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Abstract: Deep neural networks (DNNs) have been used successfully for many image classification
problems. One of the most important factors that determines the final efficiency of a DNN is the
correct construction of the training set. Erroneously labeled training images can degrade the final
accuracy and additionally lead to unpredictable model behavior, reducing reliability. In this paper, we
propose MultiNET, a novel method for the automatic detection of noisy labels within image datasets.
MultiNET is an adaptation of the current state-of-the-art confident learning method. In contrast to
the original, our method aggregates the outputs of multiple DNNs and allows for the adjustment of
detection sensitivity. We conduct an exhaustive evaluation, incorporating four widely used datasets
(CIFAR10, CIFAR100, MNIST, and GTSRB), eight state-of-the-art DNN architectures, and a variety
of noise scenarios. Our results demonstrate that MultiNET significantly outperforms the confident
learning method.

Keywords: image classification; label noise; deep neural networks

1. Introduction

In recent years, machine learning algorithms have been used extensively for image
classification tasks. Typically, these tasks are performed by deep neural networks (DNNs)
and the related field of science is called deep learning (DL). DNN models generally show
substantially higher efficiency than competitive deterministic algorithms. However, the
outcomes of DL algorithms depend largely on the quality of the training datasets. The
capacity of such a dataset, typically reaching hundreds of thousands of images, determines
the ultimate success of the algorithm. Numerous entities construct training datasets, via
data gathering and labeling, due to the high value of such datasets in many industries.

The majority of publicly available training datasets can only be used in non-commercial
applications, with the commercial use of such datasets prohibited. Therefore, commercial
entities are generally required to construct their own databases. In these cases, the devel-
oped datasets are labeled either automatically or by crowdsourcing [1]. The verification of
the label quality is commonly outsourced to a third party.

Given that such a third party is often composed of untrained volunteers, the image
labeling can be erroneous. Willers et al. [2] showed that labeling quality is one of the largest
underlying causes behind the reliability degradation of DL algorithms. This can cause
substantial problems in the deployment of DL algorithms in safety-critical applications.
The large number of safety standards for artificial intelligence algorithms indicates the
need to evaluate the quality of training dataset labeling. For example, ISO/TR 4804:2020
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and ISO/DIS 21448 both indicate that labeling should be reviewed. However, no widely
accepted procedures governing label review exist.

In practice, labeling noise is rarely evaluated. It is typically assumed that the data are
either perfect or have a negligible error rate. However, the error rate in popular databases,
including verification datasets, can be as high as 10% [3]. This can significantly reduce the
maximum accuracy of the corresponding DL algorithms. Moreover, such a high proportion
of mislabeling implies that such algorithms should not be expected to reach 100% accuracy.

The problem of labeling noise has been addressed by researchers in recent years. The
simplest method to evaluate the quality of a training dataset is to fully label the same set
multiple times using different annotators. For each image, the labels of each annotator can
then be compared to detect inaccuracies. The level of agreement between a fixed number
of annotators when assigning categorical labels can be measured using inter-annotator
agreement metrics [4]. However, this substantially increases preparation cost, as the dataset
must be annotated multiple times.

Fully automated approaches to noisy label detection also exist. Such works, however,
do not attempt to evaluate the number of erroneous labels detected but instead seek
to implement adaptive, noise-tolerant DL algorithms. Thus, these solutions are only
appropriate for the training of DL algorithms on noisy datasets and cannot be used to verify
the accuracy of training datasets provided by an external supplier.

