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Abstract: During tunnel construction, the ground properties, initially evaluated, are continuously
assessed and verified through back analysis. This procedure generally requires many numerical
analyses, so a metamodel based on artificial neural networks has been used to reduce the number
of analyses. More datasets can be used to create more reliable metamodels. However, there are no
established rules regarding the optimum number of datasets for a reliable metamodel. Metamodels
predicting the vertical displacement of the tunnel crown using five ground parameters (unit weight
(γ), uniaxial compressive strength (UCS), material constant mi, geological strength index (GSI), and
coefficient of lateral pressure (K)), with 3, 4, 6, 8, and 10 values per property, were created to confirm
the reliability of the metamodel based on the number of datasets in this study. Metamodels using 6
and 8 values for each property showed 5% and 1% mean absolute percent errors, respectively. These
numbers of each of the properties would be appropriate for developing the metamodel. Among the
five parameters, only the results of the global sensitivity analyses of GSI and K are higher than 0.9.
According to these results, it is verified that assessments based only on these parameters are sufficient
in the back analysis.

Keywords: metamodel; artificial neural networks; back analysis; reliability; tunnel excavation

1. Introduction

Tunnel engineers use numerical analysis methods, such as the finite element
method, finite difference method, and distinct element method to predict the be-
haviours of underground and structures for support. However, it is difficult to obtain
perfect information of ground due to its complexity and uncertainties. Additionally, it
is impossible to conduct some experiments to obtain all of the ground properties due
to costs and time. Back analysis has been employed to overcome the uncertain and
limited information about the ground condition. Back analysis quantitatively assesses
the ground properties via numerical analysis using measured displacements [1,2] and
stresses [3]. It comprises inverse and direct methods, and the direct method is generally
used for the convenience of calculation. In the direct method, numerical analysis is
performed, and the displacements or stresses of the analysis are compared with mea-
sured displacements or stresses. Here, errors between predicted and measured values
are calculated. The numerical analysis is repetitively performed by tuning the target
parameters until the mean of the errors is minimised or falls below the target of mean
of errors. The object properties of a back analysis can be obtained from the properties
that derive results satisfying the tolerance. In this paper, back analysis means the direct
method of a back analysis.

Back analysis has been widely used in geotechnical engineering. Gioda and Lo-
catelli [4] conducted a back analysis to assess the elastic modulus and confirmed that
the design must consider a lower elastic modulus than the ground investigation results.
Fakhimi et al. [5] evaluated the coefficient of lateral pressure and cohesion of the ground
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around the tunnel excavation using measure displacements from two small gallery tun-
nels before the main tunnel construction. Luo et al. [6] performed a three-dimensional
back analysis to evaluate the elastic modulus and coefficient of lateral pressure; based
on their research, they proposed a change in the length of the tunnel bench to ensure
ground stability during construction. However, this method has a disadvantage in that
it requires a lot of time because the numerical analyses must be performed repetitively
until the allowable range of error is reached. Many researchers have been studying back
analysis using artificial neural networks (ANNs) to overcome the above disadvantages.
ANN models for back analysis are usually metamodels for numerical analysis. Accord-
ing to Allemang and Hendler [7], a metamodel is defined as “a model to describe another
model as an instance”. Once a metamodel is created, it has the advantage of reducing
the overall back analysis time cause the repetitions of the numerical analyses are not
required anymore. Using this method, Yoo and Song [8] assessed the elastic modulus
and coefficient of lateral pressure of a tunnel excavation ground, based on 81 numerical
analysis results. Song [9] evaluated the elastic modulus, cohesion, and coefficient of
lateral pressure using 192 numerical analysis results. In addition, Yoo and Kim [10]
increased the number of data and created a metamodel with a total of 2187 numerical
analysis results to estimate the ground properties more accurately than that reported by
Song [9].

The common point in these previous studies is that the metamodels were generated
using two or three values for each of the dependent variables without specific bases. Smaller
numbers of values of each of the dependent variables incur less time for the generation of
the initial database but cannot guarantee the reliability of a metamodel. On the other hand,
the number of values of each dependent variable secures the reliability of a metamodel but
additional time is required for the generation of the initial database. Therefore, a study on
the number of values required for each dependent variable to guarantee the reliability and
efficiency of a metamodel is necessary.

