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Abstract: Foot sole temperature, besides its importance in thermal comfort, can be considered an
important factor in identifying tissue injuries due to heavy activities or diseases. Hyperthermia,
which is a raise in the foot temperature, increases the risk of diabetic ulcers considerably. In this
study, a model is proposed to predict the foot sole temperature with acceptable accuracy. This
model for the first time considers both the thermal and mechanical properties of the shoe sole, the
intensity of the activity, the ambient condition, and sweating, which are involved in the thermal
interaction between the sole of the foot and footwear. Furthermore, the proposed model provides
the opportunity to estimate the contributions of different parameters in foot thermal regulation by
describing the interaction of activity, duration, and intensity as well as sweating in influencing the
foot sole temperature. In doing so it takes into account the relative importance of heat capacitance
and the thermal conductivity. The results of this study revealed that sweating is not as effective in
cooling the ball area of the foot while it is the principal contributor to thermal regulation in the arch
area. The model also showed the importance of trapped air in keeping the foot warm, especially in
cold conditions. Based on the simulation results, in selecting the shoe sole, and in addition to the
conductivity, the thermal capacity of the sole of the shoe needs to be considered. The developed
analytical model allowed the investigation of the contribution of all the involved parameters in foot
thermal regulation and has shown that a different foot temperature can be achieved when the amount
of material versus air is changed in the insole design. This can have practical implications in the
insole design for a variety of conditions such as hypo and hyper-thermia in physical activities in
sports and exercise settings.

Keywords: footwear; thermal comfort; foot sole temperature; sweating, plantar soft tissue

1. Introduction

In the design of footwear, usually, aesthetics and comfort are the main important
factors considered, and thermal characteristics are not commonly taken into account.
Hence, limited studies can be found that have a focus on the thermal characteristics of
the footwear and the foot thermal regulation in a shoe [1–5]. The majority of the studies
about footwear heat transfer deal with keeping feet warm in cold conditions [1,4,6–9].
Generally, feet are kept warm using thermal insulation or an electric heater pad to inhibit
or compensate for the heat loss from the foot sole to the environment. However, the other
aspect of foot thermal regulation involves cooling. The human body’s mechanical efficiency
is not more than 20~25% [10] and the rest of the energy dissipates to the environment in
the form of heat. Consequently, the foot as a body thermal radiator [11] is responsible for
dissipating heat. It was observed that in vigorous physical activities such as running, the
temperature of the midsole can reach 50 ◦C or higher during a summer daytime [12].

Appl. Sci. 2022, 12, 6806. https://doi.org/10.3390/app12136806 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136806
https://doi.org/10.3390/app12136806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3896-0774
https://orcid.org/0000-0002-2998-2883
https://doi.org/10.3390/app12136806
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136806?type=check_update&version=2


Appl. Sci. 2022, 12, 6806 2 of 14

Cooling feet is important for two reasons: first, thermal comfort is related mainly to
skin temperature [13], and for feet, this comfort depends more on skin temperature rather
than moisture [14]. The second and even more important reason, is that excess foot sole
temperature is associated with diabetic foot ulcers [15–17].

Few experimental methods to measure the foot temperature and footwear thermal
insulation assessment exist [2,3,5,18,19]. To assess the footwear thermal insulation, a
plastic bag filled with hot water is usually placed inside the shoe to occupy the shoe space
perfectly, and then, the temperatures of the shoe’s different parts are measured during
the time [5,20]. Some other experiments involve measuring the temperature in situ, by
thermocouples during walking or running [2,3,18,21–23]. A comprehensive study in this
field was conducted as a series of experiments by Shimazaki et al. [2,3,23,24].

Despite the relatively developed models to assess the mechanical behavior of
footwear [25–27], there is currently no accepted model to justify the experimental results
and predict the foot sole temperature. Recently, Nemati et al. [28] proposed an analytical
method to predict the foot sole temperature during running and jogging at different speeds.
In their model, they accounted for both the thermal and mechanical properties of the shoe
sole. The model was then validated against experimental data and found to have a very
good agreement between the measured foot sole temperatures and the predicted values.
That model enables the designer to compare, for example, the softness of EVA12 and the
superiority of the thermal properties of EVA08. The model has an analytical solution that
can be used to accurately predict the arch area temperature for the initial duration of activity
as up to 20 min during slow walking at 3 km/h and for up to 15 min for running at 9 km/h.
However, after these times, the model over-predicts the foot sole temperature. Nemati et al.
claimed that this may be due to the fact that the effect of sweating was not considered in
their study [28]. Since the foot is capsulated inside the shoe, it is not possible to exchange
heat to ambient environment by radiation or convection, efficiently. Therefore, sweating is
the only effective temperature-controlling mechanism which relies on latent heat. While
sweating is an effective factor in cooling feet, further care is required in modeling to assess
the effect of sweating on the foot temperature.