Reed et al. [5] modified the loss function to provide a reduced penalty when an
image label is suspected to be incorrect. According to the authors, this solution also allows
the use of databases in which not all labels are known. Goldberger and Ben-Reuven [6]
added an additional softmax layer to the DNN model, creating an S-Model architecture.
The authors assume that the dataset noise has a certain distribution, which is modeled
in their proposed solution. This approach uses the expectation-maximization algorithm.
Han et al. [7] presented co-teaching. This method uses two DNNs which, by exchanging
data, decide if an image sample is incorrectly labeled. Both of the cooperating DNNs must
make the same decision for a label to be judged as inaccurate. The MentorNet network
proposed by Jiang et al. [8] assigns different weights to input images. Images whose labels
are assigned with low probability are given decreased weight in subsequent iterations of the
algorithm and thus effectively cease to participate in the learning process. In more recent
work, Chen et al. [9] presented an iterative cross-validation method that determines which
images within the training dataset should be removed in the next iteration. The authors
show that the accuracy of a DNN trained with such iterative pruning leads to accuracy
improvements. However, as for the methods outlined below, this approach does not
determine whether the removed images were incorrectly labeled or whether they showed
some outlying, abnormal, or atypical content, which confuses the DNN and reduces its
accuracy when applied to the validation set.

Very recently, Northcutt et al. [10] proposed confidence learning (CL). As in [9], the
authors use N-fold cross-validation but performed the procedure only once, rather than
iteratively. Probability thresholds are determined for each class independently. Such
thresholds determine if a given sample is classified confidently. The probabilities are
obtained from the final softmax layer of a DNN. Images within the training dataset that are
classified inaccurately but confidently are considered erroneously labeled and thus removed
from the dataset. The newly filtered set is then used to prepare the final DNN model. The
authors of the CL method tested its effectiveness using the ResNet-50 architecture with
moderately high mislabel probabilities of 20–70%. Unfortunately, the number of erroneous
images that were removed from the dataset was not logged. As in other work, the approach
focuses on the increase in the classification performance of the final DNN model, which
was shown to be higher than all the other methods reviewed here.

The CL method has been used to analyze known databases of images [3]. The re-
searchers selected suspicious images using this approach and then manually verified the
images to detect incorrect labels. They determined that 0.15–10% of all images are misla-
beled. This is an important finding, given that the analyzed reference databases should be
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free of such faults. This highlights the strong competition between algorithms that has led
to them achieving very high classification accuracy, often exceeding 99%. In this study, the
final number of incorrect labels was a relatively small fraction of the initial CL predictions.
This indicates that the performance of the label noise detection can be improved by further
balancing precision versus recall.

The type of noise used throughout the literature is also important to investigate.
Authors typically use a confusion matrix model. Such a model assumes a label has a certain
probability of being replaced by a different label, depending on the class of the object
in the image. This type of noise model is known as class-dependent noise (CDN). The
proposed algorithmic solutions assume the presence of such predefined noise and attempt
to reconstruct the noise model. In this manner, a significant improvement in learning is
achieved. This noise model was adopted, e.g., in [7,9,10].

Uniform noise (UNI) is a much simpler noise model used throughout the literature. In
this model, label errors occur independently from the class of object in the corresponding
image. Only the fraction of altered labels changes. Such simple random permutation of
labels was used, e.g., in [5,6,8].

Chen et al. [11] demonstrated that instance-dependent noise (IDN) is present in real
image databases. The probability of a labeling error within a dataset depends not only on
the class of object in the image but also on the image characteristics. For example, consider
an image of the written number “1”. When skewed away from a vertical orientation, this
could be more easily mistaken for the written number “7”. Unfortunately, previous work
on the topic has not accounted for this highly realistic form of noise.

In this paper, we introduce MultiNET flexible confident learning, a novel method
for the detection of noisy labels. We propose to extend the current state-of-the-art CL
method by introducing a flexible detection threshold to improve the detection rate of
incorrect labels while maintaining a minimal number of false positive detections. We
further enhance the CL method by aggregating the decisions of several DNNs and show
that this significantly improves noisy label detection. Finally, we evaluate the MultiNET
algorithm using UNI, CDN, and IDN noise models. We apply these models to four popular
image databases: CIFAR-10 [12], CIFAR-100 [13], GTSRB [14], and MNIST [15]. The results
show a significant improvement in label error detection performance, making the proposed
solution an attractive tool for the verification of the annotation quality of large image
datasets. Note that we study the effectiveness of noisy label detection, not the accuracy of
DNNs trained on the corresponding datasets. This is something that has not been done
before in related works.

