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Abstract: The exploration and analysis of multidimensional data can be pretty complex tasks, re-
quiring sophisticated tools able to transform large amounts of data bearing multiple parameters
into helpful information. Multidimensional projection techniques figure as powerful tools for trans-
forming multidimensional data into visual information according to similarity features. Integrating
this class of methods into a framework devoted to data sciences can contribute to generating more
expressive means of visual analytics. Although the Principal Component Analysis (PCA) is a well-
known method in this context, it is not the only one, and, sometimes, its abilities and limitations
are not adequately discussed or taken into consideration by users. Therefore, knowing in-depth
multidimensional projection techniques, their strengths, and the possible distortions they can create
is of significant importance for researchers developing knowledge-discovery systems. This research
presents a comprehensive overview of current state-of-the-art multidimensional projection techniques
and shows example codes in Python and R languages, all available on the internet. The survey seg-
ment discusses the different types of techniques applied to multidimensional projection tasks from
their background, application processes, capabilities, and limitations, opening the internal processes
of the methods and demystifying their concepts. We also illustrate two problems, from a genetic
experiment (supervised) and text mining (non-supervised), presenting solutions through multidi-
mensional projection application. Finally, we brought elements that reverberate the competitiveness
of multidimensional projection techniques towards high-dimension data visualization, commonly
needed in data sciences solutions.

Keywords: high-dimensional data; dimensionality reduction; multidimensional scaling; artificial
intelligence; information visualization

1. Introduction

Datasets generated nowadays have become increasingly larger and more structurally
complex, generated from a diverse range of sources, such as relational and NoSQL databases,
web pages, texts, images, recordings, video, and others. The analytical effort to explore
these datasets is a challenging problem, although they could load valuable content for
discovering and understanding phenomena in many knowledge domains. The more data
collected, the more complex the analysis, thus causing graphical perception to be infeasible
due to the amount of information displayed on a screen [1]. Multidimensional data are
those with m ≥ 4 attributes for each data object and may be represented as families of
curves on the m-dimensional space [2]. Line and bar charts have long represented data
in several applications. Nevertheless, line-based visual metaphors are not scalable for
treating multiple variables at the same time, thus leading to problems of visual cluttering
and occlusions [3].

An efficient and comprehensive representation of multidimensional data are beyond
the capabilities of simple line and bar charts due to the complexity of the multidimensional
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structured data and the inability of these simple techniques to deal with large data vol-
umes on a screen. Information Visualization (InfoVis) aims to develop and apply visual
representations to model and understand attribute values, relationships, and extraction of
information from data [4,5]. In this context, a class of InfoVis techniques has been a stand
out for some time: the multidimensional projections. These techniques generate injective
mappings that transform multidimensional spaces into visual spaces (2D or 3D), preserving
structures and similarities of the original spaces as much as possible, such as relationships
between data instances or clusters’ presence [6–8]. This transformation is accomplished
through mathematical operations to embed the number of attributes to 2 or 3, allowing
m-dimensional data objects to be represented in Cartesian space.

Although it is not a recent concept, the research into new multidimensional projection
techniques development has been intensified in recent years. This rise of interest is due
to the wide range of applications that can benefit from visual representations of large
datasets with a large number of attributes [9], and the research into projection methods has
promoted the creation of visual tools that reveal relevant patterns and trends hidden in mul-
tidimensional data. Examples of successful applications involving projection techniques
can be found in the more diversified domains [6,10–12]. The current literature on multidi-
mensional projections has followed the recent developments, with many works reviewing
fundamental concepts, proposing taxonomies, and performance evaluations [7,13–18].

However, due to the profusion of new developments, we have identified some things
missing in the literature. Moreover, the different terminologies adopted in previous papers
and reviews can be somewhat confusing for the researchers starting into the subject and
even for those with some previous knowledge but (maybe) not specialized in InfoVis
methodologies. For example, each technique often cannot handle all the data types, as each
technique is tailored to efficiently handle one (or some) specific data type(s). In addition,
all the projection techniques require careful data pre-processing to explore their embedding
abilities properly. Nevertheless, we believe that multidimensional projection techniques
are highly informative tools that can add analytical capabilities to data scientists within the
context of knowledge discovery and data mining tasks; thus, a comprehensive discussion
regarding simplifying the projection technique environment is a need.

