplify the coordinate transition
between weld contour locations and the robot in order to execute real-time robotic welding.
For tracing the weld seam, the five DOF robot receives the robot coordinates obtained from
the neural network model.

The following are the key goals of this paper:
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1.  Create a real-time weld dataset made up of actual weld plates with a variety of
different weld shapes;

2. Remove weld fumes using the DW-GAN;

3. Train the dataset with genetic algorithm-based different YOLO approaches, such as
Scaled YOLOv4, YOLOv5, and YOLOv4 DarkNet;

4. Determine the contours of various weld seam shapes using image processing;

5. Convert pixel coordinates to robot coordinates using a Backpropagation Neural Net-
work model;

6.  Perform real-time weld seam detection for tracing the weld seam shapes using a live
2D camera.

The paper is divided into five sections. Section 2 describes the GAN-based dehazing
and object detection of the weld seam using different YOLO algorithms. This is followed
by a discussion of the performance metrics used for weld seam detection in Section 3. The
real-time experimentation results are discussed in Section 4, followed by the conclusion
and future scope in Section 5.

2. Methods

In recent years, with advancements in computer vision and artificial intelligence, deep
learning has gained popularity in industrial applications because it can handle larger data
efficiently [12]. The methodology involved in deep learning-based weld seam detection
is shown in Figure 1, and the detailed explanation is described in following sections. In
Figure 1, images are captured using a Logitech c270 2D camera placed at an angle of 26° in
eye-to-hand configuration. This camera is based on CMOS technology with a resolution of
720 p and 30 fps. If the images are clear without any fumes, then images are sent to the
YOLO detector, but when it has fumes, these images are passed to the dehazing network
where GAN is used to remove the nonhomogeneous weld fumes. Once the weld fumes are
removed, images are sent to the YOLO model to detect the weld joints autonomously. These
weld joints after classification are sent to contour detection block where binary thresholding
is applied to extract the weld seam. These weld seam pixel coordinates were converted
using an ANN model, as this is the simplest and easiest way for mapping input and output
without complex calculations. The robot coordinates obtained were finally sent to robot
for tracing the particular shape. In this work, the entire workspace is calibrated with
backpropagation ANN model. This eliminates the need for camera calibration involving
computation of transformation matrix. This matrix becomes complex when the number
of robot joints increases. Hence, the ANN model is used for pixel-to-robot coordinate
transformation for weld shape tracing.
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Figure 1. Process flow diagram of weld seam detection and tracing using TAL BRABO robotic
manipulator.

2.1. Dataset Preparation

In any deep learning-based object detection, the initial step is data preparation and
data cleaning. This is a very important step in any artificial intelligence technique because
datasets contain duplicates and missing values which cannot be used to train deep learning
models, as they may lead to larger errors in object detection [13]. The major steps in
general include gathering the dataset, removing missing data and outliers, analysing
the data, and finally converting it into a suitable format for the deep learning model
for further processing [14]. In this work, actual weld plates were laser cut into eight
different asymmetrical seam shapes to address the industrial welding process. The reason
for choosing these shapes is that defected parts in industries are not symmetrical, so
an attempt was made to prepare the dataset to identify the different shapes using a 2D
camera with random positions at both the robot workspace and the welding table to
create robust datasets. Furthermore, in order to increase the robustness of dataset and
improve model training, data augmentation techniques were applied [15]. This was needed
because datasets are prepared in limited conditions, but environmental conditions may
vary in real-time scenarios, so different flips, rotations, saturation and grayscale were
applied to the datasets. Additionally, weld fume images with arc light were also included
to improve the weld seam detection. The major reason to choose a 2D camera is that
they are easily available and the overall setup cost can be reduced. The main goal of
this work was to train to the robot to detect and trace the weld plates anywhere in the
workspace. About 2286 images were obtained which were manually labelled with the
Roboflow image annotation tool. In data pre-processing, original data of 640 x 480 were
resized to 416 x 416 pixels, making them suitable to train all the YOLO algorithms. The
weld plate and augmentation specifications are tabulated in Table 1. The sample dataset of
weld plates with different rotations is shown in Figure 2.
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Table 1. Weld plate and data augmentation specifications for data acquisition.

Parameter Values

Width (mm) 100

Height (mm) 100

Weld gap (mm) 2
Flip Horizontal, Vertical
Rotate 90° Clockwise
Rotation —15° to +15°
Grayscale 11%
Saturation —30% to +30%
90° Rotate

Original Image

Figure 2. Actual weld seam datasets with weld fumes, flip, and rotate conditions for training YOLO
Algorithms.

2.2. Dehazing Techniques for Weld Fume Remouval

Hazy images, in general, affect numerous tasks such as tracking [16], satellite remote
sensing [17], and object detection [18,19] due to color distortion, blurring and other visible
quality degradation. Because of unequal haze distribution, many research papers have
been published on deep learning-based dehazing approaches. Thus, to address these issues,
discrete wavelet transform-based GAN (DW-GAN) [20] has been implemented to remove
non-homogeneous weld fumes because dense welding fumes affect the path to be traced
while welding. The GAN-based technique is compared with the conventional dark channel
prior (DCP) method [21].

2.2.1. DW-GAN Architecture

In general, there are two major components in generative adversarial networks
(GANSs), namely, the generator and discriminator [22]. The generator is used for gen-
erating new examples, while the discriminator is used for classifying images as real or fake.
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The major applications where GANSs have achieved great performance include synthesiz-
ing realistic images [23,24], image denoising and producing high-resolution images [25],
single image dehazing [26], and image deraining [27]. DW-GAN architecture has two sub
modules, namely, discrete wavelet and knowledge adaption. The discrete wavelet branch
is used to learn direct mapping between ground truth and weld fume images, whereas the
knowledge adaption branch uses prior knowledge from image classification for the current
dehazing task. The architecture of DW-GAN is shown in Figure 3.

- ———

DW-GAN \
1
U-Net based DWT — Real or
Branch A — Fake
. Discriminator —p

Knowledge Adaption ConvLayer Tanh
Branch — ImageNet, Tx7

Res2Net

) Bn B,«, Bll: B,

Ground Truth

Figure 3. DW-GAN architecture for weld fume removal.

From the above diagram, the inputs were weld plates with fume images of size
1600 x 1200 x 3, which were resized to 572 x 572 x 3 for sending to the DW-GAN block,
and the output was the fume-free image similar to the ground truth.