2. MultiNET Flexible Confident Learning

The proposed MultiNET is a modification of the CL algorithm which allows for a
significant improvement in the detection of noisy labels over the original CL idea. We
concentrated on the possibility of combining several various classifiers to improve the
reliability of classification. We also add the mechanism for adjusting the sensitivity of the
CL technique to allow a user to select the confidence level of detected wrong labels. Thus,
there are two important differences explained in details below.

First, a flexible confidence threshold is used for error detection. This approach allows
the mislabeling detection certainty to be controlled and enables, among other uses, the
iterative detection of errors within image databases, starting with the most obvious mis-
takes and gradually progressing to more subtle errors. Secondly, the detection capabilities
provided by the DNNs of different architectures are combined. This increases detection
confidence and decreases the possibility of false negatives—the designation of correctly
labeled images as incorrectly labeled. Both modifications increase the efficiency of auto-
matic noisy label detection and decrease the false positive rate, thus improving the practical
application of the CL algorithm.
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2.1. Flexible Confidence Threshold

The original CL method performs N-fold validation. That is, the DNN is trained on
a N − 1/N fraction of the database, while the remainder of the database is searched for
mislabeling. The DNN classifications are designated as either confident or uncertain. The
threshold for a confident detection is determined as follows:

tj =
1

|Xŷ=j| ∑
x∈Xŷ=j

p(y = j; x), (1)

where tj is the probability threshold for the confident detection of class j, Xŷ=j is the
collection of images for which the DNN’s estimated class is j, and p(y = j; x) is the
probability that the image x belongs to class j as indicated by the DNN (i.e., the j-th node
of the softmax layer at the output of the DNN). The proposed threshold is an average of
out-of-sample classification probabilities within a set of images that are classified as a given
class. An image label is assumed to be noisy if the detection is confident and the DNN
classification does not match the label.

The CL algorithm does not allow the sensitivity threshold to be adjusted and is
therefore highly dependent on the training set used. For images within the validation set
that are similar to those within the training set, the probability of accurate classification is
high. However, images which differ will have a lower chance of being classified accurately.
In such cases, potentially mislabeled images may not be designated as such.

Our solution allows the user to control the level of certainty so that an appropriate
balance can be achieved between the detection of obvious errors and a minimal number
of false positives. To achieve this, we replace the average confidence level of the original
CL-method by a q-quantile. The threshold definition then takes the form

tj = Q{p(y = j; x), x ∈ Xŷ=j; q}, (2)

where Q{A;q} returns the value of the q-quantile calculated within a set of probabilities A.
The value of q can be adjusted to modify the label noise detection threshold. For example,
q = 0.5 indicates median probabilities, while q < 0.5 and q > 0.5 decrease and increase the
threshold, respectively.

In addition to increased flexibility, our proposed solution improves robustness to
the presence of noisy labels within the training set. This is due to the replacement of the
average value with a robust quantile-based measure.

2.2. Combining Multiple DNN Architectures

The original CL algorithm used a single DNN with a ResNet-50 architecture. Al-
though further work used different architectures, only a single architecture was used for
the evaluation of a given known image database (see Table 1 in [3]). This single architec-
ture approach can over- or underestimate the number of detections due to the differing
capabilities of DNNs of different internal designs. Each DNN architecture was designed
for a different task—a given architecture achieves varying levels of classification accuracy
across different datasets. Moreover, some DNNs are more or less prone to overfitting and
have better or worse generalization capabilities. Hence, they exhibit different label noise
detection properties.

Given that use of a single DNN can bias results, we propose the use of several (specifi-
cally, eight) different architectures to train the DNNs. We combine the individual DNN
decisions using a simple AND operator. That is, the decision to indicate a label as noisy is
only made if all DNNs agree.

The use of the AND operator substantially increases the requirements for detection, as
all DNNs must agree on this decision. If applied to the original CL algorithm, this would
lead to a significant decrease in the detection of mislabeled images. With our algorithm,
using the q-quantile approach, the detection threshold can be decreased appropriately.
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We found experimentally that the resulting combination of the AND operator and a
relatively low confidence threshold was the most reliable technique for the detection of
noisy labels and was superior to the use of CL with a single DNN.