In this sense, we aim to present to the reader that multidimensional data analyses go
far from simple PCA. We will do it with a sufficiently detailed discussion of the leading and
more advanced different types of techniques applied to multidimensional projection tasks
through a vocabulary that unifies the many and different terms and definitions found in
previous works. We will also address taxonomies and essential concepts and considerations
that must be taken into account by the reader’s interest in applying projection techniques
on multidimensional data, from the appropriate data treatment to the possible distortions
and limitations of the obtained results.

The manuscript is structured as follows: Section 2 presents the research methodology
adopted for the collection of papers; Section 3 addresses the ground theory to understand
the multidimensional projection domain; Section 4 investigates multidimensional pro-
jection approaches and their applications; Section 5 shows discussions and applications;
Section 6 examines the challenges and future research directions concerning multidimen-
sional projections; finally, the Section 7 presents our final comments.

2. Method of the Systematic Review

A content analysis of the published literature was conducted to understand better how
the multidimensional projection techniques have evolved over the last few years. Such an
analysis systematically evaluates the available forms of communication, identifying and
classifying critical contributions to the field, clarifying trends and practices, and indicating
future and open research possibilities. Therefore, we elaborated so that the research goals
could be achieved, and we established objective criteria to define the relevant literature
and the appropriate reporting of the findings.
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Literature Search Procedure

To conduct a comprehensive search into multidimensional scaling multidimensional
projection literature, we collected and combined the research material mainly from three
databases: Association for Computing Machinery (ACM) Digital Library (https://csur.acm.
org/, accessed on 12 February 2022), IEEE Xplore Digital Library (https://ieeexplore.ieee.
org, accessed on 10 April 2022), and Elsevier’s Scopus (http://scopus.com, accessed on
10 April 2022), and search engines, such as Google Scholar (https://scholar.google.com,
accessed on 10 April 2022), Elsevier’s ScienceDirect (https://sciencedirect.com/, accessed
on 20 March 2022), and Thomson Reuters’s Web of Science (http://apps.webofknowledge.
com, accessed on 10 April 2022), were used in association with the databases.

We query “multidimensional projection”, “dimensionality reduction”, and “multidi-
mensional scaling” terms, mainly restricted to (but not only) the 2005–2022 period and
related to publications’ title, abstract, and keywords. Such a period was chosen to cover
most of the published literature not reported by previous surveys and including semi-
nal surveys. The following two criteria were employed over the search results to select
publications for a further revision:

• Papers published in peer-reviewed journals as articles and available online in English
are the priority sources. In addition to these papers, we extended our scope to
conference proceedings, arXiv e-Prints, thesis, dissertations, and books;

• Papers explicitly employ multidimensional data and multidimensional projection tech-
niques. Then, we excluded those articles that only list multidimensional projection in
keywords, allude to multidimensional data as datasets, or apply multidimensional pro-
jection without further explanation or reference to the specific methodology employed
to processing and presenting the information.

Papers that did not fulfill at least one of the selection criteria were removed from the
review. The queries returned 183 papers; after second filtering, only 131 were read in full.
Duplicates were removed; the first selection criteria were applied, and the second criteria
were used after carefully reviewing the texts. Finally, we reported 123 references here.

3. Ground Theory

This section provides an overview of definitions that should be considered when
applying and developing multidimensional projection techniques. Our intent is not only to
provide a comprehensive survey of multidimensional projection methods but also to discuss
essential features and particularities in the context of data analysis and visualization.

3.1. Data Multidimensionality

Formally, a multidimensional dataset can be expressed as a set of n instances
X =

{
x1, x2, . . . , xn

}
, in which each instance contains a vector of m items, xi =

{
v1, v2, . . . , vm

}
.

