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Featured Application: The improvement of the bond performance between reinforcing bars and
the concrete matrix with a thin coating of ultra-high-performance concrete (UHPC).

Abstract: In this study, to improve the bond performance of reinforcing bars fixed inside concrete, a
pullout test using ultra high-performance concrete (UHPC) and structural steel fibers was conducted
and a model that could predict the performance was also presented. After creating a UHPC layer
on the rebar surface, the specimens were prepared along with three types of structural fibers. The
structural fibers with different shapes were mixed up to 0.2%, 0,4%, 0.6%, 0.8%, 1% and 2% to
analyze their effects on the bond failure at the interface. As a result of the experiment, the pullout
resistance ability of the specimen thinly coated with UHPC maintained high residual stress due to
the steep section reaching the maximum load, increased the maximum pullout load, and delayed
the bond failure during the extraction process. As a result of the cross-sectional examination of the
specimen, the coating of UHPC was strongly attached to the rebar surface and the bond surface
was broken through sliding at the interface (UHPC–ordinary Portland concrete (OPC)). It was
found that the increase in the structural fiber significantly improved the pulling-out resistance at
the interface. The proposed model based on the existing Cosenz–Manfredi–Realfonzo (CMR) and
Bertero–Popov–Eligehausen (BPE) prediction models was found to be in good agreement with the
experimental results.

Keywords: UHPC; interface; pullout; coating; steel fiber; steel rebar

1. Introduction

Reinforced concrete is a structure with sufficient strength and stiffness for various loads
due to its excellent bonding strength between the concrete as the compression member and
the rebar as the tensile member [1]. Due to the strong alkalinity of concrete, a passivation
film is formed on the surface of the reinforcing bar to prevent fatal corrosion to the structure
over a long period of time, while maintaining excellent adhesion to the rebar [2]. In
particular, cracks occurring in the tensile part of reinforced concrete lower the stiffness
of the member and induce the redistribution of internal stress. [3]. In order to delay the
progress of cracks occurring at the interface between the reinforcing bars and the concrete
and to maintain the integrity for a long time, it is necessary to form a sufficient bond at the
interface. The bond properties at the interface are determined by the crack width, crack
spacing, and tension-stiffening phenomenon occurring in the concrete cross-section, as
well as the roughness of the attachment surface and the strength of the member [3,4]. The
bond stress, which is the shear stress acting along the reinforcing bar and the concrete
surface, is transmitted to the concrete via chemical adhesion at the interface, friction,
and the interlocking action between the nodes of the deformed rebar [5–9]. As a result,
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the sufficient bonding ability at the interface is one of the very important aspects in the
structural behavior of reinforced concrete members. Insufficient bond capacity causes
bending and deterioration of the shear performance, leading to premature failure of the
structure [10].

With the continuous research and development (R&D) of concrete engineering tech-
nology, the number of cases involving the field application of ultra-high-performance
concrete (UHPC) has been increasing recently [11–17]. Ultra-high-performance concrete
has excellent strength (compressive strength of 150 MPa or more and tensile strength of
8 MPa or more) among the existing concretes, excellent ductility due to the mixing of
steel fibers, low permeability of harmful substances due to minimized internal voids (high
durability), and excellent material fracture performance [18–26]. It has strain-hardening
characteristics, inducing multiple micro-cracks by mixing the steel fibers after cracking the
concrete under maximum load, meaning it can be applied to various structures [27]. The
study to improve the bond performance of ultra-high-performance concrete with steel or
FRP bars was conducted by applying them to I-girders and deck joints, confirming their
potential as tensile and flexural materials [28–31]. GFRP rebar does not corrode, has an
excellent relative strength-to-weight ratio, and is used as a substitute for existing rebar
due to its low-shrinkage stress generation. However, there is a disadvantage in that the
redistribution of stress during the drawing process is not smooth due to the relatively low
bond strength compared to reinforcing bars [32–35]. By replacing the concrete matrix with
UHPC, a study was also conducted to improve the adhesion strength and ductility, with
strong adhesion performance for the GFRP reinforcing bars, confirming the improvement
of the adhesion–slip behavior due to the application of UHPC [36–38].

Although very positive research results have been confirmed for the application
of UHPC to improve the performance of reinforced concrete structures, the economic
feasibility is also an essential factor for its wide application in construction sites. Due to the
material composition of UHPC, which is up to several times more expensive than general
concrete, it has limited application in the field. In this study, a strong bond with the rebar
was induced by thinly coating UHPC on the attachment surface of the rebar using the spray
method. After forming a coating film on the rebar surface, general concrete was poured
to reinforce the bonding interface between the UHPC and concrete and pullout tests were
conducted. In addition, in order to further improve the redistribution of stress on the bond
surface, three types of structural steel fibers were mixed up to 1% to check the bond–slip
behavior. Finally, an analysis model that can predict the bond–slip behavior compared to
the existing model was suggested.