3. Experimental Verification

The primary experimental objective was to compare our novel flexible MultiNET
algorithm with the original CL algorithm of Northcutt et al. [10].

In contrast to the majority of the literature, our focus was on the number of inac-
curate labels that were successfully detected by the algorithm and the number of false
positives which occurred. To our knowledge, no works exist which follow a similar line of
investigation. An overview of the experiment is presented in Figure 1.

Figure 1. Experimental schema. The original training dataset is divided into new DNN training and
verification sets. The original test dataset is used to evaluate the ability of the algorithms to detect
noisy labels.

Four popular image databases were used in the experiments: CIFAR10 [12], CI-
FAR100 [13], GTSRB [14], and MNIST [15]. The CIFAR10 and CIFAR100 databases contain
images of different types, such as dog, cat, tree, car, etc. The GTSRD database contains
images of 43 types of road sign, and the MNIST database contains handwritten numerals.
The number of images and the number of classes within each database are given in Table 1.

Table 1. The number of images and classes within each experimental dataset.

Dataset Training Set Verification Set Classes

CIFAR10 50,000 10,000 10
CIFAR100 50,000 10,000 100

GTSRB 39,209 12,630 43
MNIST 60,000 10,000 10

For use during the learning process, we divided each original training dataset into
a new training set containing 80% of the images and a new verification set containing
20% of the images. The original verification set was used as an evaluation set to test the
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effectiveness of noisy label detection. Label noise was applied to all datasets according to
the three noise models: UNI, CDN, and IDN. Three noise levels, defined as the percentage
of noisy labels, were analyzed: 5%, 10%, and 20%. These noise values were chosen to reflect
the levels of noise present in real databases.

Consistency was maintained between the type and intensity of noise in both the
learning set and the evaluation set. For example, a DNN trained on a set perturbed by
UNI noise at a level of 10% was then applied to a verification set that was perturbed by the
same type and level of noise. This approach was used because the type and level of noise
should be constant across the entire image set, as the entirety of a given dataset is typically
prepared by the same entity before being divided.

We used eight state-of-the-art DNN architectures that currently achieve the highest
classification efficiency on popular image databases. Details of the architectures are pre-
sented in Table 2. All operations were performed by the PyTorch Python library [16], using
stochastic gradient descent (SGD) optimization [17] with cross-entropy loss.

Table 2. Experimental DNN architectures and their performance when applied to the CI-
FAR10 dataset.

Abbrev. Full Name Reference

DLA Deep Layer Aggregation [18]
DPN Dual Path Networks [19]

PreActResNet18 Deep Residual Network [20]
SimpleDLA Deep Layer Aggregation [18]
ResNeXt29 Residual Network [21]

MobileNetV2 Inverted Residuals and [22]
Linear Bottlenecks Network

RegNetY400 Regular Network [23]
VGG16 Very Deep Network [24]

During each 200-epoch training phase, popular methods of training dataset augmenta-
tion were used to improve DNN efficiency. The value of 200 was taken as a safe number
of epochs, since most networks stabilized their accuracies around 100–150 epochs. These
methods included brightness normalization, image rotation (limited to 20 degrees for the
MNIST database and not used for the GTSRB database to avoid the misinterpretation of
road signs) and random cropping.

The 200-epoch training phase of a single model took from 15 min (for the simplest
models and MNIST or CIFAR10 databases) to 3 h (for most complex architectures and the
CIFAR100 set) on a utilized NVidia A5000 24 GB graphic card. The classification of all
images in any image dataset with any of the trained models took usually less then a minute
on this GPU.

Noise Generation

In the experiments, we used all three noise models described in the introduction:
uniform noise (UNI), class-dependent noise (CDN), and instance-dependent noise (IDN).
The application of UNI noise to the tested databases was straightforward—a defined
fraction of labels were randomly changed to another class. However, the application of
CDN and IDN noise was more complex and is described in this section.