The main aim of this study was to develop a model which can predict the temperature
at the ball area and arch area in the first instance and to assess the accuracy of the model in
predicting the foot sole temperature.

2. Model Development

The presented mathematical model is based on the following experimental scenario
in which candidates wear the shoes without socks and stand still for a long time (around
10 min). At this time, the foot plantar surface and shoe sole reach thermal equilibrium,
i.e., the shoe sole and foot plantar skin have the same temperature at their interface. Then,
jogging commences for around 30 min. More detail of the experiment can be found in
Section 3.

Based on the above, a transient conductive heat transfer equation can be considered
for the shoe sole as follows [29]:

ks
d2T
dx2 + q′′′Gen = ρscps

dT
dτ

(1)

where, ρs and cps are shoe sole density and specific heat properties, respectively. q′′′Gen is the
average heat generation rate per unit volume of the shoe sole due to viscous work during
the stance phase of gait (Section 2.2). T is the temperature at any point along the shoe sole
thickness at any time, τ.

Since the person has started the exercise from a standstill condition (please refer to
Equation (12) in Section 2.3), therefore, there is a linear temperature distribution as the
initial condition of Equation (1), i.e.,:

T(x, τ = 0) = (T∞ − Tf 0)
x
l
+ Tf 0, . . . 0 ≤ x ≤ l (2)
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The boundary conditions at the inner surface of the shoe sole and the outer surface of
the shoe sole are, respectively:[

q′′met(τ)− q′′sw = −ks
dT
dx

]
x=0

(3)

[
h(T − T∞) = −ks

dT
dx

]
x=l

(4)

where, as discussed earlier, q′′met and h are the metabolism heat flux as a function of time
and convective heat transfer coefficient, respectively, that will be discussed later. q′′sw is the
evaporative cooling rate due to sweating.

2.1. Convective Heat Transfer from Shoe Sole to Air

During walking/jogging, the outsole of the shoe is mainly cooled by air, forced
convective heat transfer (q′′conv in Figure 1) and the air average velocity over the shoe is
equal to the person walking/jogging velocity (i.e. walking or jogging under zero wind
condition). Considering, the outsole as a flat surface, the average convective heat transfer
coefficient (h) can be calculated as [30]:

h = 0.037
ka

L
Re4/5Pr1/3 (5)

where L is the shoe outsole length. In the above equation:

Re =
ρa·V·L

µ
(6)

Pr =
µa·cpa

ka
(7)
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2.2. Heat Generation in Shoe Sole due to Periodic Loading–Unloading Condition

During the jogging, the shoe sole is periodically under the loading-unloading con-
dition. The shoe sole is often constructed from viscoelastic materials (e.g., Polyurethane
Elastomers, EVA foam, etc.) because of their shock-absorbent behavior [24,31]. For jogging
activity, under the harmonic loading–unloading condition, viscous heat generates inside
the shoe sole (q′′′Gen).

For this harmonic loading as shown in Figure 2, the volumetric generated heat during
one period of the harmonic strain excitation is [32]:

Ud = πε2
0E′′ (8)

ε0 =
σ0

π

√
(E′′ )2 + (E′)2

(9)
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E′′ and E′ are loss modulus and storage modulus, respectively. In addition, ε0 and σ0
and are strain and stress amplitudes, respectively.

Walking is also a harmonic motion. An example of the time-dependent gait motion
pattern is presented in Figure 3, in which, the contact force (normalized by the person’s
weight) and the contact area for walking speed V = 3 km/h can be considered. It is
known that the maximum contact force value depends on the gait speed and it is higher
at higher velocities. However, the average contact area is independent of gait speed [2].
Furthermore, the maximum contact force can be beyond the body’s weight at foot landing
during running [33].