2. Materials and Methods
2.1. Materials

In this study, steel rebars with a diameter of 12.7 mm, specific gravity of 7.9 g/cm3,
yield strength of 410 MPa, fracture strength of 560 GPa, and modulus of elasticity of
200 GPa were used. As shown in Figure 1, the UHPC was coated on the surface of the
steel rebar with a thickness of about 2 to 3 mm to prepare for the pullout test. The UHPC
used for the steel rebar coating consisted of the mixing ratio shown in Table 1 and was
applied with a spray gun. By coating the UHPC with the characteristics of high flow and
ultra-high-strength on the surface of the rebar, an interfacial area between the concrete
matrix and the rebar was newly created to induce a change in the interfacial bonding
mechanism compared to the existing one.
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Table 1. Ultra-high-performance concrete mix proportions. 

Specimen W/C (%) 
Unit Weight (kg/m3) 

Water Cement 
Silica 
Fume 

Silica 
Sand Filler Super Plasticizer Anti-Foamer 

UHPC 30 235 784 196 862 235 47.0 2.35 

Table 2 shows the physical properties of the three types of steel fibers (K-steel 
Manufacturing Company) mixed in the concrete matrix and of the reference PVA fibers 
for comparison [32]. The test results for the PVA fibers without the UHPC coating on the 
reinforcing bars were added in order to compare the effects of the stiffness and bond 
strength on the load–slip curves. For all three types, the aspect ratio (L/D) was set to 70 to 
check the difference in performance according to the surface structure of the steel fibers. 
The hooked steel fiber had a tensile strength of 1300 MPa and a curved end. The crimped 
steel fiber had a tensile strength of 2900 MPa and the crimped stainless-steel fiber had a 
tensile strength of 1950 MPa, which was considerably larger than that of HSF. The process 
of manufacturing crimp-type fibers was in the order of a hydrochloric acid bath, water 
washing, a bonderite bath, water washing, a neutralization bath, a bonderizing bath, a 
lime bath, and drying. The primary pickling film (CA, BCA) removes the scales from the 
surface, improves the wire drawing process, and prevents rust, with lime film being the 
main type. The secondary pickling film (BRL, BCA) improves the drawing ability by 
removing the scales generated during the heat treatment on the wire’s surface. In 
particular, phosphate and lubricant coatings are the main types of coatings used to 
prevent the adhesion that occurs during cold-press processing. The final process, the 
drawing process, is a manufacturing process that makes wires of a desired shape and 
dimensions by passing the wire through the holes in the die during production, and this 
process is repeated to produce the final product. Two types of concrete were used for all 
specimens. The average compressive strength of the concrete with HSF, CSF, and CSSF 
was 23.3 MPa, while that of the 1% PVA fiber was 61 MPa and that of the 2% PVA fiber 
was 58 MPa. Although the addition of fibers produced a slight change in compressive 
strength, the difference between the control and fiber specimens was not significant [32]. 
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Table 1. Ultra-high-performance concrete mix proportions.

Specimen W/C (%)
Unit Weight (kg/m3)

Water Cement Silica Fume Silica Sand Filler Super Plasticizer Anti-Foamer

UHPC 30 235 784 196 862 235 47.0 2.35

Table 2 shows the physical properties of the three types of steel fibers (K-steel Man-
ufacturing Company) mixed in the concrete matrix and of the reference PVA fibers for
comparison [32]. The test results for the PVA fibers without the UHPC coating on the rein-
forcing bars were added in order to compare the effects of the stiffness and bond strength
on the load–slip curves. For all three types, the aspect ratio (L/D) was set to 70 to check the
difference in performance according to the surface structure of the steel fibers. The hooked
steel fiber had a tensile strength of 1300 MPa and a curved end. The crimped steel fiber had
a tensile strength of 2900 MPa and the crimped stainless-steel fiber had a tensile strength of
1950 MPa, which was considerably larger than that of HSF. The process of manufacturing
crimp-type fibers was in the order of a hydrochloric acid bath, water washing, a bonderite
bath, water washing, a neutralization bath, a bonderizing bath, a lime bath, and drying.
The primary pickling film (CA, BCA) removes the scales from the surface, improves the
wire drawing process, and prevents rust, with lime film being the main type. The secondary
pickling film (BRL, BCA) improves the drawing ability by removing the scales generated
during the heat treatment on the wire’s surface. In particular, phosphate and lubricant
coatings are the main types of coatings used to prevent the adhesion that occurs during
cold-press processing. The final process, the drawing process, is a manufacturing process
that makes wires of a desired shape and dimensions by passing the wire through the holes
in the die during production, and this process is repeated to produce the final product. Two
types of concrete were used for all specimens. The average compressive strength of the
concrete with HSF, CSF, and CSSF was 23.3 MPa, while that of the 1% PVA fiber was 61 MPa
and that of the 2% PVA fiber was 58 MPa. Although the addition of fibers produced a slight
change in compressive strength, the difference between the control and fiber specimens
was not significant [32].
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Table 2. The properties of different fibers.

Variables
Hooked
Steel Fiber
(HSF)

Crimped
Steel Fiber
(CSF)

Crimped
Stainless
Steel Fiber
(CSSF)

Polyvinyl Alcohol
Fiber (PVA)

Length (mm) 35 35 35 8
Diameter (mm) 0.5 0.5 0.5 40 (µm)
Aspect Ratio (L/D) 70 70 70 -

Surface Structure Hooked-end Crimped Crimped
stainless

Resin-bundled
chopped

Density (g/cm3) 7.8 7.8 7.8 1.3
Tensile strength (MPa) 1300 2900 1950 1300

Shape

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 20 
 

Table 2. The properties of different fibers. 