To obtain the matrices for CDN noise application, we used the classification results
of DNNs trained on full sets with accurate labels. The resulting confusion matrices for all
datasets are presented in Figure 2. In contrast to some previous works, instead of using the
confusion matrix corresponding to the final training epoch, we opted to use an average
matrix containing the average probability of incorrect classifications across all 200 training
epochs and all eight DNN architectures. A confusion matrix that represents only the final
training epoch does not reflect the time required for the DNN to develop a high score. Some
classes require many training epochs, while other more unique or distinctive classes will be
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classified within few epochs. Therefore, we argue that misclassification behavior across the
entire training process better reflects the probability of inaccurate labeling than the discrete
results corresponding to only the final training epoch or a single DNN architecture.

Figure 2. Confusion matrices corresponding to CDN noise generation. The colors correspond to the
average confusion probability as observed over 200 epochs of training for all eight DNN architectures.

The evolution of misclassification probability for the three most common error types
is shown in Figure 3. These errors displayed the largest probability of class switching. The
spread of probabilities across each DNN architecture is shown by the faded regions. It can
be observed that the probability stabilizes at approximately the 100th epoch and that there
is little variation in probability between the different architectures. This suggests similar
types of misclassification errors result from each DNN model.

Figure 3. The evolution of misclassification probability for the three most common error types in
each investigated dataset.

Note that the probability scale varies for each dataset. For CIFAR10 and CIFAR100,
the average probability of misclassification is within the range 10–20%, while for MNIST it
is approximately 1%. This is because the images within the MNIST dataset are considerably
easier to classify than those within the CIFAR10 and CIFAR100 datasets. Moreover, the
GTSRB dataset produces a final error rate of zero—no errors are present. This is a further
argument for the use of average probability in the place of final result. Despite the obvious
errors present throughout the training process, the final result would indicate no possibility
of misclassification for the GTSRB dataset. Instead, the average probability gives a more
intuitive interpretation of misclassification and considers, for example, that a “Speed limit
20 km/h” image can be mistaken for a “Speed limit 30 km/h” image.
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We included the IDN noise model in our experiments as it has been identified as the
most reliable such model [11]. When using this model, the probability of misclassification
is calculated individually for each image in the database. It is determined by averaging
the DNN response (behind the softmax layer) over all epochs and all trained models. This
reflects the tendency of the networks to alter the designated class of a given image during
the learning process.

Examples of four misclassified images from the MNIST database are presented in Figure 4.
For all 10 classes, the decision outputs Vi, i ∈ {0, . . . , 9} of a sample DNN architecture (ResNeXt29
in this case) are shown below the images. The output corresponding with the target class—the
class to which the image actually belongs, according to the reference data from the MNIST
database—is highlighted in red. These are obvious examples for which human evaluation would
produce a similar outcome to that of a DNN. Such examples confirm that misclassification chance
is primarily dependent on the specific image, not on the class to which the image belongs.

Figure 4. Examples of misclassified MNIST images. The V0, . . . , V9 outputs from a sample DNN
model (ResNeXt29 architecture) for all 10 classes are presented on plots below each image. For each
image, the target class is highlighted in red.

We define V as the classification output, averaged over all 200 epochs and all eight
utilized DNN architectures. Figure 5 shows boxplots of V for the 30 most difficult images
to classify. That is, the images with the lowest median V. The figure additionally presents
the six most difficult images below each plot. The CIFAR10 and CIFAR100 datasets include
images of objects positioned or viewed in a manner that is very rare in the learning database
(e.g., the ostrich or the horse’s head images in CIFAR10) or images that are extremely
difficult to classify for a human (e.g., the lion or the beetle images in CIFAR100). Moreover,
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some of the most difficult images are degraded or have very low resolutions (e.g., the
majority of the examples from GTSRB).

Figure 5. Boxplots of V, the classification output averaged over all 200 epochs and all eight utilized
DNN architectures, for the 30 most difficult-to-classify images within each data set. The six most
difficult images are presented below each plot.