The stress amplitude, σ0, is equal to the maximum contact force divided by the average
contact area. The average contact area is defined as the average foot sole area that is in
contact with the shoe sole during walking.

Considering the above explanation, the volumetric generated heat can be calculated by
dividing the volumetric generated heat (Equation (9)) by the period time (τStance + τSwing):

q′′′Gen =
Ud

2
(
τStance + τSwing

) .
Acont

A
(10)

For a harmonic loading, (Figure 2) a full period of a harmonic strain excitation includes
both compression and expansion, while during walking, as shown in Figure 3, only the
compressive loading is included (one-half of the harmonic cycle). Consequently, factor
2 appears in the denominator of Equation (10). Moreover, based on Figure 3, since the
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contact area, Acont, is different from the outsole area (the heat transfer area), Equation (10)
is multiplied by Acont

A .
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2.3. Metabolism Rate Assessment during Walking/Jogging

The described experiment [3] was comprised of two steps. After wearing shoes and
10 min of rest, participants walked for 30 min. So, at the end of the first 10 min, it can
be expected that the foot and shoe have reached a thermal equilibrium (Figure 4). In
the absence of any mechanical work due to walking, and for this steady-state condition,
the governing equation (Equation (1)) is reduced to Equation (11) with the following
boundary condition.

ks
d2T
dT2 = 0

T(x = 0) = Tf 0

T(x = l) = TG

(11)

where ks is the shoe sole thermal conductivity and T is temperature. l is the shoe sole
thickness. Tf 0 and TG are the average foot sole temperature and ground temperature,
respectively. Equation (11) is an ordinary differential equation with a solution in the
form of:

T(x) =
(

T∞ − Tf 0

) x
l
+ Tf 0, . . . 0 ≤ x ≤ l (12)
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This would be the initial condition at the begging of exercise.
Because of the thermal equilibrium and steady-state condition, the dissipated heat

flux from the foot sole is equal to (Figure 4):

q′′met0 = ks
Tf 0 − TG

l
(13)

Starting from the rest condition to walking, the metabolism rate increases sharply by
factor F:

q′′met(τ) = F.q′′met0 (14)

The metabolism intensification factor (F) is a function of the gait speed and is adopted
from Kipp’s experimental correlation [34].

F(V) = 1.3
0.009V2 + 0.002V + 0.082

0.009V2
re f + 0.002Vre f + 0.082

(15)

Vre f is 0.833 m/s (3 km/h).

2.4. Latent Heat Loss due to Sweating during Walking/Jogging

The evaporation of sweat is an effective cooling mechanism for thermal regulation.
Neither the sweating rate, nor the evaporation rate is uniform over the skin surface. It will
be shown later that each part of foot sole has a different sweating evaporation. Cooling
due to sweating is more considerable in the arc zone and is negligible in the ball of the foot
zone. In the absence of more precise equations, the following equation is used to simulate
the sweating–cooling effect:

q′′sw = h f ghe × 4.7× 10−5 × (Psat − P)
(

Tf − Tf 0

)
(16)

Equation (16) was adopted from [35]. h f g = 2.43× 106 J/kg is the water latent heat [36].
According to Equation (16), the sweating rate increases by increasing the temperature
elevation

(
Tf − Tf 0

)
. In the above equation, P is the vapour pressure in vicinity of the ball
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zone (the area that sweating is considerable). Tf is the foot sole skin temperature and Psat is
the saturate vapour pressure at Tf . It was assumed that the vapour pressure at the skin is at
the saturated pressure [37,38]. So, when the vapor pressure reaches the saturated pressure,
evaporation stops. Psat can be estimated by the Antoine equation [36]:

Psat = 100 exp

(
18.956− 4030.18

235 + Tf

)
(17)

However, the vapor pressure can be defined based on relative humidity, RH:

P = RH·Psat (18)

and Equation (16) can be represented as:

q′′sw = h f ghe × 4.7× 10−5 × Psat(1− RH)
(

Tf − Tf 0

)
(19)

he is the evaporative heat transfer coefficient, which is proportional to the square root
of velocity [39]:

he = 0.000192× LR×V0.5 (20)

where LR is the Lewis ratio and approximately equals 16.5× 10−3 K/Pa.