Variables 
Hooked 
Steel Fiber 
(HSF) 

Crimped 
Steel Fiber 
(CSF) 

Crimped 
Stainless 
Steel Fiber 
(CSSF) 

Polyvinyl Alcohol 
Fiber (PVA) 

Length (mm) 35 35 35 8 
Diameter (mm) 0.5 0.5 0.5 40 (μm) 
Aspect Ratio (L/D) 70 70 70 - 

Surface Structure Hooked-end Crimped 
Crimped 
stainless 

Resin-bundled 
chopped 

Density (g/cm3) 7.8 7.8 7.8 1.3 
Tensile strength (MPa) 1300 2900 1950 1300 

Shape 

    

2.2. Specimens for Pullout Test 
The specimen size for the pullout test was 190.5 × 102 × 152.4 mm3 modified from the 

experimental investigation performed by Alavi-Fard et al. [39]. Each specimen was made 
up of a concrete cube with a UHPC-coated steel rebar embedded horizontally along a 
central axis, as shown in Figure 2, with mixing proportions shown in Table 3. 

 
Figure 2. Specimen and testing setup. 

The bond length of the embedded rebar was set to 63.5 mm, five times the diameter 
of the rebar. Furthermore, in order to make an effective measurement of the interfacial 
bonding behavior on the bonded length, the rebar on the top and bottom sides was 
sheathed with a soft PVC tube to prevent bonding between the bar and the concrete. 
Therefore, only the bond strength of the rebar near the center of the specimen was 
measured. The specimens shown in Table 4 were prepared. Fresh concrete was placed in 
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2.2. Specimens for Pullout Test

The specimen size for the pullout test was 190.5 × 102 × 152.4 mm3 modified from
the experimental investigation performed by Alavi-Fard et al. [39]. Each specimen was
made up of a concrete cube with a UHPC-coated steel rebar embedded horizontally along
a central axis, as shown in Figure 2, with mixing proportions shown in Table 3.
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Figure 2. Specimen and testing setup.

The bond length of the embedded rebar was set to 63.5 mm, five times the diameter
of the rebar. Furthermore, in order to make an effective measurement of the interfacial
bonding behavior on the bonded length, the rebar on the top and bottom sides was sheathed
with a soft PVC tube to prevent bonding between the bar and the concrete. Therefore,
only the bond strength of the rebar near the center of the specimen was measured. The
specimens shown in Table 4 were prepared. Fresh concrete was placed in two layers and
each layer was rodded with a tamping rod and table vibrator. The concrete was cast
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horizontally with the UHPC-coated steel rebar inside the steel formwork. After molding,
the specimens were instantly covered with a plastic sheet, stopping moisture loss for at
least 48 h. The specimens were then removed from their molds and continuously cured
underwater until testing at 21 ◦C. In this investigation, we mainly considered the response
of the surface treatment of UHPC-coated steel rebars combined with structural fibers to
pullout loading on the interfacial zone.

Table 3. Concrete mix proportions.

Mix Type Cement
(kg/m3)

Water
(kg/m3)

Sand
(kg/m3)

Coarse
Aggregate

(kg/m3)

Blast Furnace
Slag

(kg/m3)

Fly Ash
(kg/m3)

Fiber
Content
(kg/m3)

Super-
Plasticizer

(kg/m3)

21-N (OPC) 239 164 922 928 30 30 - 1.79
Steel-1 (PVA0) 580 255 580 - - 580 0 6.96
Steel-2 (PVA1) 580 255 580 - - 580 13 6.96
Steel-3 (PVA2) 580 255 580 - - 580 26 11.6
21-C-0.2-SF 239 164 922 928 30 30 0.31 1.79
21-C-0.4-SF 239 164 922 928 30 30 0.63 1.79
21-C-0.6-SF 239 164 922 928 30 30 0.94 1.79
21-C-0.8-SF 239 164 922 928 30 30 1.26 1.79
21-C-1.0-SF 239 164 922 928 30 30 1.57 1.79

Table 4. Specimens in the pullout test.

Mix Type Fiber Volume Fraction, Vf (%) Specimen Name for Pullout Test

21-N (OPC) None 21-N
Steel-1 (PVA0) None PVA 0%
Steel-2 (PVA1) 1% PVA 1%
Steel-3 (PVA2) 2% PVA 2%
21-C(UHPC coating) None 21-C
21-C-SF-A 0, 0.2, 0.4, 0.6, 0.8, 1.0 21-C-Vf-HSF
21-C-SF-B 0, 0.2, 0.4, 0.6, 0.8, 1.0 21-C-Vf-CSF
21-C-SF-C 0, 0.2, 0.4, 0.6, 0.8, 1.0 21-C-Vf-CSSF

2.3. Test Setup and Testing Procedure

The specimen was placed on the universal testing machine (UTM) so that the surface
of the cube specimen on the side of the long end of the bar was in contact with the bottom
of the mold. The end of the rebar was gripped using the jaws of the testing machine, as
shown in Figure 2. The pullout behaviors of the UHPC-coated steel rebar were identified
using a 2000-kN-capacity universal testing machine. A rate of 0.02 mm/s was selected and
a continuous pullout load was first applied to the bars until failure. The interfacial bond
slip between the embedded rebar and the concrete at the loaded end was simultaneously
measured using linear variable displacement transducers (LVDTs). The readings of the
applied pullout load and the corresponding three LVDTs were automatically recorded
through a data logger.