The application of IDN noise to the datasets required the retrieval of the most difficult-
to-classify images, such as those presented in Figure 5. For each image, Vi was determined,
where i denotes the classification number produced by the DNN output. Following this,
the sum of probabilities was normalized over all classes, such that ∑ Vi = 1. With the
probabilities normalized, the new corrupted class could be determined randomly. Moving
through the images from most difficult, noise was applied to each image label until the
proportion of affected labels reached the designated noise level.
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4. Results

The classification performance of DNNs trained on data affected by different levels of
label noise is shown in Figure 6. Each image database is presented in a separate graph, and
different noise models are color-coded. Faded regions indicate the range of classification
accuracies across the different DNN architectures.

Figure 6. Dependence of DNN classification accuracy on label noise type and level.

The results of noisy label detection are presented in the form of precision–recall curves
in Figures 7 and 8. Precision and recall are defined using true positive (TP), false positive
(FP), and false negative (FN) detections as follows:

precision =
TP

TP + FP
, (3)

recall =
TP

TP + FN
. (4)

Each curve was created by stepping a q-quantile value from 0 to 0.99. This corresponds
with moving from the right side to the left side of each plot. The red line indicates the results
of the MultiNET algorithm, while the results of a variety of algorithms which combine a
single DNN with a q-quantile approach are indicated by the additional lines. The results of
each algorithm when using mean probability instead of a q-quantile—corresponding to
the classic CL algorithm—are presented as larger dots. The red dot shows the results of
the CL algorithm when using a combination of DNNs, as in our approach. The graphs are
grouped according to the image database used and the type and level of label noise.

An area under the precision–recall curve (AUC) measure was used to compare the
efficiency of noisy label detection. The results are summarized in Table 3, wherein we
highlight in bold the best results for each noise type and level combination.
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Figure 7. Precision–recall curves for the CIFAR10 and CIFAR100 datasets. The red line denotes the
results of the MultiNET algorithm, while the other curves show the outcomes of single-DNN CL
methods. The original concept utilizing the mean confidence level is denoted by a dot on each curve.



Appl. Sci. 2022, 12, 6842 12 of 16

Figure 8. Precision–recall curves for the GTSRB and MNIST datasets. The red line denotes the results
of the MultiNET algorithm, while the other curves show the outcomes of single-DNN CL methods.
The original concept utilizing the mean confidence level is denoted by a dot on each curve.
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Table 3. Area under precision–recall curve (AUC) measure of noisy label detection efficiency. Best
results are indicated in bold.

Net/Method
UNI CDN IDN

5% 10% 20% 5% 10% 20% 5% 10% 20%

CIFAR10

SimpleDLA 0.708 0.794 0.802 0.669 0.742 0.755 0.294 0.573 0.798
PreActResNet 0.764 0.811 0.833 0.715 0.764 0.799 0.344 0.562 0.79

DLA 0.72 0.781 0.818 0.693 0.747 0.771 0.363 0.584 0.781
DPN 0.733 0.791 0.804 0.711 0.736 0.741 0.255 0.511 0.773

MobileNetV2 0.687 0.738 0.79 0.681 0.694 0.75 0.252 0.532 0.756
RegNet 0.724 0.791 0.778 0.712 0.744 0.737 0.292 0.559 0.781

VGG 0.742 0.786 0.8 0.693 0.752 0.74 0.306 0.575 0.779
ResNeXt 0.782 0.804 0.808 0.733 0.763 0.751 0.328 0.552 0.774

MultiNET 0.897 0.928 0.954 0.872 0.907 0.937 0.544 0.72 0.884

CIFAR100

SimpleDLA 0.379 0.474 0.571 0.299 0.414 0.541 0.1 0.201 0.424
PreActResNet 0.385 0.482 0.559 0.295 0.421 0.523 0.096 0.205 0.413