2.2.2. DWT Branch Using U-Net

In the first stage, the U-Net-based discrete wavelet transform (DWT) branch has a
contracting path (encoder) and expansive path (decoder), as well as massive skip con-
nections to preserve the texture details during the dehazing process to learn from both
high-frequency and low-frequency components [20]. As the name suggest, the U-Net is
‘U-shaped’; the down-sampling module on the left performs convolution operation and
the up-sampling module on the right performs transpose 2D convolution operation. The
convolution operation with max pooling increases the depth of the image and reduces the
size, while transposed convolution applies padding and upscales the image, creating a
clean image pixel by pixel, and thereby removing the weld fumes. The detailed U-Net
DWT architecture for weld images is shown in Table 2.

Table 2. U-Net architecture using the DWT branch.

Contracting Path Expansive Path
Layer Details Output Size Layer Details Output Size
DWT 2 x 2 x 1024 up sample of
Input Weld Images 572 x 572 x 3 UpSampling 1 Convb_2; 56 x 56
p ping Concat with Conv4_2
Convl_1 3 x 3 x 64; Linear ReLU 570 x 570 Conv6_1 3 x 3 x 512; Linear ReLU 54 x 54
Convl_2 3 x 3 x 64; Linear ReLU 570 x 570 Convé_2 3 x 3 x 512; Linear ReLU 52 x 52
2 X 2 x 512 up sample of
Pool 1 gt: dz l\ga" Pool 284 x 284 Bv‘éTm ling o CONV6_2; 104 x 104
1de poampiing._ Concat with Conv3_2
Conv2_1 3 x 3 x 128; Linear ReLU 284 x 284 Conv7_1 3 x 3 x 256; Linear ReLU 102 x 102
Conv2_2 3 x 3 x 128; Linear ReLU 282 x 282 Conv?7_2 3 x 3 x 256; Linear ReLU 100 x 100
2 X 2 x 256 up sample of
Pool 2 2 % 2 Max Pool 140 x 140 DWT Conv7_2; 200 x 200

Stride 2

UpSampling_3

Concat with Conv2_2
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Table 2. Cont.

Contracting Path

Expansive Path

Layer Details Output Size Layer Details Output Size
Conv3_1 3 x 3 x 256; Linear ReLU 138 x 138 Conv8_1 3 x 3 x 128; Linear ReLU 198 x 198
Conv3_2 3 X 3 x 256; Linear ReLU 136 x 136 Conv8_2 3 x 3 x 128; Linear ReLU 196 x 196
2 X 2 x 128 up sample of
Pool 3 étrxl ;el\;ax Pool 68 x 68 ngm line 4 ConvL2; 392 x 392
p ping. Concat with Conv2_2
Conv4_1 3 x 3 x 512; Linear ReLU 66 X 66 Conv9_1 3 X 3 x 64; Linear ReLU 390 x 390
Conv4_2 3 x 3 x 512; Linear ReLU 64 x 64 Conv9_2 3 x 3 x 64; Linear ReLU 388 x 388
Pool 4 2 x 2 Max Pool 32 x 32 Conv10 1 x 1 x 2; Linear ReLU 388 x 388
Stride 2
Convb_1 3 x 3 x 1024; Linear ReLU 30 x 30
Convb_2 3 x 3 x 1024; Linear ReLU 28 x 28

Here, input features are converted into low-frequency and high-frequency compo-
nents where low frequency components are added to the convolution and high-frequency
components are added to the DWT up-sampling module. In 2D DWT, four filters are
used, i.e., a low-pass filter and high-pass filters with stride 2 convolution operation. Using
convolution operation with these filters, images or feature maps are decomposed into four
sub bands, i.e.,x; 1, X g, XH1,» and xyp.The equation for xy 1 is given by:

xpp = x(2—1,2j — 1) + x(2 — 1,2f) + x(2i,2j — 1) + x(2i,2j) 1)

The equations of x;y, Xy, xgy are same as xp 1, which is helpful in retaining the
hazy images and thereby learning spatial and frequency information.

2.2.3. Knowledge Adaption Branch Using ImageNet and Res2Net

In second stage, the knowledge adaptation branch uses the ImageNet [28] pre-trained
Res2Net [29] as the backbone of the encoder, making DW-GAN more robust with better
generalization ability. The Res2Net architecture with the squeeze and excitation networks
(SE) is shown in Figure 4.

Weld Image I (572 x 572 x 3)
|

v
1x1

‘
X; X, X3 X4 Weld Feature Subsets (572 x 572 x 5)

¥
3x3

Ki

3 x 3 Convolution Operation

1 x 1 Convolution Operation 1x1
\ 4
SE Block

I

Scaled Weld Image y

Figure 4. Res2Net architecture used in knowledge adaption branch [28].
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In Res2Net architecture, after 1 x 1 convolution features of Image I, X; is evenly
split into s subsets with i € {1,2,....,s}. To reduce the number of parameters, 3 x 3
group filters are omitted for X; and smaller filters are used for X;_;. The output Y; can be
written as:

X, i=1
Y; = Ki(Xi), i=2 2
Ki(X;+Yi1,2<i<s

Furthermore, we concatenate all the subset features into single ones by using 1 x 1
convolution, and at the end the SE network is added to adaptively recalibrate the channel-
wise responses y. The detailed knowledge adaption architecture used is described in Table 3.

Table 3. Knowledge adaption architecture using Res2Net.

Layer Details Output Size
Input Weld Images 572 x 572 x 3
3 Conv Layers 3 x 3 x 64
Res2Net_1 A 125;3; 3 3 o5 566 x 566
3 Conv Layers 3 x 3 x 64
Res2Net_2 3 n 12%} o 3w 256 281 x 281
3 Conv Layers 3 x 3 x 64
Res2Net_3 3 n 1232; A 134 x 134
Attention Module_0 3x3 1024 x 1024
Pixel Shuffle Upscale factor =2
Attention Module_1 3x3 256 x 256
Upsampling_1 2 x 2; concat with Res2Net_2
Pixel Shuffle Upscale factor =2
Attention Module_2 3x3 192 x 192
Upsampling 2 2 x 2; concat with Res2Net_1
Pixel Shuffle Upscale factor =2
Attention Module_3 3x3 112 x 112
Upsampling 3 2 x 2; concat with Input layer
Pixel Shuffle Upscale factor =2
Attention Module_4 3x3 44 x 44
Conv_1 3 x 3 x44 44 x 44
Conv_2 3 x 3 x 44 28 x 28

In addition to Res2Net, attention modules are added to detect dynamic hazy patterns,
whereas pixel shuffle layers are added before the attention module to upscale the image,
thereby reducing the computational cost. Finally, a simple 7 x 7 convolution layer with
tanh activation layer is added for fusing the combined features from the above two stages
to produce weld-fume-free images.

Discriminator

The discriminator uses real data as positive examples and dehazed images as negative
examples, and image-to-image translation takes place during training. The discrimina-
tor tries to identify between dehazed images and ground truth. It then penalises if it
misclassifies. The detailed architecture for the discriminator is described in Table 4.