3. Results and Discussion

The compressive strength of the UHPC presented in Table 1 was evaluated from a total
of 5 specimens. Among them, the average values of the three specimens were calculated
after excluding two specimens with a standard deviation of 5% or more of the compressive
strength. After curing, the average compressive strength on the 28th day was 145.3 MPa.
The ultra-high-strength UHPC was coated on the surface of the reinforcement to a certain
thickness, and in addition a new type of interface was formed with the general concrete
mixed with three types of steel fibers. Composite pullout resistance capability was expected
at the newly formed interface 1 and interface 2.
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Except for the specimen with high CSF and CSSF ratios, all specimens showed pullout
failure before the yielding of rebars, without splitting cracks appearing on the surfaces of the
specimens. The specimens with 0.8% and 1% of CSF or CSSF showed pullout failure after
the yielding of rebars. The interfacial debonding behaviors of the pullout test specimen
consisting of UHPC-coated steel rebar and different structural fibers on the interfacial
bonding zone are discussed in this section. The pullout failure of the rebars was defined
when the applied load reached the maximum point. The corresponding values of the
maximum nominal bond stress and slip were then determined. Since the interfacial stress
distribution between the rebar and concrete matrix was not constant along the embedded
part, the average bond strength was calculated as follows:

τmax =
Pmax

πdblb
(1)

where τmax is the bond strength, Pmax is the maximum tensile load, db is the rebar diameter,
and lb is the embedment length. The various test specimens’ performances as a result for
the pullout test are summarized in Table 5. In this table, f’c is the concrete strength used
for making pullout specimens, τmax is the bond strength, and Sm is the slip value at the
maximum load. The mean values of the bond strength and the slips are summarized in
the table. The normalized bond strength(τ*

max) [32–35] describing the effect of concrete
strength was calculated as follows:

τ ∗max =
τmax√

f’
c

(2)

Table 5. Experimental results for pullout test specimens.

Specimen Pmax
(kN)

τmax
(MPa)

τmax-mean
(MPa)

Sm
(mm)

Sm-mean
(mm)

τ*
max

(MPa)
Failure
Mode

21-N-1 39.71 15.68
15.40

1.64
1.63

3.26 PO
21-N-2 38.30 15.12 1.62 3.14 PO
21-C-1 45.24 17.87

17.76
1.79 1.74 3.71 PO

21-C-2 44.70 17.65 1.68 3.66 PO

PVA0S1 ** 69.64 27.50 0.50 3.55 PO
PVA0S2 ** 70.40 27.80 27.27 0.80 0.60 3.59 PO
PVA0S3 ** 67.10 26.50 0.50 3.42 PO
PVA1S1 ** 71.16 28.10 1.30 3.59 PO
PVA1S2 ** 73.18 28.90 28.80 1.00 1.20 3.70 PO
PVA1S3 ** 74.45 29.40 1.30 3.76 PO
PVA2S1 ** 77.74 30.70 1.50 4.03 PO
PVA2S1 ** 76.47 30.20 30.73 1.60 1.10 3.97 PO
PVA2S1 ** 79.26 31.30 1.20 4.10 PO

21-C-0.2-HSF-1 46.39 18.32
18.56

2.27 2.22 3.80 PO
21-C-0.2-HSF-2 47.60 18.80 2.16 3.90 PO

21-C-0.4-HSF-1 49.54 19.56
19.44

1.44 1.41 4.06 PO
21-C-0.4-HSF-2 48.90 19.31 1.38 4.01 PO

21-C-0.6-HSF-1 50.63 20.00
20.15

1.92 1.86 4.15 PO
21-C-0.6-HSF-2 51.40 20.30 1.80 4.21 PO

21-C-0.8-HSF-1 52.86 20.88
20.75

1.52 1.49 4.33 PO
21-C-0.8-HSF-2 52.20 20.61 1.47 4.28 PO

21-C-1.0-HSF-1 53.33 21.06
21.11

1.81 1.80 4.37 PO
21-C-1.0-HSF-2 53.60 21.17 1.78 4.40 PO
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Table 5. Cont.