Each xi vector can be seen as a data object and is represented by a subset of attributes of
different data types, such as integers, reals, binaries, text, categorical, images, and others.
When xi has more than three attributes, the dataset cannot be represented in simple visu-
alizations such as those based on the Cartesian plane. In this case, the vector produces
families of curves in the m-dimensional space [19].

3.2. Basic Terminology

The literature regarding multidimensional projection, or even multidimensional data,
often utilizes many different terms to name similar concepts, which can lead to some
mistakes. For example, it presents terms such as “multidimensional”, “multivariate”, or
even “multivalued” for defining datasets in which each data object is composed of a set of
attributes. However, these terms are not consistently used [20], and we will adopt the term
“multidimensional” to denote datasets composed of multiple attributes with or without
dependence on each other.

https://csur.acm.org/
https://csur.acm.org/
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
http://scopus.com
https://scholar.google.com
https://sciencedirect.com/
http://apps.webofknowledge.com
http://apps.webofknowledge.com
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Since the beginning of this text, we have named each vector xi as data objects, but there
are terms such as “instance”, “observation”, “data item” or just “item”, “record”, “array”
or even “point”. We named the vectors xi from a dataset X as “data objects” or “instances”.

Another terminology is related to xi attributes, and one can find several terms denoting
them, such as “variable”, “dimension”, “property”, “characteristic”, or “feature”. We used
throughout the text the terms “attribute” or “feature”.

In addition, we will use the term “point” exclusively to name instances transformed
into the visual space. We finish this subsection by noting that matrix notation from mathe-
matics is standard to denote the xi data objects such as vectors. However, considering the
context of data analysis, we argue that the terms adopted here are in line with precise data
and mathematical terminology. This kind of explanation is due to the multidimensional
projection domain being closely related to matrix theory on mathematical grounds.

3.3. Multidimensional Projection

A multidimensional dataset X, with n instances xi ∈ Rm, can be represented as a
matrix Xn×m, where each row is a vector xi, and the columns represent the vector attributes.
According to Ware [21], high-dimensional datasets are those with m ≥ 12 attributes. Since
the visual space is limited to three dimensions, when the m-dimensionality increases, the
complexity of representing and interpreting data also increases.

In this context, techniques devoted to dimensionality reduction aim to present multidi-
mensional data from high-dimensional spaces as points in dimensionality-reduced spaces.
Thus, it is possible to use fewer dimensions to describe the original data, compacting large
datasets and reducing the computational effort required in their processing. According
to Pudil and Novovicova [22], there are two main categories of dimensionality reduction
methods: feature selection and feature extraction.

Feature selection identifies the non-significant features related to the analysis task,
omitting them to generate a subset containing only useful attributes that can efficiently
describe the input data [23]. Based on the assumption that the original dataset may
have redundant (or even irrelevant) attributes, the removal process of non-significant
features will generate a subset of useful features that automatically result in a reduced
data space [24]. In several cases, feature selection is sufficient to carry out data analysis.
However, there are situations in which it is challenging to identify a significant attributes
subset, limiting the use of feature selection to the pre-processing data phase. As feature
selection often does not result in a dataset of two or three dimensions, these methods are
not part of this research. (for a comprehensive overview of feature selection methods,
see Chandrashekar and Sahin [23]).

On the other hand, feature extraction methods try to reduce data dimensionality
by mapping the original dataset X from an m-dimensional space to a new dataset Y of
p dimensions, with p < m. The mapping process uses a single function or a group of
transformation functions to map the data, retaining the essential characteristics of the
original dataset [25]. When p ∈ {1, 2, 3}, there is a particular class of multidimensional
data mapping techniques called Multidimensional Projections (MDP) [7].

MDP maps multidimensional data to the Cartesian visual space, seeking to preserve
some information from the original space in the mapped (projected) space, such as the
distance relationships between the data instances [6]. Consequently, it is possible to create
a graphical representation from the projected points, to take advantage of the human per-
ceptual abilities to recognize structures or visual patterns based on similarities, particularly
those related to groups of elements [9]. Projection techniques have been attracting the
attention of the Information Visualization community for some time due to their broad
applicability as an analytical tool. Making the mapped data convenient for visualization,
tasks that involve distance exploration or neighborhood relations can be streamlined [6].