Table 4. Layers of discriminator architecture.

Layer Details Output Size
3 x 3 x 3;padding =1
Conv_1 Leaky ReLU 64 x 64
3 x 3 x 64; padding =1
Conv_2 Leaky ReLU; stride = 2 64 > 64
Conv_3 3 x 3 x 64; padding =1 128 % 128

Leaky ReLU
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Table 4. Cont.

Layer Details Output Size
Cony.4 Losky ReLroidey 1Bx 138
Conv_5 ieifyxRii% padding =1 256 x 256
Conv.6 Losky Rel Uride o2 | 256256
Conv_7 gﬁeﬁfyﬁf% padding =1 512 x 512
Cony.8 sk RelUido s | S12x512
Conv_9 Ild:aklyxRi% 1024 x 1024
Conv_10 i’;;k; Il{gi% 1x1

During the entire training period, total loss is nothing but the sum of smooth loss,
perpetual loss, multi-scale structural similarity index measure (MS-SSIM) loss, and adver-
sarial loss.

Liotar = Lsmooth + ®Lps—ssim + ﬁLperpectuul + YLado (3)

where o = 0.2, B = 0.001, and y = 0.005. The details of loss functions are referenced in [30].
The two most important metrics are used to measure the performance of GAN output
(dehazed image), namely, peak signal-to-noise ratio (°PSNR) and SSIM [30]. The equations
of PSNR and SSIM are as follows:

(max;)?

PSNR = 10log;y ~ ez

4)

m

2 ; [16,7) = K )P ©

1
MSE = —
mn

The SSIM [31] measures image similarity by calculating luminance, contrast, and struc-
ture. The luminance function, contrast function, and structure function can be expressed
as follows:

ey = A5 ©
c(x,y) = m @)
(o) = 2 ®
Using the above three equations, SSIM is calculated as follows:
SSIM(x,y) = [1(x,y))* [e(x, )P [s(x, )] ©)

where x = B = = 1; ¢l = (kL?); 2 = (k2L2); ky = 0.01; and k, = 0.03.

The GAN network was trained with 674 samples using Tesla P-100 GPU cards with
pytorch as a deep learning framework. The Adam optimizer was used with a learning
rate of 1 x 1074, and it was trained for 3000 epochs. The GAN performance was com-
pared with the DCP method. The dehazed images were sent to the deep learning model
for classification.



Appl. Sci. 2022, 12, 6860

10 of 30

2.3. Theoretical Background of YOLO Architecture

You Only Look Once (YOLO) is a popular single-stage object-detection algorithm that
uses a single neural network to perform both the classification and prediction of bounding
boxes. The main working of YOLO is that the images are split into S x S square grids
where each cell will predict B bounding boxes of weld shapes with a confidence score
for each box. YOLO finally predicts bounding boxes with x coordinates, y coordinates,
box width w, box height /, and confidence c. The confidence score varies between 0 to 1
where 0 means no object exists in that cell and 1 means weld shapes are present in that cell.
The coordinates (x, y) are the centroid of the predicted bounding box, and the width and
height are fractions relative to the entire image size. The confidence is calculated based on
the intersection over union (IOU), which is nothing but the area of overlap between the
predicted and ground truth boxes divided by the area of the union [32,33]. In this work,
different versions of YOLO algorithms such as YOLOv4 DarkNet, Scaled YOLOv4 and
YOLOVS5 are used, and their performances are compared.

2.3.1. YOLOv4 Architecture

YOLOv4 DarkNet with Scaled YOLOV4 is the one of the accurate neural network
models produced in recent times for single-stage object detection. Its architecture is made
up of three parent blocks, namely, backbone, neck and head, as shown in Figure 5, with
334 layers. This architecture uses cross-stage partialized (CSP), in which feature maps
of the base layer are partitioned into two sections and finally merged into the transition
layer [34,35]. This initiates the gradient flow through different network paths, thereby
reducing the amount of computation and inference speed, as well as accuracy.

CSP DarkNet53
ea
Dense Block — Conv13x13 =
n=1024 '
SPP Block Conv13x13
‘ F’ n= 2048
Input Image 416 X 416 :""—"_"""""""""""""_"""-"""""""""':
: Conv 13 x 13 n=2048 1
Conv 208 X 208 : i
Filter 3x3n=325 =2 | ,$ |
1
¥ : | | i
Conv 104 x 104 E Conv13x13n=512 Conv13x 13 n=512 Conv13x13n=512 E
1
Filter 3 x 3 n =64 s=2 i f 4 4 i
I | Max Pool Max Pool Max Pool !
1
Conv 52 x 52 i SIS 5x5 ShaS i
Filter 3 x 3 n =128 s=2 ! N t -~ |
} i Conv13x13n=512 i
1 1
Conv 26 x 26 :.'_'_'::::::::_'_'_'_'_'_'_'_'_'_'_'_'.'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_' ____________
Filter 3 x 3 n =256 s=2 ! H
‘ . Dense Block i
1
! i
Conv13x13 i Conv Conv Conv Conv Conv E
Filter 3x3n=512s=2 i 13x13 > 13x13 =+ 13x13 - 13x13 > 13x13 ]
i n=512 =256 =512 =512 n=1024 i
H 1

Conv — Convolution Layer n—Number of channel s - stride ¢ - Concatenation

Figure 5. YOLOV4 architecture for weld seam detection and tracing.

The input image is fed into the backbone layer which is responsible for convolutional
down sampling to extract the features. In this work, CSPDarknet53 is used as the backbone
for object detection, which has 53 convolutional layers with high accuracy [36]. The dense
block contains multiple convolution layers starting from 13 x 13 x 512 as the input layer X,
and finally 13 x 13 x 1024 as the output transition layer. The neck layer serves as the extra
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layer between the backbone and the head for in-depth prediction [37]. In Scaled YOLOv4,
PAN network and modified SPP (spatial pyramid pooling) constitute the neck layer. The
SPP retains the output of the spatial dimension and removes fixed size constraints. The
path aggregation network (PANNet) is added for the aggregation of features and image
segmentation, which preserves the spatial information present in the images [38]. Here,
three anchors—[12, 16, 19, 36, 40, 28], [36, 75, 76, 55, 72, 146] and [142, 110, 192, 243, 459,
401]—were used and each bounding box predicted the offset from the top corner of each
image (cx, cy), as well as By, width, By, height and probability (confidence) score c. The
governing equations for bounding boxes are as follows:

Bounding Box coordinates, By =2 o(tx) — 0.5+ ¢ (10)

B, = 20(t,) —05+¢y (11)

Bounding Box width, B, = (20 (ty))* Py (12)

Bounding Box height, B, = (20(t;))*P, (13)

o(t)= pr(containing object) x IoU (predicted box, Ground truth box) (14)
Confidence Score = ¢ = pr(object) * IoU (15)

The YOLOv4 network uses cross minibatch normalization so that it can work on
any GPU. Furthermore, there are many regularisation techniques in the literature, but
DropBlock regularisation was used in this work where certain parts of the image were
hidden, and the network was forced to learn the other features rather than relying upon
important features [39,40]. There are two main parameters, namely, block size and y, which
determine the number of units to be dropped. The larger the block size the more features
are masked, which makes stronger regularisation. The equation for vy is shown below:

1 — keep_prob feat_size?

block_size? (feat_size — block_size + 1)2

(16)

where keep_prob is the threshold probability value (values below this threshold will be
masked) and feat_size is the size of the feature map.