Specimen Pmax
(kN)

τmax
(MPa)

τmax-mean
(MPa)

Sm
(mm)

Sm-mean
(mm)

τ*
max

(MPa)
Failure
Mode

21-C-0.2-CSF-1 49.77 19.65
19.78

1.43 1.44 4.08 PO
21-C-0.2-CSF-2 50.40 19.90 1.45 4.13 PO

21-C-0.4-CSF-1 51.96 20.52
20.84

1.15 1.17 4.26 PO
21-C-0.4-CSF-2 53.60 21.17 1.18 4.40 PO

21-C-0.6-CSF-1 58.54 23.12
22.89

1.75 1.80 4.80 PO
21-C-0.6-CSF-2 57.40 22.67 1.84 4.71 PO

21-C-0.8-CSF-1 57.38 22.66
22.90

0.81 0.80 4.70 SY
21-C-0.8-CSF-2 58.60 23.14 0.79 4.80 SY

21-C-1.0-CSF-1 62.39 24.64
24.86

0.87 0.88 5.12 SY
21-C-1.0-CSF-2 63.50 25.08 0.90 5.21 SY

21-C-0.2-CSSF-1 46.70 18.44
18.66

0.53 0.52 3.83 PO
21-C-0.2-CSSF-2 47.80 18.88 0.51 3.92 PO

21-C-0.4-CSSF-1 51.86 20.48
20.72

1.18 1.20 4.25 PO
21-C-0.4-CSSF-2 53.10 20.97 1.23 4.35 PO

21-C-0.6-CSSF-1 54.46 21.51
21.77

1.83 1.88 4.47 PO
21-C-0.6-CSSF-2 55.80 22.04 1.92 4.58 PO

21-C-0.8-CSSF-1 58.98 23.29
23.02

1.23 1.20 4.84 SY
21-C-0.8-CSSF-2 57.60 22.75 1.18 4.72 SY

21-C-1.0-CSSF-1 58.27 23.01
23.19

0.70 0.72 4.78 SY
21-C-1.0-CSSF-2 59.20 23.38 0.73 4.85 SY

PO: pull out failure; SY: steel yield failure; τ*
max normalized bond strength; ** reference [32] test results.

Even if the maximum load of the specimens with PVA is greater than that of the other
specimens because of the difference in concrete strength, the normalized bond strengths
(τ*

max) of the specimens with normal or high-strength concrete will be similar.

3.1. Load–Slip Relationship

Figure 3 shows the load–slip curve for specimens 21_N containing a reinforcing bar
without the UHPC coating and 21_C containing a reinforcing bar with the UHPC coating.
When comparing the uncoated test specimen (21_N) with the UHPC-coated test specimen
(21_C), noticeable changes (bond strength, toughness) in the coated test specimen can be
confirmed. The load–slip curves of the two types of specimens were similar. A small slip
change was shown in the initial loading section, and after reaching the maximum load the
load gradually decreased, with the slip increasing. However, the bond strength of 21_C was
15.3% greater than that of 21_N and resulted in an increase in toughness performance. This
was because the UHPC coating creates an additional interface and increases the bonding
strength between the rebar and concrete, thereby delaying the progress of cracks. Figure 4
shows the load–slip curve of the uncoated rebars in concrete mixed with the PVA fiber.
When the fibers were mixed, the slip resulted in the initial load section being smaller. As
shown in Figure 4, the fiber increased the bond strength of the rebars, but not by much. The
bond strength of specimens with 1% and 2% PVA fiber increased by about 6% and 13.1%,
respectively, which were lower than the increases due to the UHPC coating.
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Figure 5 shows the load–slip curve for a pullout test specimen using concrete mixed
with hooked steel fibers (HSF) in a reinforcing bar coated with UHPC. The load–slip curve
of the test specimen in which 0.2–1.0% of HSF was mixed in the concrete matrix showed a
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more evident resistance improvement on the adhesion surface when the UHPC was coated.
With a small slip, the initial ascent section increased very steeply and showed a softening
of the load reduction after reaching the maximum load. In the test specimens containing
0.6% and 0.8% HSF, rapid adhesion failure between the rebar and concrete interface was
shown in the softening process. It can be seen that the behavior up to adhesion failure
was affected by the frictional resistance caused by the strong chemical adhesion between
interface 1 (concrete matrix-UHPC interface) and interface 2 (UHPC-rebar interface). It was
found that the maximum load value corresponding to the adhesion failure increased and
the energy dissipation ability was also improved due to the increase in fiber mixing.
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Figure 5. Load–slip curves with hooked-end steel fiber.

Figure 6 shows the results of the pullout test for rebar coated with UHPC after mixing
CSF fibers in the concrete matrix. Similar to the case for HSF, the initial section shows a
steep load increase accompanied by a small slip due to the strong bonding force at the
interface. Increasing the mixing amount of fibers tends to gradually decrease the load after
reaching the maximum load, while causing a steeper rise section. When the mixing ratio of
CSF was 0.8% or more, the yield phenomenon of the rebar occurred in the maximum load
section. It was judged that the yield phenomenon of the reinforcing bar occurred because
the bonding ability at the interface was larger than that of the reinforcing bar itself [40]. In
particular, the specimens mixed with 1% CSF showed a pullout failure phenomenon from
the concrete matrix after slipping over a long section of the yield area of the reinforcing bar.
Figure 7 shows the load–displacement curves of the test specimen mixed with CSSF fibers.
Compared with Figure 5, the overall tendency was similar, and the yield phenomenon of
the rebar was more clearly shown at 0.8% and 1.0% fiber mixing ratios due to the strong
bonding force at the bonding interface. The bond strength was larger than that of the test
sample containing HSF and relatively lower than that of the test sample containing CSF.
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In the pullout resistance curve of the UHPC-coated reinforcing bar, when the initial
load was raised, it increased sharply with a small slip. In particular, as the mixing ratio
of the fibers increased, the maximum load was reached, with a steep increase in load. At
the maximum load, the load gradually decreased due to the pullout phenomenon due to
the decrease in the adhesion force, but no abrupt decay was observed after the adhesion
failure, as in the case of the sand-coated FRP reinforcing bar [36,40]. It can be judged that
the UHPC was strongly attached to the surface of the reinforcing bar (Figure 8), maximizing
the resistance to pullout, which did not cause a sudden load reduction after bonding failure
at the maximum load. In addition, it seems that the mixing of steel fibers and the increase
in the amount strongly improved the pullout resistance.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 
Figure 8. Examples of failure modes (interface 1 vs. interface 2). 