In the present study, the reliability of the metamodel was confirmed according to
the number of values of each dependent variable using five ground parameters as the
dependent variables and vertical displacement of the tunnel crown as the independent
variable. The five ground parameters are as follows: unit weight (γ); uniaxial compressive
strength (UCS); material constant mi; geological strength index (GSI); and coefficient of
lateral pressure (K). In addition, the priorities of the parameters used in the metamodel
were confirmed through global sensitivity analysis (GSA).

2. Methods

This study utilised numerical analyses, ANNs, and GSA. Figure 1 illustrates the flow
of this study. First, we generated a database by performing numerical analyses on tunnel
excavations. The numerical analyses were performed by changing the values of the five
ground parameters 10 times to generate a total of 100,000 datasets. An optimal metamodel
was then determined through grid search by changing the number of nodes and activation
functions using this database for ANNs.

Next, the numbers of values of the ground parameters were reduced from 10 to
8, 6, 4, and 3. These values allowed creation of datasets of sizes 32,768 (85), 7776 (65),
1024 (45), and 243 (35). The optimal models for these four groups of datasets were
generated like the optimal model for the group with 100,000 datasets. Each optimal
model was subsequently tested with 25% of the datasets left for testing when training
the ANNs. In addition, the reliability of each metamodel was verified by testing
new numerical analysis datasets resulting from the ground parameter values that
were not used previously. Finally, the GSA was performed on the 100,000 datasets to
confirm the priorities of the five ground parameters for vertical displacement of the
tunnel crown.
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Figure 1. Research flow.

2.1. Artificial Neural Networks (ANNs)

An ANN is a technique to derive a quantitatively expressed relationship model of
cause and effect through a process of minimising the error between the predicted and target
values. The model is then used to infer the resulting values from new cause values. This
model typically comprises three layers (input, hidden, and output), with nodes in each
layer and activation functions used for the nodes in the hidden layer. As shown in Figure 2,
the nodes marked with I, H, and O are connected to nodes in the front and rear layers by
weights (w) and biases (b).
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Figure 2. General artificial neural network model.

Here, the I nodes allow exporting of the values of the input parameters of the dataset
to the hidden layer. Each node Hj of the hidden layer is calculated using Equation (1), and
the calculated values are sent to the next layer through the activation function (f ). Each
node Ok of the output layer is then calculated through Equation (2). The weights and
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biases are then updated to the partial derivatives of weights and biases for the loss function,
respectively until the optimum model with the minimum loss function value is found.

Hj = ∑
i

Ii × wI
i,j + bI (1)

Ok = ∑
j

Hj × wH
j,k + bH (2)

The numbers of nodes in the input and output layers are determined according
to the number of dependent and independent variables, respectively. The number of
hidden layers, the number of nodes in each hidden layer, and their activation functions
are determined from the form of the optimum model obtained through grid search, which
allows the creation of various combinations of models.

2.2. Global Sensitivity Analysis (GSA)

GSA is a technique that enables grading-dependent variables that affect an indepen-
dent variable by considering the changes in the other dependent variables. GSA has a
disadvantage in that the analysis method is more complicated than local sensitivity analysis;
however, among the GSA approaches, the variance-based (Vb) method based on Sobol’s
sensitivity index [11] has been used by many researchers owing to its simplicity of interpre-
tation [12]. In the Vb method, sensitivity analysis is performed using Equation (3). Here,
STi is called total effect and indicates the degree of the overall influence of the dependent
variable i on the independent variable Y. X∼i is the set of remaining dependent variables
except i [13]. STi is a relative concept, meaning that the larger its value, the stronger its
effect on the independent variable.

STi = 1− V[E(Y|X∼i)]

V(Y)
(3)

3. Datasets

The Fast Lagrangian Analysis of Continua v7.0 (FLAC), which is a finite-difference-
based numerical analysis program developed by Itasca [14] and widely used in tunnel
design and research fields, was used to develop a database for the metamodel and for
performing the GSA. The Hoek–Brown model was used as the constitutive model, and a
total of 100,000 analyses were performed by changing the ten values of the five ground
parameters individually, as described later in Section 3.2. The total of 100,000 numerical
analyses required 36 days, 18 h, and 37 min for complete execution. The vertical dis-
placements at the tunnel crown according to the 100,000 analyses were in the range of
−1.6× 10−2 to − 3.2× 10−6 m, and the negative sign indicates the direction of gravity.