2.3.2. YOLOV5 Architecture

YOLOVS5 is an improved deep learning model and is more efficient than YOLOv4
and Scaled YOLOv4. It uses three stages—model backbone, model neck and model
head [41]—with a total of 283 layers. The major difference between YOLOv4 and YOLOv5
is that YOLOV5 uses focus layer and PANNet. The focus layer is introduced to reduce
the number of layers and reduce its parameters, thereby reducing CUDA memory. This
increases the training speed while minimally impacting mean average precision (mAP).
The CSPDarkNet53 is used as the backbone layer which extracts the important features
from the given input image, improving the processing time. Next, PANNet is used with the
neck to generate feature pyramids so that the models have better generalization and scaling
ability [42]. It also helps to identify the different sizes and scales for the same object. Finally,
the head is same as the YOLOv3 and v4 versions, and is used to perform the detection with
vectors of class probabilities, objectness scores, and bounding boxes [43]. The YOLOv5
architecture is shown in Figure 6. The final output of the abovementioned deep learning
models is a vector of 13 x 13 x (5*3 + 8) predictors for each image, which is 13 x 13 x 23.
In this work, the genetic algorithm (GA) is used to find the best parameters for training
both YOLOv4 and YOLOV5 and, using these parameters, the model is trained for class
and bounding box prediction. The parameters of the GA algorithm used for this work
are discussed in Section 4.3. Finally, the performance of the YOLO algorithm is analysed
with EfficientDet and Faster RCNN, which is a two-stage detector. The architecture used
for comparison was Inceptionv2. The model was trained for 200 epochs with a batch size
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of 16 and a 416 x 416 image size. The learning rate was chosen as le-4 with the SGD
optimiser. The pretrained model weights based on COCO datasets were used so that the
model could be trained with smaller batches of custom datasets. Next, L2 regularisation
was used in faster RCNN because it penalises the cost function based on the squared mean
of the coefficients so that the model does not overfit. The cost function is the sum of the
squared error with the L2 regularisation term and the equation is as follows:

n

M 2 M
cost = Z (yi — Z xijwj> + X 2 w]2 17)
j=0 j=0

i=0

where x;; is the input to the network; y; is the output of the network; and w; is the weight
of the network.
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Figure 6. YOLOV5 architecture for weld seam detection and tracing.

Additionally, a genetic algorithm with 100 generations, 0.9 mutation probability and
a sigma value of 0.2 was implemented to find the optimal training hyperparameters of
YOLOv4 and YOLOVS. This further improved the weld shape classification.

The pseudocode for overall weld seam detection using different YOLO algorithms is
given as follows Algorithm 1:
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Algorithm 1 Pseudocode of Weld Seam Detection using YOLO Algorithms

Begin

Input: weld images I_weld, Bounding box coordinates x, y width By, height By,
Output: Class probabilities P, and Predicted Bounding box coordinates
Data partition: I_weld = 1_train (60%)+1_test (20%)+1_validation (20%)
Initialize no of epochs N = 200

batch_size = 16

Resize the image to 416 x 416

Generation = 100

Mutation_probability = 0.9

Sigma = 0.2

for i =1 to generation

forj =1 to batch_size

Load pretrained weights w

Load yolo configuration files

Run GA to obtain best hyperparameter values
end for

end for

Training phase:

fori=1toN

Load optimized weights and biases

Load optimized yolo training parameters from GA
Perform training on I_train

end for

save checkpoint weights.ckpt

Testingphase:

for each videoframe do

I_test = capture(videoframe)

predict y = f(Pc, Bw, Bh, Bx, By)

No of predictions =13 x 13 x (6*3 +¢)

Display class c and Pc

end for

end

2.4. Contour Detection for the Extraction of Weld Seams

In image processing, contour detection helps in finding the same intensity points along
the boundary of any object in the image. This is helpful in object detection and recognition
applications. In this work, ten different weld seam shapes needed to be identified for the
robot to trace the shapes accordingly. Hence, contour detection was implemented using
OpenCV to identify the contours present in the weld plates. To improve the accuracy of
detection, the weld image obtained from the live camera feed was converted into a grayscale
image which was further cropped based on the predicted bounding box coordinates. To
obtain better accuracy, the image was thresholded and then it was eroded and dilated [44].
Furthermore, contours were sorted, the largest contours present in the image were taken,
and the contour lines were drawn around the weld seam, indicating boundaries of the
same intensities or pixel values. Finally, all the contours for the particular shape were saved
in csv format to convert the contour pixels into robot coordinates for robotic welding. The
overall contour detection process flow diagram for shape number 5 is shown in Figure 7.
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Input 640 x 480 x 3 Grayscale Image Threshold Image Dilated Image

Save as .csv file

Contour Extraction

Figure 7. Process flow diagram of Scaled Yolov4-based weld seam detection and tracing.

The pseudocode for contour detection is as follows Algorithm 2:

Algorithm 2 Pseudocode of Contour Extraction of Weld Seam

Begin

Input: Image 640 x 480 x 3;1=f(u,v,3)

Output: Contour Points C = (Xcont, Ycont)
fori=1ton

Read test weld image or live camera image I = f(u, v,3)
Extract the individual channels from RGB image,

R=1I(,:1);
G=IC(,:2);
B=1I¢(,:3);

Grayscale Conversion, graylmage = (R+G+B)/3
Perform Inverted Binary Image thresholding, set T = 100
iff(x,y)>T

then f (x, y) =0

else

flx,y) =255

end if

Perform erosion and dilation

Find contours using C = cv2.findContours()
Draw contours using C pixel points

end for

Save contour points C to .csv

end

3. Evaluation of Weld Seam Detection

The performance of the model is verified using four main object detection metrics.
Specifically, the Precision, Recall, mAP, and F1 Score were adopted for evaluation in this
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study [45], and the equations are shown in the following Equations (18)—(22). The higher the
value of Precision, mAP and F1 Score, the better the detection result of the weld seam shapes.