3.2. Bond Strength and Maximum Slip 
Figure 9a,b show the bond strength ratio of the uncoated rebars [32] and UHPC-

coated rebars, respectively. The bond strength ratio was calculated by dividing the bond 
strength of each specimen by the average value of the bond strength of uncoated rebar 
without fiber. For an accurate analysis, the bond strengths of specimens that failed after 
steel yielding were excluded in the comparison. Figure 9 shows that the bond strengths of 
uncoated rebars with 1% and 2% fibers increased by 6% and 12.7%, respectively, while 
those of UHPC-coated rebars with 0.2%, 0.4%, and 0.6% fibers increased by 23.4%, 32.0%, 
and 40.3%, respectively. The increase rate of the bond strength of the UHPC-coated rebar 
with a low fiber content was much higher than that of the uncoated rebar with a high fiber 
content. This means that the UHPC coating promotes the increase in the bond strength of 
the rebar. Figure 9b shows that the bond strength of the UHPC-coated rebar increases by 
about 15 percent compared to the uncoated rebar. Figure 10a,b show the maximum slip 
ratios of uncoated rebars [32] and UHPC-coated rebars, respectively. The maximum slip 
ratio was calculated by dividing the slip of each specimen at peak load by the average 
value of the slip of the uncoated rebar without fiber. Contrary to the change in bond 
strength ratio, the increase in the slip ratio of the uncoated rebar was greater than that of 
the UHPC-coated rebars. The slip values of the uncoated rebars with 1% and 2% fibers 
more than doubled, while those of the UHPC-coated rebars with 0.2%, 0.4%, and 0.6% 
fibers were almost the same as for the rebar without fiber. This means that the UHPC 
coating increases the initial bond stiffness of rebar containing fiber, which will be 
described in detail in the next section. 

Figure 8. Examples of failure modes (interface 1 vs. interface 2).

3.2. Bond Strength and Maximum Slip

Figure 9a,b show the bond strength ratio of the uncoated rebars [32] and UHPC-coated
rebars, respectively. The bond strength ratio was calculated by dividing the bond strength
of each specimen by the average value of the bond strength of uncoated rebar without fiber.
For an accurate analysis, the bond strengths of specimens that failed after steel yielding
were excluded in the comparison. Figure 9 shows that the bond strengths of uncoated
rebars with 1% and 2% fibers increased by 6% and 12.7%, respectively, while those of
UHPC-coated rebars with 0.2%, 0.4%, and 0.6% fibers increased by 23.4%, 32.0%, and 40.3%,
respectively. The increase rate of the bond strength of the UHPC-coated rebar with a low
fiber content was much higher than that of the uncoated rebar with a high fiber content.
This means that the UHPC coating promotes the increase in the bond strength of the rebar.
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Figure 9b shows that the bond strength of the UHPC-coated rebar increases by about
15 percent compared to the uncoated rebar. Figure 10a,b show the maximum slip ratios of
uncoated rebars [32] and UHPC-coated rebars, respectively. The maximum slip ratio was
calculated by dividing the slip of each specimen at peak load by the average value of the
slip of the uncoated rebar without fiber. Contrary to the change in bond strength ratio, the
increase in the slip ratio of the uncoated rebar was greater than that of the UHPC-coated
rebars. The slip values of the uncoated rebars with 1% and 2% fibers more than doubled,
while those of the UHPC-coated rebars with 0.2%, 0.4%, and 0.6% fibers were almost the
same as for the rebar without fiber. This means that the UHPC coating increases the initial
bond stiffness of rebar containing fiber, which will be described in detail in the next section.
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3.3. Initial Stiffness Influence

The test specimen (21-N) without the UHPC coating on the reinforcing bar’s surface
showed a large slip with a gradual rising bond stress, regardless of the type of steel fiber.
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On the other hand, the test specimen (21-C) reinforced with UHPC between the reinforcing
bar and the concrete body showed high initial stiffness due to the strong formation of
bonding traction at the interface (Figure 3). In the test specimen reinforced with steel
fiber, the overall initial stiffness was greater than that of the simple UHPC-coated rebar.
In particular, compared to HSF, the fiber reinforcing effect was more pronounced in the
test specimen containing CSF and CSSF, while the change in stiffness was also markedly
improved due to the increase in the fiber mixing rate (Figures 5–7). On the other hand, in a
study in which a concrete matrix was made with UHPC (f′c = 200 MPa) and then the rebar
pullout test was conducted, the initial stiffness was very strong with zero slippage due to
the strong chemical adhesion that occurred until the maximum load was reached [15,41].
In this study, the changes in slippage due to the initial stiffness during the pullout process
of UHPC-coated steel rebars reinforced with steel fibers were judged to be greater than that
of the specimen reinforced with the UHPC body.