DLA 0.405 0.472 0.568 0.304 0.391 0.552 0.097 0.202 0.425
DPN 0.311 0.433 0.525 0.291 0.391 0.494 0.1 0.196 0.389

MobileNetV2 0.327 0.421 0.514 0.266 0.343 0.504 0.109 0.189 0.406
RegNet 0.299 0.415 0.489 0.275 0.364 0.493 0.092 0.2 0.394

VGG 0.349 0.44 0.549 0.279 0.385 0.545 0.094 0.194 0.404
ResNeXt 0.343 0.472 0.552 0.323 0.409 0.549 0.107 0.208 0.423

MultiNET 0.554 0.64 0.723 0.458 0.567 0.704 0.139 0.26 0.535

GTSRB

SimpleDLA 0.995 0.995 0.993 0.993 0.996 0.992 0.949 0.967 0.975
PreActResNet 0.993 0.995 0.995 0.996 0.995 0.991 0.954 0.971 0.981

DLA 0.996 0.995 0.994 0.995 0.995 0.994 0.947 0.969 0.976
DPN 0.993 0.995 0.992 0.991 0.993 0.995 0.962 0.974 0.983

MobileNetV2 0.996 0.992 0.992 0.995 0.992 0.992 0.969 0.967 0.98
RegNet 0.995 0.992 0.992 0.995 0.994 0.993 0.959 0.978 0.982

VGG 0.988 0.992 0.993 0.99 0.994 0.992 0.947 0.969 0.978
ResNeXt 0.99 0.994 0.991 0.991 0.995 0.991 0.968 0.975 0.981

MultiNET 1.0 0.997 0.997 0.997 0.997 0.998 0.965 0.979 0.986

MNIST

SimpleDLA 0.977 0.993 0.996 0.979 0.991 0.992 0.957 0.945 0.935
PreActResNet 0.98 0.993 0.996 0.987 0.994 0.992 0.957 0.958 0.922

DLA 0.992 0.987 0.997 0.989 0.997 0.991 0.967 0.947 0.934
DPN 0.987 0.996 0.995 0.971 0.991 0.996 0.949 0.979 0.94

MobileNetV2 0.973 0.992 0.996 0.982 0.992 0.995 0.953 0.938 0.919
RegNet 0.965 0.985 0.996 0.989 0.992 0.969 0.947 0.951 0.938

VGG 0.993 0.992 0.996 0.987 0.995 0.995 0.965 0.917 0.925
ResNeXt 0.988 0.979 0.994 0.986 0.989 0.995 0.961 0.962 0.94

MultiNET 0.997 0.999 0.999 0.999 0.998 0.998 0.975 0.99 0.975

5. Discussion

The graphs shown in Figure 6 confirm that for three of the four databases used, the
effect of label noise is evident over the range studied. For the CIFAR10 and CIFAR100
databases, IDN noise is noticeably less impactful than UNI or CDN noise. We posit that
this may be related to the nature of the images to which IDN noise was applied. For the
CIFAR10 and CIFAR100 databases, the images identified as being most difficult to classify
(see Figure 5) were not easily confused for images from another class. Rather, were they
images of objects positioned or viewed in an unusual manner or objects of unusual color.
Therefore, the introduction of IDN noise to such images would not be expected to lead to
the propagation of classification errors to other images.
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The opposite is true for the MNIST database, wherein IDN noise caused a substantially
greater decrease in classification performance than CDN and UNI noise. In this case, the
written digits that were relabeled due to noise were very similar to those of different classes.
These similarities can be observed in Figures 4 and 5. As such, the introduction of erroneous
labels to these types of images confused the DNNs and caused a significant efficiency drop.
Notably, this behavior was observed for each of the tested DNN architectures, as demonstrated
by the faded region around the IDN curve for the MNIST dataset (see Figure 6).

The GTSRB database produces distinctive behavior, with the performance results for
all algorithms close to 100% (see Figure 8). The application of noise of any type or level had
no significant statistical effect on DNN efficiency. We hypothesize that this effect has two
sources. The first is the ease with which each of the architectures can classify well-defined
images, such as traffic signs. The impact of sign scaling and background variation does not
pose a substantial problem for current DNN architectures. The second presumed source
is highlighted by the ineffectiveness of noise on classification performance. This suggests
that the database itself is highly robust and redundant. Thus, the presented analysis can
be considered as a means of evaluating databases for their robustness against intrinsic
label noise.