TP

Precision = —————— #100% .

recision TP+ EP * 100% (18)
TP

Recall = ———— % 100% 1

eca TP EN * 100% (19)
C ..
AP — Y1 Avemg(e: Precision(c) 20)
2 — Precision — Recall

F1 = 21
Score Precision + Recall (21)
Jous — Areaof overlap 2

Area of union

where C = number of classes;

TP = true positive; detected bounding box overlaps with ground truth boxes;

FP = false positive; detected bounding boxes away from ground truth boxes;

TN = true negative; does not predict bounding boxes in unwanted region;

FN = false negative; fail to predict bounding boxes with ground truth boxes.

Further inference speed and memory utilisation for different YOLO algorithms were
analysed and compared with the detection performance.

4. Results and Discussion
4.1. Experimental Setup for Real-Time Weld Seam Tracing

The deep learning-based welding robotic system was implemented in a five DOF TAL
BRABO manipulator. This manipulator has five joints named x, y, z, u and v. The x,y,
and z joints are the three main joints and # and v are the wrist joints in this robot. Since
there is no yaw motion in this robot, it is considered a five DOF robotic manipulator. The
main reason to implement this work on this robot is that this robot has different kinematic
and dynamic configurations, and no such experimental study has been tested on this robot.
Hence, this work was carried out on a TAL BRABO robot. Secondly, there is very limited
work on deep learning-based weld shape detection and tracing. The communication to
TAL BRABO joints takes place through ActiveX commands written in MATLAB which
communicates with the robot via a Trio motion controller. This controller is placed inside
the programmable logic circuit (PLC) station from which robot is switched on. The vision
system used in this paper was eye-to-hand configuration; a single 2D web camera was
used, tilted at an angle of 26° to view the robot workspace where the weld plate was placed.
Additionally, the camera was placed at an angle of approximately 32 degrees away from
the robot base axis in order to make the problem a challenging one. Apart from the rotation
and the translation of the camera into world coordinates, there was additional rotation from
the axis of the robot base. This complex kinematic analysis was solved by using a neural
network to convert pixel coordinates into world coordinates, as discussed in Section 4.5.
The structure of the entire experimental setup is shown in Figure 8.
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Figure 8. Real-time hardware setup of TAL BRABO manipulator for weld seam detection and tracing.

4.2. Weld Fume Removal Using GAN

In this section, real-time experiments related to weld fume removal are discussed. The
datasets used for analysing the dehazing performance included nonhomogeneous fumes
present over the plates. Additionally, to make the detection robust, plates were placed in
different backgrounds to prepare the datasets. In this paper, DW-GAN was used for fume
removal and was trained for 3000 epochs with an image size of 1600 x 1200 pixels. The
learning rate was chosen as le-4. The ground truth image used is shown in Figure 9a—f.
The dehaze results for GAN are shown in Figure 9g-1, and for DCP they are shown in
Figure 9m-r. The inference speed for DW-GAN was found to be 6.33 s, and for the DCP

method it took 20.14 s for a single image.

Image 2 Image 3 Image 4

Image 5

(m)

(n) (0) (p)

(q)

Image 6

(r)

Figure 9. Comparison of weld fume removal using (a—f) Ground Truth Image (g-1) DW-GAN and

(m-r) DCP methods.
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The image histogram calculated from image 1 is shown in Figure 10a—c to compare
the variations in pixels between ground truth and dehazed images using the GAN and

DCP methods.
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Figure 10. Image histogram to show the comparison between (a) ground truth (b) DCP (c) DW-GAN.

The RGB variations in ground truth and dehazed image are plotted and, from the graph,
it can be inferred that pixel values were better for the GAN images, which were similar to
ground truth. Furthermore, to analyse the dehazing performance, PSNR, SSIM, MSE and

NIQE scores for image 1 to image 4 are analysed and plotted in Figure 11a-d, respectively.
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Figure 11. Performance evaluation of weld fumes removal (a) PSNR (b) SSIM (c) MSE and (d) NIQE.
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From the plot, it can be seen that PSNR for GAN was high for all four images, which
shows that image quality was better than DCP-based weld fume removal. The average
PSNR of GAN was obtained as 15.95 dB, which was higher than DCP. Similarly, SSIM
value for GAN-based weld fume removal was high, with an average value of 0.407, which
implies better quality than the DCP method. Additionally, it was noted that the mean
square error was less for the GAN-based dehazing method with a value of 1.69e+3. Hence,
it can be concluded that the GAN method was more effective at removing the weld fumes
than the conventional DCP method, and also preserved the image quality. Furthermore, the
dehazed images were sent for training along with the other images for weld seam detection.

4.3. Training Phase of Weld Seam Detection using YOLO Algorithms

The weld datasets of the different shapes, as shown in Figure 12, were trained using
different versions of the YOLO algorithm with GA-evolved parameters. The total dataset
comprised 2286 samples, of which YOLO was trained with 1866 training weld images using
pretrained weights of CSPDarknet53 to avoid training from scratch and save training time.
The input size was 640 x 480 which was resized to 416 x 416, as well as augmented to
increase the dataset. The model was trained on Tesla P-100 with the 11.2 CUDA version. The
main purpose of the YOLO training was to minimize the loss function. The optimization
equation for YOLO is as follows:

J = min Neoora Eig T o 15 [(xz‘—xA')er (vi—v)’ |
P E20 T (V5 )+ (v~ )]
+ 0 S0 157 (6 = 6)%] + b it Do 17 [ (e =€)
501 T (pile) - pi(e)?

cEclasses

(23)

where (x;,y;) represents the centroid of the bounding box; (w;, ;) denotes the width
and height of the bounding box; c; represents the confidence score; X corg and Xppj are
constants which describe the important term to account for; p;(c) is the classification loss;

10b] is 1 if the object appears in the cell, or else 0; and 1”0b]

is 0 if the object appears in
the cell, or else 1. Next, the GA was used to optimise the training parameters where the
number of generations was chosen as 100. The highest fitness was selected for mutation
based on a normal distribution of 20%. The confident score was calculated based on the
weighted intersection of union (IoU) and the probability of objects present within the
grids. The overall batch size was chosen as 16, which was made to run for 200 epochs
with an SGD optimiser. The learning rate was kept constant with the value of 0.01. Hence,
the genetic algorithm ran for 100 generations, producing efficient optimal values. The
hardware and deep learning parameters are listed in Table 5. The initial and optimised
training parameters of YOLO were manually adjusted, and are listed in Table 6.

Table 5. Hardware configuration and deep learning environment.