It is known that the fiber content does not affect the initial bond stiffness of the rebar
because the fiber plays a role after the rebar has slipped to a certain extent [32]. Since the
UHPC increases the bond strength of the rebar but has little effect on slippage, as shown in
Figures 9 and 10, the effect of the UHPC coating on the initial bond strength is analyzed
in this section. Figure 11 compares the initial bond stiffness ratios of uncoated rebars [32]
and UHPC-coated rebars. The initial bond stiffness was calculated by dividing the load of
each specimen by the slippage, which corresponded to 40% of the maximum slippage of
the uncoated specimen. As shown in Figure 11a, the fiber content does not affect the initial
bond stiffness, while the UHPC coating significantly increases the stiffness. Increasing the
initial bond stiffness suppresses the bond cracking in the concrete.
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3.4. Analytical Modelling of UHPC-Coated Steel Rebars
3.4.1. Normalized Bond Strength

The normalized bond strength of the steel rebar embedded in ordinary concrete
showed a relationship with τmax = 2.0fc′0.5 [42]. On the other hand, the normalized bond
strength of the steel rebar embedded with UHPFRC exhibited a very high bond strength.
The relationship between the bond strength and compressive strength in the study by
Yoo et al. [20] was suggested to be τmax = 5.0fc′0.5. In this study, a test specimen was
prepared using ordinary concrete, with a thin layer of UHPC coated on the steel bar surface,
and the change in bond strength was observed by mixing a certain ratio of structural
steel fibers into the concrete matrix. As a result of the test, the normalized bond strength
increased to about 2.8 in both the specimen simply reinforced with the UHPC coating and
the specimen mixed with a certain ratio of steel fibers (Figure 12).
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Figure 12. Normalized bond strengths of UHPC-coated steel rebars.

3.4.2. Predicting Bond Stress–Slip Behavior

Bond behaviors between the reinforcing bar and concrete matrix generally describes
three kinds of properties [43]. First, the chemical bond created in the interface causes
adhesion resistance. Second, the frictional resistance against the slip growth in the interface
is created. Third, the irregularity of the interface from the mechanical interlocking attributes
to the difference in behavior of the bond–slip curve. In this study, an additional interface
from the UHPC coating was created and its effect on the debonding mechanism against the
bond–slip behavior was addressed by analyzing previously used bond behavior models.
The BPE model [44] for steel bars was developed to explain the bond–slip behavior, as
shown in Figure 13:

τ = τmax

(
S
S1

)α

for S ≤ S1 (3)

τ = τmax for S1 ≤ S ≤ S2 (4)

τ = τmax −Kd (S− S2) for S2 < S ≤ Sr (5)

τ = τr for S ≥ Sr (6)

where τ and S are defined as the bond stress and the corresponding slippage, respectively;
α and Kd are the parameters that can be determined from the curve fitting of the exper-
imental results; τmax and τr are the maximum bond stress and the residual bond stress,
defined as the bond stress and the corresponding slippage, respectively; S1, S2, and Sr
are the corresponding slippage values for the maximum bond stress, the border of the
maximum bond stress plateau, and the residual bond stress, respectively. The other model
for representing the bond–slip behavior is the CMR model [45], defined as:

τ = τmax

(
1− e

−s
sr

)β
for S ≤ S1 (7)

where sr and β are parameters that can be determined from the curve fitting coefficients.
Figure 14 compares the results of the predicted BPE and CMR models with the experimental
bond–slip behavior. The increase in the structural steel fibers reduced the slippage at the
maximum load and increased the maximum bond stress. The predicted CMR models
proposed by Cosenza et al. [45] matched well with the bond stress–slip response for the
UHPC-coated steel rebars. The results using UHPC as a concrete matrix agreed well with
the results reported by Yoo et al. [15]. The difference from Yoo et al.’s results was that the
UHPC was thinly coated on the steel rebar or composed the entire matrix. It was judged
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that the experimental value from the CMR model was predicted well, regardless of the
composition of the concrete matrix in the section where the maximum load was reached.
The parameters used for predicting BPE and CMR models are arranged in Table 6.
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The slip values (S1, S2) corresponding to 95% of the maximum bond stress were
determined to define the second stage of the BPE model using Equation (8) by considering
the effects of the UHPC coating and steel fiber volume in the concrete matrix. These points
represent the borders between stage 1 and stage 2 as well as stage 2 and stage 3. The
parameters of the proposed stages 2–4 (Equations (9) and (10)) were calculated and are
reported in Table 7. Figure 15 presents a proposed model from the ascending stage to final
the stage for the pullout behavior of the UHPC-coated steel rebar, while Figure 16 shows
the predicted pullout curve compared to the experimental results for all specimens.
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Table 6. Parameters for the ascending parts of existing models.