Tejada et al. [26] mathematically defined the multidimensional projection concept as
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Definition 1. Let X be a set of n data objects in Rm, with m > 3 and δ : Rm × Rm → R a
distance measure between the instances in Rm; Y be a set of n points in Rp, with p ∈ {1, 2, 3}
and d : Rp ×Rp → R a distance measure between points in Rp. A multidimensional projection
technique can be described as a function f : X → Y that aims to make |δ(xi, xj)− d( f (xi), f (xj))|
as close as possible to zero, ∀ xi, xj ∈ X.

Similarity and dissimilarity represent somewhat vague concepts, as they do not yet
have a well-established definition in the literature and may present different interpretations
depending on the application domain [7]. In the context of MDP, and to prevent any inaccu-
racy, we will adopt a geometric definition of (dis)similarity. Therefore, we established that
dissimilarity is a numerical measure used to indicate the “proximity” (distance) between
two data objects. The higher the dissimilarity value, the more distant and distinct the
objects are, according to some criterion or comparison function [27]. Inversely, a similarity
measure indicates how similar two objects are, with high values of similarity denoting
close and similar objects.

In this context, the concept of distance has a central role in multidimensional data
comparison and projection. An interesting set of dissimilarity metrics is the Minkowski
distances calculated as:

d(x, y) =
( n

∑
i=1
|xi − yi|k

) 1
k
, k = 1, . . . , ∞, (1)

being k a modification parameter. The changing of k generates well-known functions, such
as Manhattan distance (k = 1), Euclidean distance or L2 norm (k = 2), and Maximum
distance or Lmax norm (k = ∞). Several MDP techniques utilize Euclidean distance as the
dissimilarity metric, such as the ones proposed by Maaten and Hinton [28], Joia et al. [12], and
McInnes et al. [29]. Nevertheless, depending on the nature of the data and the application
domain under analysis, Euclidean distance may not be the best way to express similarities or
differences between data objects. A measure is considered a metric if it satisfies the metric
space postulates [30], and some measures do not satisfy them. Therefore, it may be convenient
to apply measures that do not meet the metric space properties in some cases. A deep analysis
of the different types of existing measures is beyond the scope of this paper.

Calculation of (dis)similarities can generate distortions owing to (i) significant dif-
ferences between vectors Euclidean norms, and (ii) features with values much larger or
much smaller than others can lead to projection results and force it to ignore the impor-
tance of other features [31]. According to Joia et al. [12], distortions are inevitable in the
multidimensional projection process, but it is possible to keep them as small as possible.

To avoid these situations, a scaling process is applied to each vector (vector normaliza-
tion) or data feature (features normalization or standardization). Scaling is one of the more
important pre-processing steps of projection techniques because it can unify the feature
space by forcing the unitary Euclidean norm of vectors or forcing features to satisfy a
specific statistical property [32].

Figure 1 illustrates the application of normalization before checking the similarities
between two data vectors. In this example, two sequences, A and B, have different graphical
curves in terms of range and magnitude (horizontal and vertical shifting). However, the
distance between A and B is proportional to the shifting, which can hide information about
the sequences’ similarity. In other words, if a proper normalization is not applied before
the projection task, the projection method may overestimate the distances, which leads
to distorted information regarding the correct amount of (dis)similarities among the data
vectors (indicated by the shaded area between the curves in Figure 1, right side). After a
vector normalization, one can determine the true similarities between the distinct curve
profiles [33].
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Following this example, each item xi of a multidimensional dataset X can be normal-
ized with:

x̂ij =
xij

‖xi‖
, (2)

being j less than m (the number of data features), and ‖ · ‖ the Euclidean norm. The
importance and effects of normalization were extensively documented in papers such
as Keogh and Kasetty [33].