S. No Environment Values/Version

1 Operating System Windows 11

> CPU Intel(R) Core(TM) i7-9750H
CPU @ 2.60 GHz 2.59 GHz

3 GPU Tesla P100-PCIE-16 GB

4 RAM/ROM 2666 MHz DDR4 16 GB

5 CUDA 11.2

6 cuDNN 7.6.5

7 IDE Colab Pro Plus

8 Framework pytorch




Appl. Sci. 2022, 12, 6860

19 of 30

Figure 12. Mild steel plates with different shape numbers used for YOLO training and real-time

experimental validation.

Table 6. Initial and final training parameters of different YOLO algorithms.

Optimized Optimized
S.No Parameter Initial Value Value Value
(YOLOV4) (YOLOV5)
1 Learning rate 0.01 0.0121 0.0108
2 Momentum constant 0.93 0.937 0.98
3 Weight decay 0.0005 0.00039 0.00035
4 Class loss 0.5 1.09 1.42
5 IoU_target 0.2 0.2 0.2
6 Anchor_target 4 4.6 3.88
7 Epochs 50 200 200
8 Dataset Split ratio 60-20-20 60-20-20 60-20-20

The performance metrics for Scaled YOLOv4, YOLOV5, Faster RCNN, EfficientDet
and YOLOv4 DarkNet are listed in Table 7, which was obtained after training the network
with optimized training parameters. The performance of the single-stage detector was
compared with the two-stage detector Faster RCNN with the Inception v2 model.

Table 7. Performance metrics of different YOLO algorithms during weld shape detection.

Scaled

YOLOv4 Faster

S.No Parameter YOLOv4 YOLOvV5 DarkNet RCNN EfficientDet
1 Precision 0.76 0.967 0.47 0.5 0.788

2 Recall 0.983 0.96 0.47 0.5 0.841

3 mAP 0.973 0.987 0.534 0.54 0.92

4 F1 score 0.85 0.96 0.54 0.5 0.813

5 GIoU loss 0.023 0.017 0.317 0.541 0.00089
6 Object loss 0.071 0.022 0.302 0.5084 0.133

7 Class loss 0.015 0.0046 0.34 0.212 0.169

8 Training Time (h)  0.901 0.710 0.534 1.5 0.583

9 GPU memory 5.51 GB 1.89 GB 1.70 GB 6.7 GB 1.5 GB
10 Total Loss 0.109 0.0436 0.959 1.261 0.303

It can be inferred from the above table that the Precision and Recall values of YOLOvV5
were better than Scaled YOLOv4, YOLOv4 DarkNet and Faster RCNN, with the values of
96.7% and 96%, respectively. However, the performance of YOLOvVS and EfficientDet was
similar, and the model was fast and accurate. Additionally, the total loss of YOLOv5 was
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comparatively smaller with the value of 0.0436, and it was high for Faster RCNN with the
value of 1.261. This shows that, for the weld dataset, YOLOV5 performed better than the
other algorithms.

4.4. Testing Phase of Weld Seam Detection Using YOLO Algorithms

To test the effectiveness of the trained model, it was validated with 208 images and
the generalisation ability of the model was tested on 212 test images with GA optimal
parameters. Additionally, testing was performed by capturing the weld plates from the live
camera kept in eye-to-hand configuration to show the robustness of detection. Furthermore,
the inference speed of YOLOV5 was just 0.096 for the 212 test images, whereas DarkNet
took 20.73 s, which was comparatively higher. The faster algorithms could be useful
in meeting the requirements in robotic welding industries, saving computational cost
and time. The real-time detection results of different YOLO algorithms for images with
different backgrounds, hazy images, haze-free images, and dehazed images are shown in
Figure 13a—m. The average validation accuracy obtained using YOLOv5 was 95%, whereas
it was 90% with Scaled YOLOv4. The validation accuracy with YOLOv4 DarkNet was
only 82%, and its performance in weld seam detection was poor compared to YOLOv5
and Scaled YOLOV4 since it had multiple predictions and overlapping bounding boxes.
Additionally, it was seen that few shapes were not identified and gave true negative and
false positive results because the precision was as low as 47%. Some shapes, such as shape
8 and shape 9, were intentionally similar so to increase the robustness of the detection
augmentation. Flip and rotate were used and the model was able to differentiate between
redundant shapes and classify them accurately.

(i) 0] (k) U] (m)

Figure 13. Real-time weld seam detection: (a—e) YOLOVS5; (d-h) Scaled YOLOv4; (i-m) YOLOv4
DarkNet.

To further validate the generalisation ability, deep learning models were tested with
datasets captured from a live camera which were not the part of test and validation datasets.
The detection results are shown in Figure 14a—e. From the figure, it can be inferred that a
live image of size 640 x 480 was used for testing and the weld shapes were classified into
eight shapes with an accuracy of 90% using YOLOvVS5. Furthermore, the performance of
the YOLO algorithms was compared with Faster RCNN and EfficientDet. It was seen that
accuracy for all the shapes was 72%, which was comparatively lower than other models.
Additionally, it took 1.5 h to train the network, but EfficientDet performed better with an
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Validation Accuracy (%)

accuracy of 95%. Additionally, the model performances of YOLO, EfficientDet and Faster
RCNN were tested for different image sizes, namely, 640 x 480 and 1600 x 1200. These
images were obtained from the GAN module and the 2D camera, so these sizes were taken
for testing. The processing speed and validation accuracy were noted for each case, as
shown in Figure 15a,b.

[©)] (©)

Figure 14. Generalization test of deep learning models: (a) YOLOV5; (b) Scaled YOLOV4; (c) YOLOv4
DarkNet; (d) Faster RCNN (e) EfficientDet.
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Figure 15. Deep learning model performance for different image sizes: (a) validation accuracy;
(b) inference time.

From the histogram, it can be seen that validation accuracy was high for the resolution
of 1600 x 1200 using YOLOv5. Though the model was trained on 416 x 416, weld shapes
were detected for both the image sizes. It was further noted that the higher the resolution,
the better the classification was. Additionally, for higher pixels, the inference time for a
single image was more than the image size of 640 x 480. However, detection was poor for
Faster RCNN, as some shapes were misclassified and the bounding boxes did not exactly
identify the weld shapes. Finally, an ablation study for the modules used in this work
was conducted to demonstrate the needs of each module used. An ablation study at an
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architectural level will be considered in the future. For the analysis, nonhomogeneous weld
fume images were taken to analyse the performance of detection with and without the
denoising module. The performance was evaluated in terms of total time taken for the
whole process and validation accuracy, which are listed in Table 8.

Table 8. Ablation study of weld shape detection.