3.1. Ground Parameters

The parameters γ, UCS, GSI, mi, K, and disturbance factor (D) are required to use the
Hoek–Brown model as the constitutive model in FLAC. From these six factors the elastic
modulus, Poisson ratio, tensile strength, and constants for the rock mass mb, s, and a,
which are required for the numerical analyses, can be calculated [15,16]. Here, D = 0 was
used by assuming that all blasting was performed with very good quality control. Finally,
the remaining five factors except D were selected as the dependent variables. Similarly
to this selection, Lee [17] had selected tunnel depth, UCS, GSI, mi, and K as dependent
variables to evaluate the behaviour of rock masses at a deep depth. Except for tunnel depth,
four factors are the same as the selected dependent variables in this study. The vertical
displacement of the tunnel crown was selected as the independent variable since it is the
maximum displacement that occurs around a tunnel and utilised for a back analysis during
tunnel construction.
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3.2. Ranges of the Ground Parameters

Table 1 shows the selected ten values of the five ground parameters; γ, UCS, and
mi for each rock type investigated by Sharma [18], Palmstrom [19], and Marinos and
Hoek [20], respectively. The types of rocks common in these studies were selected as
the target rock types in the present study and divided into ten categories, including the
maximum and minimum values of each ground parameter. Five igneous rocks (granite,
basalt, diabase, granodiorite, and gabbro), two metamorphic rocks (quartzite and gneiss),
and three sedimentary rocks (shale, sandstone, and limestone) were selected. GSI values
ranging from 0 to 100 [20] were divided into ten classes from 10 to 100. In general, numerical
analyses are performed using values of 0.5, 1.0, 1.5, and 2.0 for K. Therefore, it was decided
to use ten values from 0.5 to 2.75 for K in this study to include the above four commonly
used values. Table 1 shows the values of the ground parameters used in numerical analyses,
which ∆ represents the incremental value of each parameter.

Table 1. Selected values for the five parameters.

Number γ [kg/m3] UCS [MPa] mi GSI K

1 2395.5 95.0 6 10 0.5
2 2466.9 115.6 9 20 0.75
3 2538.2 136.1 12 30 1
4 2609.6 156.7 15 40 1.25
5 2680.9 177.2 18 50 1.5
6 2752.3 197.8 21 60 1.75
7 2823.6 218.3 24 70 2
8 2895 238.9 27 80 2.25
9 2966.4 259.4 30 90 2.5
0 3037.7 280.0 33 100 2.75
∆ 71.3 20.6 3 10 0.25

3.3. Characteristic of the Model

A horseshoe-shaped tunnel was analysed in this study with a 4 m radius and 1.4 tunnel
width/height ratio. There are a total of 2735 tunnels in South Korea. The widths of 85%
of the total tunnels are distributed from 8 to 14 m according to Road, Bridge and Tunnel
Statistics [21]. Additionally, the tunnel width/height ratios of 56% of the total tunnels are
distributed from 1.2 to 1.6. It was expected that the 100,000 numerical analyses would
require a lot of computational time, so an axisymmetric analysis was performed to shorten
the time. Moreover, it was expected that the tunnel radius would greatly influence the total
analysis time. Therefore, to confirm our expectations, ten preliminary numerical analyses
were performed for tunnel radii of 4, 5, 6, and 7 m. These radii are typically half of the
tunnel widths generally distributed in South Korea. The effect of tunnel width/height ratio
on the numerical analysis time was not expected to be significant like width. Therefore,
the tunnel width/height ratio applied was the median value of 1.4 to generalize the most
distributed range of 1.2 to 1.6. The same values of the ground parameters were used for
the different tunnel radii, and different values of the ground parameters were used when
analysing the same tunnel radius. Based on the ten numerical analyses of the tunnel radii of
4, 5, 6, and 7 m, the performance times were obtained as 5, 13, 24, and 41 min, respectively.
These results imply that about 35 days, 90 days, 167 days, and 285 days would be required
to perform the 100,000 numerical analyses for the four radii. Thus, the radius was selected
as 4 m for efficient analysis since the time difference between tunnel radii of 4 m and 7 m is
250 days; in addition, a difference of 55 days is expected even with the next highest radius
of 5 m. The tunnel is located at the lower part of the surface at 40 m, and the lower and
right boundaries are set at distances of 36 m each (=4.5 × diameter) from the centre of the
tunnel, as shown in Figure 3. The gravity was 9.81 m/s2 in a downward direction, and the
X displacements at the left and right boundaries were set to 0, while the Y displacement at
the lower boundary was set to 0.
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3.4. Grouping Datasets

The 100,000 datasets were grouped into five based on the number of values used per
parameter to confirm the reliability of the metamodel. The number of values for each
parameter in the five groups were 3, 4, 6, 8, and 10, which were defined as groups A, B, C, D,
and E, respectively. For the consistency of the comparison in this study, an identical range
of five ground parameters for the five dataset groups was set. Additionally, the numbers
of input value were reduced by two in each step so that the values of each parameter can
be evenly distributed the within the range. In the last step, the authors chose three values
per parameter rather than two, because we believed the use of two input values would
increase the error over three input values. Table 2 shows the numbers of values used for
each group, as described in Table 1. Here, O means usage and - means exclusion.