0

02

4

6

8

10

12

12

1A

B

Non-normalized data Normalized data

Figure 1. Vector normalization is applied to improve the (dis)similarity measure process. The shaded
area between A and B sequences represents the real difference in magnitude between them. Source:
elaborated by the authors.

Another example of transformation is the z-score standardization applied to each
j-column of an X dataset, making columns’ mean equal to zero and standard deviation
equal to one. The process consists in subtracting all values of a j-column of its mean and
dividing the result by the standard column deviation as in

x̂ij =
(xij − x̄j)

σj
. (3)

And another common transformation is the min-max normalization, which converts
the j-column range [minxj , maxxj ] to a new range [minnew, maxnew] with a simple linear
transformation:

x̂ij = (xij −minxj)×
(

maxnew −minnew

maxxj −minxj

)
+ minnew. (4)

the new range is frequently [0, 1], and variations with other ranges and application of
logarithm and square root functions can be performed [32].

This section presented elementary approaches focused on multidimensional data
pre-processing real numerical values. However, other transformations may be more ap-
propriate depending on the data domain (categorical, textual, images, and others) and the
problem to be solved. There are several other ways to transform the data and measure its
dissimilarities according to the data context, and a detailed review on the subject can be
found in Zezula et al. [30].

3.4. Taxonomies Used in the Multidimensional Projection Area

The application of multidimensional projection techniques results in groups of points
embedded in a p-dimensional space. We define a group, or a class, as a set of instances;
however, there are some conceptual differences. A group can be formed by points per-
ceptually close in the visual space, generated by a clustering algorithm that applies some
dissimilarity measure in the data space. On the other hand, a class comprises objects that
share some intrinsic meaning previously known or revealed by a classification algorithm
that describes or distinguishes the objects belonging to the class [7].
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Different approaches have been proposed to map multidimensional data into visual
space, and the literature classifies them with some terminologies that share common
characteristics. Among the taxonomies found in the literature, we can cite the best known
and usually adopted as follows:

(I) According to the transformation type

Linear techniques are based on transformations that create linear combinations of
the data attributes, mapping them into a new space with a reduced dimensionality [9].
Formally, linear methods map the data using a function f : X → Y, which satisfies the
condition f (αxi + βxj) = α f (xi) + β f (xj), ∀ xi, xj ∈ X and α, β ∈ R [25]. Although many
MDPs apply linear resources in their processes, few approaches are truly linear, according
to the strict mathematical definition [7].

Linear methods are often computationally efficient and relatively simple to develop.
Once the transformation is calculated, the mapping of each instance in the Cartesian
space is performed with matrix multiplication. Nevertheless, they cannot properly handle
complex structures (such as data with nonlinear relationships between its attributes),
achieving unsatisfactory results in many real scenarios [34]. This characteristic tends
to generate representations with considerable distortions, which is a severe issue for
visualization tasks.

Nonlinearity arises in many problems, such as physical phenomena modeling, and
sometimes functions cannot satisfy linearity conditions that naturally motivate the devel-
opment of nonlinear projections. Nonlinear techniques aim to minimize an information
loss function usually supported by a mechanism able to relate the dissimilarities between
the instances in the high dimensional space with the distances between the p-dimensional
points [9].

Linear methods can present good results depending on the data distribution, but
they rarely outperform nonlinear techniques in terms of the ability to deal with complex
structures [16]. Another problem is the addition of new data subsets in the visual space.
Linear techniques require complete reprocessing to introduce a perturbation in the dataset
because they are based on matrix operations [9]. On the other hand, nonlinear approaches
require only a small number of additional iterations to incorporate new data into the
projection.

(II) According to the projection nature

The concept of locality is used to distinguish two properties of projections nature:
global modeling and local mapping. Global modeling defines methods built in a single
transformation [12] and methods that seek to preserve original geometric relationships
between all pairs of data instances in the transformed space [6]. That is, global modeling
forces close points in the original space to remain close to the projected space, while distant
points remain distant in the visual space.