S.No  Modules Total Time (s)  Validation Accuracy (%)
1 Pre-processing + Scaled YOLOv4 + Contour detection 4.387 81
2 Pre-processing + Scaled YOLOv4 + GAN dehazing + Contour detection =~ 10.717 85
3 Pre-processing + YOLOvV5 + Contour detection 0.0967 82
4 Pre-processing + YOLOV5 + GAN dehazing + Contour detection 6.426 89
5 Pre-processing + YOLOv4 DarkNet + Contour detection 20.828 70
6 Pre-processing + YOLOv4 DarkNet + GAN dehazing + Contour detection =~ 27.158 76
7 Pre-processing + Faster RCNN + Contour detection 38.296 53
8 Pre-processing + Faster RCNN + GAN dehazing + Contour detection 44.626 61
9 Pre-processing + EfficientDet + Contour detection 0.855 89
10 Pre-processing + EfficientDet + GAN dehazing + Contour detection 7.185 93

The total time was calculated based on pre-processing, GAN dehazing, the testing
phase with 212 images of deep learning models, and contour detection for weld seam
extraction. The training time was already listed in Table 7, so it was not considered. The
validation accuracy was tested for nonhomogeneous weld fume images and dehazed
images. It was found that accuracy was improved after dehazing the images. Additionally,
PSNR was high for dehazed images with the value of 12.23, whereas it was low for fume
images with the value of 11.44. This shows that the GAN module played a major role in
accurate weld shape detection. It can be inferred that the total processing time taken for
YOLOVS5 with denoising and contour detection was 6.426 s, and for EfficientDet the total
time was 7.185 s. The overall performance of weld detection was accurate for YOLOv5 and
EfficientDet. The Faster RCNN processing time was high with the value of 44.626.

4.5. Coordinate Transformation Using the Artificial Neural Network

In every machine vision application, camera calibration is necessary to establish the
relationship between three-dimensional world coordinates (X, Y, Z) and two-dimensional
camera coordinates (u,v), as well as determine the internal and external parameters of
the camera [46]. In real-world scenarios, many factors can affect the process of robot
vision caused by radial and tangential distortion, the position of the camera, the robot
environment, and other dynamic objects, which in turn affects the experimental procedure.
In general, camera calibration involves mathematical model formulation between the
camera and the world, from which camera to base transformations or camera to robot end
effector transformations are found out [47]. This involves the need to know the kinematics
of the robot, which becomes tedious when the number of DOF increases, thereby increasing
the complexity of the camera calibration. Additionally, when the camera setup is disturbed,
the overall process has to be repeated, which becomes cumbersome. To eliminate such
difficulties, the pixel coordinates of the calibration sheet T are mapped directly to robot
coordinates T}’ using neural networks; this does not need camera geometry information
or complex mathematical equations, as shown in Figure 16. Using this approach, the
coordinates of any object placed in robot workspace can be determined easily and efficiently.
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Figure 16. Coordinate transformation between camera and weld plate with respect to robot base.

In this work, the artificial neural network (ANN) model was developed to find the
transformation between the camera and the world. The pixel coordinates (xp, y,) were
taken as input and robot coordinates (x;, y;) as output, with one hidden layer having
100 neurons. Initially, pixel input to the neural network model is given by

Xi(t) = {xpi, ypi} where =1,2,....... ,N(size of input) (24)

The output of each neuron is given by

Yi(t) = f(W; (£)Xi(t) +b) (25)
where
N
Wi (t) =Y Wi(t) (26)
j=1

Here, activation function is chosen as purelin, and it is given by f(x) = x.
Based on the initial weights, pixel inputs are updated at every time instant ¢.

N
Xpi(t+1) = Xpi(t) + Y Wy (t) (27)
j=1

Once the inputs are updated, the weights are updated in next stage, which is given by
Wi (t+1) = W; (t) + AW (28)

Finally, the robot coordinates for the corresponding predicted robot coordinates are
obtained, which is given by
Yr(t) = {xr, yr} (29)

The size of the input (contour pixel coordinates) is 41 x 2 and the output size (robot
coordinates) is 2 x 1. The Z value of the robot was fixed at the height of 230 mm for the
safe operation of the robot and testing was performed in a planar environment. To find
the effective training parameters for the neural network, the dataset was analysed with
different combinations of training—testing—validation ratios, namely, 70-20-10, 80-10-10 and
50-25-25 and training functions trainscg, trainlm, trainrp and traingdx. The learning rate
for the neural network was 0.001 with purelin as the activation function. The model was
trained for 1000 epochs with a momentum coefficient of 0.9. The number of hidden layers
for this analysis was chosen as 1, with 100 of hidden neurons to reduce the computation
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time and processing power. The corresponding Mean Square Error (MSE), Correlation
Coefficient (R) value and Root Mean Square Error (RMSE) values are noted and are plotted
for various combinations, as shown in Figure 17a,b. From the graph, the learning loss was
comparatively less with the trainscg function and with the 50-25-25 ratio.

1000

8001~

600 -~ ff- -~

MSE,RMSE

400

00

trainlm trainrp 70-10-20 80-10-10
Training Functions raining-Validation-Testing Ratios
@ (b)

Figure 17. (a) Graph of training functions vs. MSE and RMSE; (b) graph of different training—
validation—testing ratios vs. MSE and RMSE.

From the regression plot, it can be inferred that the R = 0.99981 value was higher for the
50-25-25 training-validation—testing ratio compared to other combinations, and also it had
lower MSE and RMSE values of 230.6 and 15.18, respectively. Among the training functions,
trainscg performed better and training was faster than the other functions. Additionally,
trainlm, trainrp did not converge and training was stopped within 120 iterations out of
1000, leading to underfitting. traingdx was able to converge at 1000 epochs, but the RMSE
and MSE values were huge, so it was not selected for training. The regression plot for
training and testing for different combinations is illustrated in Figure 18. Finally, the
contour pixels obtained from the contour detection algorithm were further converted to
robot coordinates using the NN model, which was then sent to the robot via MATLAB for
tracing the particular weld shape.
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Figure 18. (a) Regression plot for 50-25-25; (b) regression plot for 70-10-20; (c) regression plot for
80-10-10.

From the above ANN model hyperparameter analysis, it can be concluded that trainscg
with the 50-25-25 data split performed best for the weld seam coordinates. Furthermore, in
this work, to validate the real-time testing, the robot coordinates for shape 2 and shape 5
were obtained after transformation from the ANN model, and these coordinates were sent
to the robot for tracing. The robot tracing path for the abovementioned shapes is shown
in Figure 19. These trajectory points were recorded while the robot was tracing, and they
were compared with the theoretical and actual trajectory points.
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Figure 19. (a) Real-time path traced by the robot for shape 4; (b) real-time path traced by the robot
for shape 5.