3. Heat Transfer Modeling of a Shod Foot

The results of the current simulation were compared against the results from the
literature [3]. The experiment was comprised of two stages [3]. In that experiment, first,
participants wore the shoe with no socks, and after 10 min of rest, they did a jogging
exercise for 30 min [3]. Foot skin temperatures were measured at various points every
minute by thermocouples [3]. Participants were seven healthy adult males (1.72 ± 0.07 m
height, 61.8 ± 4.7 kg weight, and 23.8 ± 4.3 years old) [3]. The footwear was a running
shoe with a woven upper (Figure 5) [3]. The foot sole inside length is L = 25 cm (1 cm less
than the shoe outsole length due to shoe thickness) [3]. The experiments were performed in
a climate chamber with a constant air temperature of 25 ◦C, 58.5% RH, no solar radiation,
and wind for three different speeds, i.e., 3, 6, and 9 Km/h [3]. More details can be followed
in [3].
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The shoe sole was made-up of EVA08, and its properties are presented in Table 1:

Table 1. EVA08 thermal–mechanical properties based on what was reported in [23].

cps

(J·kg−1·K−1)
ks

(W·m−1·K−1)
ρs

(kg·m−3)
E′′

(Pa)
E′

(Pa) Hardness

2585 0.11 240 1.55× 106 12.6× 106 A45
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Thermo-physical properties of air are also presented in Table 2.

Table 2. Air thermo-physical properties at 25 ◦C based on what was reported in [30].

Temperature
(◦C)

cpa
(J·kg−1·K−1)

ka
(W·m−1·K−1)

ρa
(kg·m−3)

µa
(Pa·s)

25 1006.96 0.0261 1.171 1.84× 10−5

35 * 1007 0.0269 1.135 —
* is used in Section 4.

For this experiment, the average contact area is 0.006 m2 for all gait speeds and the
recorded maximum contact force is reported in Table 3 for each velocity. The average bare
feet temperature at the beginning of the jogging was Tf 0 = 34 ◦C.

Table 3. Maximum contact force in percent of body weight (%B.W) for different gait speeds as
reported in [2].

Speed
(km/h) 3 6 9

Max. Contact force
%B.W. 100 110 170

The equations were solved numerically using the Crank–Nicolson scheme. Since the
set of equations is nonlinear, they had to be solved iteratively. To validate the numerical
method, the problem described in [28] was solved numerically and compared with the
proposed analytical solution in [28]. The maximum considered difference was less than
0.05%. The foot sole temperature rises

(
Tf − Tf 0

)
were calculated for three speeds with

and without considering the sweating evaporative heat loss. The results are compared with
experimental measurements based on [3], as presented in Figure 6.

A good agreement can be observed between the experimental and numerical results
(Figure 6). According to Figure 6, the maximum increase in foot sole temperature after
30 min is 6 ◦C for a gait speed of 3 km/h. This value is 8 ◦C and 11.5 ◦C, for 6 km/h and
9 km/h, respectively.

Figure 6 shows that for a gait speed of 3 km/h, the effect of sweating on cooling
is not strong and all curves, i.e., the numerical results with and without sweating and
experimental measurements for ball and arch, are approximately overlapping. However, at
higher speeds, especially for 9 km/h, the effect of sweating is very considerable. For a gait
speed of 9 km/h, after the first 15 min, sweating as a thermoregulation mechanism comes
into play and cools the arch area. The predicted temperature-time trend with sweating
much closely replicate the temperature measured under the arch area while temperatures
predicted without sweating more closely match the temperature-time trend at the ball of
the foot.

For a gait speed of 6 km/h, sweating-induced cooling is triggered at a later time
around 20 min, while at this speed the sweating at the ball zone seems to be negligible
(Figure 6b).
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4. Illustrative Example

The results of this study show that sweating plays a principal role in the thermal
regulation of the arch area. As an example of the application of the developed method,
the effect of a porous turf-like insole design on foot temperature can be investigated. A
schematic of the fibrous insole is shown in Figure 7. This insole is comprised of longitudinal
fibers arranged in an aligned layout on a base. The thickness of the base is 1 mm and the
length of the fiber is 10 mm. The fiber diameter is 1.2 mm (center to center distance) with
the variable pitch.
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The insole is to be located inside the specified shoe for medical purposes. It was as-
sumed that the insole material is thermoplastic polyurethane with the properties mentioned
in Table 4.