Local mapping techniques are also based on neighborhood information, but they seek
to preserve relationships considering only the surroundings of a small neighborhood in the
m-dimensional space [6]. Close points to an instance in the high dimensional space must be
projected as close as possible to that instance in the visual space. Generally, local methods
build a family of transformations to project the data; therefore, instances are not mapped
by a single transformation but using a set of local mappings in which each mapping will
project a subset of data, preserving the local structures of the dataset.

Local methods can rely on global mechanisms to perform multidimensional projections
or combine global and local properties, generating hybrid approaches. For example, a
small subset of data samples (often called control points) is defined and projected, relying
on global relationships. From this initial mapping, the remaining instances are positioned
based only on their neighborhood relationships concerning each control point [12], which
maintains the essence of a local mapping.

In summary, global techniques are often accurate in preserving distances average
between objects, in global terms, but fail to preserve local relationships, besides being
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computationally more expensive. Moreover, according to Fadel et al. [6], preserving
distances as a whole tends to distort small neighborhoods. Thus, when the purpose is to
preserve neighborhoods, local techniques are more suitable than global ones.

(III) Other classifications

The taxonomy presented is the more widely adopted in the literature devoted to
MDP. However, other classifications have been proposed to characterize the properties
of different strategies. For example, projections can also be classified as interactive and
non-interactive according to their ability to admit user interventions during the mapping
process. In this sense, weighting mechanisms allow certain instances to have more influence
on the mapping, while control points can be used as user-specified “anchors”, which is
an important step to guide the projection sequence behavior [7]. Sadly, choosing an
appropriate set of control points to generate a mapping with less distortion as possible is a
complex problem [12].

There are other possible classifications, such as the ones related to method stability,
when the introduction of small perturbations in the data does not result in significant
changes in the mapping. Another classification addresses multilevel projections that contain
resources to allow the organization of large databases through hierarchies, creating different
levels of abstraction to reduce the visual clutter [7]. Projection methods can also be classified
according to their mathematical formulations related to the decomposition procedures or
the optimization methods adopted to perform the mapping. Maaten et al. [16] and Nonato
and Aupetit [7] conducted extensive reviews on techniques for reducing dimensionality,
classifying them in other subdivisions.

3.5. Evaluation of Projected Spaces

Projection techniques can approximate similar instances and segregate distinct ones,
grouping them in the visual space according to some (dis)similarity measure. Nevertheless,
as aforementioned, MDPs can generate different levels of distortions in the data neighbor-
hood. Therefore, to assess the distortions and quality of the views created, specialists map
real data classes or groups to a color space, allowing them to evaluate the projection results
visually. Sadly, this type of assessment can be subjective and complex due to the data
cluttering on the screen, and specialists utilize some measures to assess projections’ quality.

The best-known measure used to evaluate MDPs quality is the stress function [35],
which estimates the amount of information lost during the mapping process of data in-
stances. The function is similar to a standard deviation calculation and is defined as

stress =

√√√√√√ ∑
i<j

(dij − δij)2

∑
i<j

(δij)2 , (5)

where δij is the dissimilarity measure in the original space, and dij is the dissimilarity in the
projected space. The stress function can quantify the distortion degree generated through
the mapping process concerning the original space.

The results are in the [0, 1] range, and the closer to zero, the better the distances
preservation, with zero technically indicating a “perfect” projection. Although the stress
function helps evaluate the generated mappings, it is common to find divergences between
stress and visual projection interpretation [9].

Another measure is the neighborhood preservation index [10], which assesses the rate
of neighbors that are close in the high dimensional space and remain close in the projected
space. Some projection technique generates neighborhood distortions. For example, two
instances close to each other (or similar) in the original space can be projected too far, which
is a missing neighbor problem. On the other hand, two instances distant from each other
(or dissimilar) in the original space can be projected into the same neighborhood, a problem
that is named false neighbor (see Figure 1 in [7]). Note these two kinds of distortions that
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can affect the neighborhood preservation index. False and missing neighbors impact the
projection-based analysis in different ways [36] and can generate a degree of uncertainty
during the data analysis task.