The theoretical trajectory for shape 2 (red line) was obtained using linear interpolation,
whereas the reference trajectory (pink line) was obtained from the contour points. The robot-
traced path is given by a blue line, and it can be inferred that for shape 2 the average tracking
error between the reference and the actual path traced by the robot was 0.225 mm for X and
0.263 mm for the Y robot coordinates. The theoretical trajectory for shape 2 is as follows:

Y = 5.439X + 2580.9 (30)
Similarly, the theoretical trajectory (red dotted line) for shape 5 was obtained by using
the spline function to fit all the points, and it can be seen that the variation between the
reference (pink line) and the actual trajectory traced by the robot (blue line) was about
0.299 mm for X and 0.114 mm for the Y robot coordinates. Therefore, the robot was able to
trace the weld seam path obtained from the contour extraction with minimum error.

4.6. Comparison of Proposed Methodology with Previous Works

This section compares the present paperwork with other recent methods implemented
in robotic welding using deep learning algorithms. An elaborate literature survey was
carried out in the field of welding, dehazing methods, and deep learning architectures.
Several works have been highlighted in Table 9.

Table 9. Comparison of present work with previous methods.

S.NO Author Methodology Performance Metrics Tracking Error
. DCNN with VGGNet
1 Ea]r}blao Zouetal, 2019 Weld seam searching with arc and splash Inf time (356 images): 15.06 s Less than 1 mm
noise
2 Chenhua Liu et al., 2022 Faster RCNN with different RPN networks Validation accuracy: 86.45% )
[48] Inference time: 25.02 ms
Accuracy: AlexNet: 95.83%, VGGlé:
3 [CigfhongMa etal, 2021 CNN with AlexNet and VGG16 89.17% -
Recall: 100%
Contrast limited adaptive histogram
4 Gwang-ho Yun etal.,, 2022  equalization (CLAHE) and image Loss: 0.03415 )
[50] denoising mAP: 51.2%
YOLO
. Stacked denoising autoencoder (SDAE) for .
5 Ran Li et al., 2021 [51] GMAW welding Average error: 0.086 -
6 Shao W et al., 2022 [52] Periodic wide-field illumination SNR: 35% -
PSNR (GAN): 15.95
. SSIM (GAN): 0.407
DWT-GAN for dehazing [ . om0,
7 Present Method And YOLOVS Validation Accuracy: 95% Less than 0.3 mm

Total loss: 0.043
Inf time (212 images): 9.6 ms
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5. Conclusions

To perform real-time intelligent robotic welding, weld seam detection using different
algorithms such as Scaled YOLOv4, YOLOv5 and YOLOv4 DarkNet was proposed in this
study. The problem of weld fumes was addressed in this work by performing image-to-
image translation using DW-GAN. To extract the weld seam shape, binary thresholding-
based contour detection was implemented; finally, to remove the difficulties of camera
calibration and complex mathematical transformation, a neural network model was created
to map the contour pixels into the robot coordinates and the robot was able to trace the weld
seam accurately and precisely with less than a 1 mm tracking error. The main conclusions
drawn from this experimental study are as follows:

1.  Real-time weld datasets were collected, and were made of actual weld plates of mild
steel. The total dataset for training the model comprised 2286 images with an image
size of 416 x 416;

2. The weld fumes generally affected the detection performance; hence, DW-GAN was
implemented to remove the weld fumes. The performance was compared with the
conventional DCP method, and it was found that DW-GAN performed better for
removing the fumes with PSNR 15.95 dB and SSIM 0.407. The inference time of
DW-GAN was faster by 9.6 ms compared to DCP;

3. With the help of the YOLOV5 algorithm, the accurate and fast detection of weld seam
shapes was realized with an overall inference speed of 0.0096 s, which was faster
than Scaled YOLOv4 and YOLOv4 DarkNet. Additionally, the detection accuracy of
YOLOvV5 was 95%, with 96.7% precision, 96% recall, and 98.7% F1 score. The total loss
of YOLOv5 was 0.043, whereas this was high for YOLOv4 DarkNet with the value
of 0.959;

4. The YOLO algorithms were compared with Faster RCNN and EfficientDet and it was
inferred that EfficientDet’s performance was similar to YOLOVS5, and they outper-
formed other deep learning algorithms. The performance of the deep learning models
was tested with different image sizes to validate the generalization ability, and weld
plate detection was experimentally verified using live 2D camera images. The total
processing time taken for YOLOv5 was just 6.426 s, which was less than that of the
other deep learning methods;

5. An ablation study was performed to show the contribution of modules used in this
work. The performance was analyzed in terms of validation accuracy and total time
for the entire process. It was found that GAN played a major contribution in weld
fume removal because accuracy was improved after dehazing;

6. The optimal combination of training parameters for NN was analyzed in terms
of MSE, regression value, and RMSE, and it was found that the 50-25-25 training—
validation—testing ratio with trainsscg was optimal for the efficient mapping of pixels
into robot coordinates. The NN model made the coordinate transformation between
the camera and the robot simpler, and this technique could be used in any machine
vision application effectively and efficiently;

7. The contours present in the weld images were detected successfully and were sent to
the robot using the trained NN model for simulated robotic welding via MATLAB. It
was inferred that the accurate robot coordinates were obtained from the NN, which
was helpful for accurate real-time weld shape tracing. The average tracking error was
found to be less than 0.3 mm for all of the shapes.

Potential future works include the detection of weld seams with different brightness
conditions, e.g., addressing arc lights and flash conditions. Additionally, segmentation-
based detection could be implemented. Deep learning models could be further modi-
fied with different convolution layers, and their performance with weld datasets should
be analyzed.
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Nomenclature

Symbol Description

XLL, XLH, XHL,» and xgg  Low pass and high pass filters
Liotar Total loss of DW-GAN

Lsmooth Smooth loss

Lps—ssim Multi-scale structural similarity index loss
Lyerpectual Perceptual loss

Ladv Adversarial loss

o, By Weighting factors

I Hazy image

K Haze free image

[m n] Image size

I(x,y) Luminance function

c(x,y) Contrast function

s(x,y) Structure function

P, Py Mean of x and y windows

Ox, 0y Covariance of x and y windows
o2, 0’y2 Variance of x and y windows

L Dynamic pixel range

Predictions of center with respect to anchor boxes
Camera to world transformation

Ty Robot base to world transformation
X;(t) Pixel coordinates of Neural network
Y;(t) Output of each neurons
Y, (¢) Final robot coordinates of neural network
W;(t) Layer weights
b bias
f Activation function
Xij Pixel inputs
C Number of Classes
c Confidence Score
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