Table 4. Thermoplastic polyurethane properties.

cpI

(J·kg−1·K−1)
kI

(W·m−1·K−1)
ρI

(kg·m−3)

1700 0.258 1130

To consider the thermal properties of the insole, it was considered as a porous media,
and properties were assumed as a volume-weighted average of air at 35 ◦C (Table 2)
and thermoplastic polyurethane. To find the effective thermal conductivity, two different
constant temperatures were assumed for the top and bottom of the insole and the 3D
steady-state conduction heat transfer equation (Laplacian of temperature) was solved for
two conjugated domains (air and thermoplastic polyurethane). Then, this was equated to a
1D heat transfer with the same temperature difference, the same geometry, and the same
heat transfer rate to find the effective thermal conductivity. Results are presented in Table 5.
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Table 5. Effective properties of the insole.

Pitch
(mm)

cpeff

(J·kg−1·K−1)
keff

(W·m−1·K−1)
ρeff

(kg·m−3)

1.5 1386.7 0.145 619.6
2 1248.1 0.096 393.9

2.5 1184.0 0.073 289.5
3 1149.2 0.060 232.7

Simulations were performed at speeds of 3 and 6 km/h. To find the extreme values of
temperature, sweating was omitted. Results are presented in Figure 8.
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Based on Figure 8, the presence of the insole causes a sharp temperature increase
at the beginning of the activity, which is mainly due to trapped air between the fibers.
This shows the importance of the presence of still air in keeping the foot warm. It was
interesting to note that the difference between the “without insole” condition and the insole
with a pitch of 1.5 mm decreases in the course of jogging. This shows the importance of
insole heat capacity (ρe f f cpe f f ), which prevents the temperature rise and keeps the foot
sole temperature cool. So, in the design of an insole, both thermal conductivity and heat
capacity must be considered.

5. Conclusions

An increase in the foot temperature raises the risk of plantar soft tissue injuries. So,
the design of a comfortable shoe sole with proper thermal specifications is very important.
However, the insole design is challenging as the effective parameters and the phenomena
that regulated the foot temperature are complex. In this study, a comprehensive model was
developed to predict the temperature of the barefoot sole in a shoe during walking and
jogging. The results were validated against the experimental measurements. The effects of
both the thermal and the mechanical properties of shoe soles were considered. Furthermore,
the cooling effect due to sweat evaporation came into account as was presented at three
different gait speeds. It was revealed that sweating is an effective parameter in foot arch
zone thermal regulation while it is negligible at the ball of the foot area.

The presented method enables designers and researchers to investigate the interaction
of different parameters and their impact before doing a large series of experiments. The
study revealed the importance of a trapped layer of air in warming the foot sole and
showed the importance of shoe sole thermal capacity besides its conductivity.

As an illustrative example, the effect of wearing a porous turf-like insole concept was
investigated using the developed analytical model, where the foot sole temperature during
the different levels of activities was predicted. This has shown that a different foot tem-
perature can be achieved when the amount of material versus the air changes in the insole
design. This developed model can potentially decrease the cost of experiments considerably
by allowing an approximation of the insole design before producing the prototype.

As with any modelling approach, there are certain limitations that need to be taken
into account. Since participants in the experiment were barefooted, the effect of sock
properties such as material, thickness, and or humidity absorption can be considered in
future studies.
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Nomenclature

A Area
cp Specific heat
E′ Storage modulus
E′′ Loss modulus
F Metabolism intensification factor
h Average convective heat transfer coefficient
he Evaporative heat transfer coefficient
h f g Water latent heat
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k Thermal conductivity
L Shoe length
LR Lewis ratio
P Pressure
Pr Prandtl number
q′′ Heat flux
q′′′ Volumetric heat generation rate
Re Reynolds number
RH Relative humidity
T Temperature
l Thickness
Ud Dissipated energy per unit of volume in one period
V Gait speed
x Cartesian coordinate axis
Greek letters
ε0 Strain amplitude
µ Viscosity
ρ Density
σ0 Stress amplitude
τ Time
Subscripts
cont Contact
conv Convection
f Foot sole in the jogging condition
f0 Foot sole in the static steady condition
G Ground
gen Generation
I Insole
met Metabolism
s Shoe sole
sat Saturated
sw Sweating
∞ Ambient
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