Table 2. Numbers of the values used in each group.

Number of Value 1 2 3 4 5 6 7 8 9 10

Group A O - - - O - - - - O
Group B O - - O - - O - - O
Group C O - O - O O - O - O
Group D O O O - O O - O O O
Group E O O O O O O O O O O

4. ANNs-Based Metamodel

The five ground parameters, namely γ, UCS, GSI, mi, and K, were used as the input
parameters, and the vertical displacement of the tunnel crown was used as the output
parameter to develop the metamodels using ANNs. Jung et al. [22] noted that it was
appropriate to use two hidden layers for ANNs; accordingly, two hidden layers were used
in this study. The optimum model was determined by grid search for the number of nodes
and activation functions used in each hidden layer. For the grid search, the numbers of
nodes were determined using the five equations shown in Table 3, where Ni is the number
of input parameters. The number of nodes used for the grid search was 8 (rounding off at
7.5), 11, 15, 20, and 25. As activation functions, sigmoid, hyperbolic tangent, ReLU, and
Leakyrelu functions were for the grid search and α = 0.2 was used for Leakyrelu. The
training, verification, and test datasets were generated by dividing each dataset into 60%,
15%, and 25% of the total for each group. The early stopping condition was a situation in
which the minimum value of the loss function was not updated for 500 iterations. Root
mean square error was used as the loss function, as expressed in Equation (4). Here, δpi
and δti are the predicted and target vertical displacement of the tunnel crown. A total of
400 models (5 × 5 × 4 × 4) were generated for each group through grid search, and the
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model with the lowest derived value of the loss function among the 400 models was selected
as the optimal model for the group. This optimal model for each group is a metamodel
representing FLAC.

Loss =

√
1
n

n

∑
i=1

δti − δpi (4)

Table 3. Equations for determining the numbers of nodes.

Equation Reference

3Ni/2 Mamaqani [23]
2Ni + 1 Nielsen [24]

3Ni Hush [25]
4Ni, 5Ni Choi and Lee [26]

5. Results and Discussions
5.1. Metamodel and Prediction Results for Test Datasets

The structure of the metamodel of each group is expressed in Table 4. Metamodels
developed from A to E groups are named Metamodels A, B, C, D, and E, respectively.
Loss values were expected to decrease as the number of values increased but the loss
value of Metamodel A was lower than those of Metamodels B and C. This situation can
be considered a type of noise called overfitting. Overfitting means that the ANNs model
has not been generalized since it is so accurately tailored to the training and verification
datasets. Figure 4 shows the minimum, maximum, and average losses and mean absolute
percent error (MAPE) of a metamodel of each group. In Figure 4, min and max imply the
lowest and highest loss values in 400 models developed for grid search of each group.
Average implies the average loss value of the 400 models of each group. These three indexes
are based on the left Y-axis. MAPE is the evaluation index expressed by Equation (5). The
MAPE represented by yellow diamonds is based on the right Y-axis.

MAPE =
1
n

n

∑
i=1

∣∣∣∣ δti − δpi

δti

∣∣∣∣ (5)

Table 4. Structures of the metamodels and test results.

Metamodel
Number of Nodes Activation Function Loss

(m) MAPE (%)
1st Hidden Layer 2nd Hidden Layer 1st Hidden Layer 2nd Hidden Layer

A 20 8 S R 0.007341 1.46
B 8 20 L R 0.01434 1.84
C 8 11 R H 0.01395 1.27
D 20 20 H S 0.00552 0.50
E 25 20 H R 0.00329 0.37

H: hyperbolic tangent; L: Leakyrelu; R: ReLU; S: sigmoid.