The graphs presented in Figure 6 also show that UNI and CDN noise result in very
similar misclassification rates. The majority of the literature concerning label noise uses
CDN noise and suggests that UNI noise is both unrealistic and easier for DNNs to handle.
Our experiments prove that both noise types have similar effects on final classification. Only
IDN noise introduces a qualitatively different degree of difficulty. This effect is less apparent
for the CIFAR10 and CIFAR100 databases and more apparent for the MNIST database.

The graphs shown in Figures 7 and 8, in addition to the AUC results presented in
Table 3, confirm that the proposed MultiNET algorithm achieves significantly better misla-
bel detection performance than the original CL method. For the CIFAR10 and CIFAR100
databases, a clear improvement can be observed in the precision–recall relationship for all
noise types when a combination of DNNs was utilized. The use of the MNIST database
produces the smallest increase in detection efficiency. This is due to the inherent high
classification performance of DNNs when applied to simple written digits. Nevertheless,
the improvement is still noticeable. The improvement in detection performance when
using the GTSRB database could not be measured due to the 100% detection precision in
all noise scenarios.

In addition to improved performance when using multiple DNN architectures, the
introduction of the q-quantile value allows for smooth movement along the precision–recall
curve. This presents a variety of mislabeling detection strategies. It is possible to optimize
either precision, recall, or a combination of both, according to the needs of the user.

6. Conclusions

Combating label noise in image databases is currently a topic of high interest for
many researchers. The majority of solutions within the literature modify either the DNN
architecture itself or the learning method. No solutions investigate the efficiency of noisy
label detection.

Our paper focused on the detection of mislabeled images. We proposed MultiNET, a
novel algorithm based on the current state-of-the-art confidence learning algorithm. Two
mechanisms of the algorithm are adapted: the use of a set of DNNs, each trained using a
different architecture, and the introduction of a q-quantile value, allowing the algorithm
sensitivity to be tuned. Our main idea was as follows:

Four image databases (CIFAR10, CIFAR100, MNIST, and GTSRB) were used to ex-
perimentally validate the effectiveness of MultiNET in detecting label noise. Each dataset
contained different types of images and different classification targets. Three different
noise types (uniform, class-dependent, and instance-dependent) were introduced to imitate
real-world scenarios.
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The experimental results demonstrate the superiority of the MultiNET algorithm
when compared to the original confident learning algorithm. First, the MultiNET algo-
rithm achieves a significantly higher ratio of correct detections to false detections. This
is particularly noticeable in databases for which classification is somewhat challenging
(e.g., CIFAR100). Secondly, MultiNET allows the detection sensitivity to be varied, thus
enabling an iterative approach to progressively detecting errors, from the most obvious to
the most subtle.

The proposed algorithm could be a useful tool for the verification of image databases.
Specifically, it allows for the automatic verification of large databases in which the labeling
may be erroneous due to, for example, crowdsourcing.

Summarizing, the main research contribution of the work consists of:

1. A new idea to assemble several classifiers in an algorithm providing a reliable estima-
tion of noisy labels in image datasets;

2. A mechanism for the modification of detection sensitivity;
3. A comprehensive evaluation of the efficiency of finding noisy labels (the previous

works concentrated only the final accuracy on the improved network);
4. The utilization of instance-dependent noise—a recently introduced most realistic

model of label noise in image databases.

A natural extension of the algorithm is the use of a voting method in place of the
AND operator. For example, a decision about detection certainty could be made if N of M
networks (N < M) agreed. This approach could be applied to difficult classification tasks
for which the used architectures display highly variable levels of accuracy. Moreover, all
the architectures used show very similar levels of accuracy for all tested image databases.
The use of a voting method will be considered in future research using more unusual
image datasets.
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