Specimen τmax (MPa) Sm (mm)
BPE CMR

α β Sr

21-N 15.40 1.63 0.30 0.80 0.45
21-C 17.76 1.74 0.35 0.80 0.67

21-C-0.2-HSF 18.56 2.22 0.33 0.80 0.65
21-C-0.4-HSF 19.44 1.41 0.25 0.80 0.50
21-C-0.6-HSF 20.15 1.86 0.21 0.80 0.47
21-C-0.8-HSF 20.75 1.49 0.20 0.80 0.43
21-C-1.0-HSF 21.11 1.80 0.18 0.80 0.41

21-C-0.2-CSF 19.78 1.44 0.28 0.80 0.52
21-C-0.4-CSF 20.84 1.17 0.22 0.80 0.25
21-C-0.6-CSF 22.89 1.80 0.27 0.80 0.55
21-C-0.8-CSF 22.90 0.80 0.06 0.80 0.22
21-C-1.0-CSF 24.86 0.88 0.09 0.80 0.42

21-C-0.2-CSSF 18.66 0.52 0.30 0.80 0.33
21-C-0.4-CSSF 20.72 1.20 0.28 0.80 0.30
21-C-0.6-CSSF 21.77 1.88 0.25 0.80 0.28
21-C-0.8-CSSF 23.02 1.20 0.23 0.80 0.25
21-C-1.0-CSSF 23.19 0.72 0.15 0.80 0.16

τ = 0.95τmax for S1 ≤ S = VfSmax ≤ S2 (8)

τ = 0.95τmax −Kd (S− S2) for S2 < S ≤ Sr (9)

τ = τr for S ≥ Sr (10)

Table 7. Experimental results of the proposed model.

Specimen 0.95τmax
(MPa) S1 S2

Kd
(MPa/mm)

τr
(MPa)

21-N 14.10 1.22 2.07 3.20 4.94
21-C 16.96 1.37 2.52 3.91 5.81
21-C-0.2-HSF 17.40 1.65 2.78 2.78 6.30
21-C-0.4-HSF 18.59 0.93 1.90 5.12 6.26
21-C-0.6-HSF 19.00 1.37 2.59 3.74 7.11
21-C-0.8-HSF 19.83 1.22 2.01 4.97 7.21
21-C-1.0-HSF 20.01 1.25 2.34 3.96 7.76
21-C-0.2-CSF 18.67 0.92 1.85 5.10 6.27
21-C-0.4-CSF 19.49 0.82 1.81 7.65 7.02
21-C-0.6-CSF 21.96 1.02 2.32 5.01 7.26
21-C-0.8-CSF 21.53 1.15 3.64 3.96 9.80
21-C-1.0-CSF 23.67 0.73 5.70 4.81 7.34
21-C-0.2-CSSF 17.52 1.00 2.18 8.13 9.97
21-C-0.4-CSSF 19.46 0.67 1.63 3.80 12.17
21-C-0.6-CSSF 20.43 1.19 2.43 2.91 8.19
21-C-0.8-CSSF 22.13 0.70 2.05 4.08 13.86
21-C-1.0-CSSF 21.86 0.78 4.87 2.02 12.48
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The prediction models for the bond–slip behavior of UHPC-coated steel rebars with
the addition of different steel fibers into the concrete matrix offered reasonable prediction
results. The ascending branches before the maximum load were predicted using the CMR
model (Equation (7)) and BPE model (Equations (8)–10)), which were modified and applied
to predict the post-behavior after the maximum load.

4. Conclusions

The application of ultra-high-performance concrete for conventional steel rebar has a
great effect on the improvement of the bond–slip behavior. The excellent surface bonding
with minimized porosity on the steel rebar caused a significant change in the de-bonding
mechanism before and after the maximum load. Based on the results of the experimental
study, we proposed reasonable prediction models of the monotonic bond performance by
applying existing models. The following conclusions can be drawn:

1. The thin layer of UHPC coating on the surface was strongly attached to the reinforcing
bar and bond failure due to slippage was observed at the UHPC-OPC interface
(interface 2) by inducing the integral behavior;

2. The UHPC-coated reinforcing bar significantly improved the bond strength and
pullout performance by forming a new interface, while the addition of steel fibers
improved the overall performance of the adhesion–slip behavior. Among the fiber
types, the crimped steel fiber had the highest effect on the bond performance;

3. The bond failure modes were sensitive to the thin coating of UHPC, creating an
additional interface between the steel rebar and concrete matrix. Most of specimens
had high residual bond stresses compared to the control specimen. For the 0.8%
and 1.0% fiber volumes in both CSF and CSSF specimens, the strain hardening of
the steel rebar against the pullout load was created, which delayed the bonding
failure mechanism;

4. The prediction models were proposed by analyzing existing models (BPE, CMR). The
CMR model fitted the ascending branches well compared to the BPE model before the
maximum load. After the maximum load, a prediction model for the residual load
was proposed by modifying the existing BPE model through a comparison with the
experimental data.
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