Except for the minimum value, as we expected, the loss of the average and maximum
value decreased as the number of values per property increased. These tendencies imply
that Metamodel A is a special case of predicting validation datasets well. The prediction
degree of the metamodels was evaluated using test datasets of each group by MAPE.
Every metamodel shows a MAPE value of less than 2%. This result could imply that the
metamodel created using three values per parameter is also reliable for representing FLAC.
However, all of the parameter values in the test datasets exist in the training datasets. It
is possible that these metamodels are good at predicting only for datasets with property
values existing in training datasets. That is, overfitting must be checked. Therefore, further
verifications are required using new datasets that utilize other property values.
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5.2. Verification of the Metamodels

To verify the metamodels, 243 datasets with parameter values that were not used in
model training were generated by FLAC. Value numbers 11, 12, and 13 in Table 5 were
used in the new test dataset, and these are the mean values of the numbers 1 and 2, 5 and 6,
and 9 and 10 in Table 1, respectively. The numerical analysis method is the same as that
noted in Section 3.

Table 5. Additional values of the five parameters to generate new test datasets.

Number γ [kg/m3] UCS [MPa] mi GSI K

11 2431.2 105.3 7.5 15 0.625
12 2716.6 187.5 19.5 55 1.625
13 3002.1 269.7 31.5 95 2.625
∆ 285.5 28.2 11.5 40 1

The verification results are shown in Figure 5, and the MAPEs of Metamodel A to
E are 9.5%, 6.1%, 4.9%, 0.8%, and 1.2%, respectively. The MAPE of Metamodel A shows
the highest error (near 10%) among those of the five groups. From this result, it is assured
that Metamodel A has an overfitting problem. That is, a metamodel developed by three
values per parameter is unsuitable for computing datasets with new parameter values,
which are not used in the training model, instead of the FLAC. The MAPE tends to decrease
as the number of values per parameter increases and from Metamodel C, which was
developed by six values per parameter, MAPE falls below 5%. Similar to predicting test
datasets, Metamodels D and E developed by eight and ten values per parameter show
very low MAPE of about 1%. These results imply that the generalization and performance
of Metamodels D and E are excellent since they have been trained with a number of
datasets. This is attributed to the MAPE converging to 1% as the number of values of each
parameter increases.

The MAPE trends in Figures 4 and 5 show a similar trend of decreasing as the number
of values per parameter increases. In the trend, there are two different points. The ranks
of the magnitude of the MAPE between Metamodels A and B and between D and E are
reversed. Metamodel A shows a slightly lower error rate than B when predicting the
test dataset in Section 5.1 due to the overfitting of Metamodel A. Metamodels D and E
show low MAPE in both tests since they have a good generalization and good prediction
performance as mentioned above. Therefore, the MAPE results are converged for the
two tests for Groups D and E.
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Based on the computing time to make the database of a metamodel of Group E, the
computing times for Group A to D are expected about 0.2%, 1%, 8%, and 33%, respectively.
These expectations considered only total numerical analyses time for database without
metamodel development time using ANNs. The more datasets, the more time it takes to
develop a model. If we allow about 5% or 1% error of a metamodel, then we can develop a
metamodel in 8% or 33% of the time required to develop a metamodel using 10 values per
parameter. These results will be helpful in efficiently generating a metamodel.

5.3. Global Sensitivity Analysis (GSA)

The GSA was performed using the Vb method to analyse the effects of the five ground
parameters on the vertical displacement of the tunnel crown. The 100,000 datasets of
Group E were used, and the results are shown in Figure 6. The STi of γ, UCS, mi, GSI, and
K are 0.015, 0.024, 0.045, 0.929, and 0.995, respectively. Among them, STi of GSI and K show
extremely high values (exceeding 0.9) that exceed the average of STi of other parameters.
This result means that it is enough to consider only GSI and K among the five parameters
when tunnel engineers conduct a back analysis. In the numerical analyses in this study,
the elastic modulus value was calculated from the GSI. Therefore, this result is consistent
with the selection of the elastic modulus and lateral pressure coefficient as the parameters
of the back analyses, considering the vital parameters of tunnel displacements in existing
studies [4–6].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 11 
 

 

Figure 6. Results of global sensitivity analysis for five input parameters. 

6. Conclusions 

In this study, the reliability of an ANN-based metamodel used for tunnel back anal-

ysis was analysed according to the number of values of each ground parameter. The real 

values of the ground parameters are not constant owing to their inherent uncertainties. 

Considering this, it is recommended to use a minimum of six values per parameter show-

ing results in a MAPE of 5% since it takes only 8% of the numerical analyses time using 

10 values per parameter. Furthermore, it is recommended to use eight values per param-

eter to obtain higher reliability of the metamodel, although this requires four times as 

much computational time as using six values. Even so, this time is only 33% of the time 

required for a metamodel developed by 10 values per parameter. From the results of the 

GSA, it was confirmed that the 𝑆𝑇𝑖
 of the γ, UCS, and mi are lower than 0.05, otherwise 

the 𝑆𝑇𝑖
 of the GSI and K exceed 0.9. It implies that GSI and K must be included in a back 

analysis as dependent parameters. These results show the priorities of only the ground 

parameters around a small radius tunnel of 4 m, so additional sensitivity analyses, includ-

ing support parameters, are required. Therefore, a sensitivity analysis study is being con-

ducted by considering GSI, K, and variables of the supports as dependent variables for a 

tunnel with a radius of 7 m using six values per parameter based on the results of the 

present study. In addition, we will attempt to create a metamodel of a tunnel construction 

site using six values and verify the applicability of this result. 

This study was undertaken to find the required minimum number of values per de-

pendent parameter that can secure the reliability of the metamodel. According to the re-

sults of this research, geotechnical engineers can efficiently develop a metamodel using 

six or eight values for each dependent parameter during the design phase. This could 

reduce time by 92% and 67%, respectively, from the time required when using ten values. 

Additionally, these metamodels will immediately derive reliable results with a range of 

5% and 1% error rates from the numerical analysis results. Therefore, in the tunnel con-

struction stage, the values of ground parameters in abnormal situations can be quickly 

and reliably evaluated through inverse analysis using the developed metamodel. In this 

regard, it is possible to quickly apply initial countermeasures, such as changing the sup-

port pattern to secure stability. 

Author Contributions: Data curation, Y.-H.C.; Formal analysis, Y.-H.C.; Investigation, Y.-H.C.; 

Methodology, Y.-H.C.; Project administration, Y.-H.C.; Validation, Y.-H.C.; Writing—original draft 

preparation, Y.-H.C.; Conceptualization, S.S.L.; Funding acquisition, S.S.L.; Project administration, 

S.S.L.; Supervision, S.S.L.; Writing—review and editing, S.S.L. All authors have read and agreed to 

the published version of the manuscript. 

Funding: This work was supported by the Korea Agency for Infrastructure Technology Advance-

ment (KAIA) grant, funded by the Ministry of Land, Infrastructure and Transport (22UUTI-

Figure 6. Results of global sensitivity analysis for five input parameters.

6. Conclusions

In this study, the reliability of an ANN-based metamodel used for tunnel back analysis
was analysed according to the number of values of each ground parameter. The real
values of the ground parameters are not constant owing to their inherent uncertainties.
Considering this, it is recommended to use a minimum of six values per parameter showing
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results in a MAPE of 5% since it takes only 8% of the numerical analyses time using
10 values per parameter. Furthermore, it is recommended to use eight values per parameter
to obtain higher reliability of the metamodel, although this requires four times as much
computational time as using six values. Even so, this time is only 33% of the time required
for a metamodel developed by 10 values per parameter. From the results of the GSA, it
was confirmed that the STi of the γ, UCS, and mi are lower than 0.05, otherwise the STi of
the GSI and K exceed 0.9. It implies that GSI and K must be included in a back analysis as
dependent parameters. These results show the priorities of only the ground parameters
around a small radius tunnel of 4 m, so additional sensitivity analyses, including support
parameters, are required. Therefore, a sensitivity analysis study is being conducted by
considering GSI, K, and variables of the supports as dependent variables for a tunnel with
a radius of 7 m using six values per parameter based on the results of the present study.
In addition, we will attempt to create a metamodel of a tunnel construction site using
six values and verify the applicability of this result.

This study was undertaken to find the required minimum number of values per
dependent parameter that can secure the reliability of the metamodel. According to the
results of this research, geotechnical engineers can efficiently develop a metamodel using
six or eight values for each dependent parameter during the design phase. This could
reduce time by 92% and 67%, respectively, from the time required when using ten values.
Additionally, these metamodels will immediately derive reliable results with a range of 5%
and 1% error rates from the numerical analysis results. Therefore, in the tunnel construction
stage, the values of ground parameters in abnormal situations can be quickly and reliably
evaluated through inverse analysis using the developed metamodel. In this regard, it is
possible to quickly apply initial countermeasures, such as changing the support pattern to
secure stability.
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