The index is computed using:

NPk(i) =
|kNN(yi) ∩ kNN(xi)|

|kNN(xi)|
, (6)

where kNN(·) is the set of the k nearest neighbors of some instance xi in the original or yi
in the projected space [6].

To evaluate the projection of the entire dataset, one can take the mean of NPk(i) values
in the [0, 1] range, with results closer to 1 indicating mappings with better preservation of
neighborhoods concerning the original space.

The silhouette coefficient [37] is one of the more widely used qualitative measures to
check clusters’ quality, based on calculating the cohesion and separation between groups
of objects. Nonetheless, it has been primarily applied to assess the quality of projected
spaces [38,39]. The cohesion ai of some instance xi is calculated by averaging distances
between xi with all other instances belonging to the xi group. The inter-group separation bi
is defined by the minimum distance between xi and all the other instances belonging to the
other groups [12]. Therefore, the silhouette coefficient of some projected data instance xi is
computed as:

si =
bi − ai

max(ai, bi)
, (7)

and the average Silh of all these values determines the average width of the silhouette
coefficients of a dataset, considering Silh ∈ [−1, 1], and the higher its value, the better
the intra-group cohesion and inter-group separations. That is, projections that present a
silhouette close to 1 will have instances of the same group close to each other, with the
different groups distant from each other.

The measures described here present features considered an initial step to quanti-
tatively assessing MDPs. However, other measures are developed to evaluate the lay-
out generated by multidimensional projection techniques. A comprehensive analysis of
the different qualitative measures applied in the context of projections can be found in
Bertini et al. [40].

3.6. Influence of Graphical Perception and Visual Properties in Projection Analysis

Cleveland and McGill [41] defined visual perception as the ability of users to interpret
visual encodings and understand the information presented graphically. It is challenging
to extract the significance of complex data structures since their instances bear multiple
attributes that may vary individually and simultaneously. The well-known Gestalt theory
states that the global pattern perception of a scene cannot be explained by the sum of
parts [42]. In other words, a single element can present a specific context, but when
associated with other elements, they can represent different characteristics and contexts.

All in all, users need tools that explore the complex data features to reduce the cognitive
load involved in analyzing massive amounts of data, such as multidimensional projection.
However, how do we present data to users to explore their cognitive abilities to make the
information presented significant? In graphical terms, the Gestalt theory formulated some
interesting principles to “setup” the scenario more understandable, and we summarized it
as follows:

• Proximity principle—visual elements close in the visual space are preattentive (in-
trinsic and uncontrolled) processed as a group that shares similar features, even if
instances are grouped in a not explicit way;

• Similarity principle—elements represented by visual structures that share similar
features (size, color, orientation, symmetry, parallelism) are perceptually grouped;
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• “Common fate” principle—visual elements that undergo similar visual transforma-
tions tend to be mentally grouped. The dynamism of movement helps the viewer to
perceive which objects are related to the same action;

• Closure principle—elements delimited in areas with clear contours tend to be visually
grouped, even if they are not entirely continuous.

Color, position, size, user interaction, and other graphical properties are essential for a
suitable visualization layout. Moreover, a comprehensive MDP tool must present accurate
layouts that follow graphical properties that explore the human’s cognitive abilities, leading
to the visual transformation of raw data into information. The graphic metaphor commonly
applied to display data resulting from a projection is the scatter plot [43].

A classical 2D scatter plot maps values of a data object using symbols on the Cartesian
plane. For example, let S ∈ R2 be a dataset whose s instances record the mass of an
element measured over the interval t. Then, for each i point, the i-th symbol position
relative to the abscissa axis is horizontally determined through the ti value in which si was
measured. At the same time, the position relative to the ordinate axis of that i-th symbol
is vertically determined by the si value, measured in ti. The advantage of a scatter plot is
the consumption of only a few pixels to represent a single data object, standing out as a
space-efficient chart. In addition, they are well-established metaphors commonly used in
the scientific and business context [44].

According to McLachlan et al. [45], to learn quickly about visualization tools, one
must explore the user experience and intuition; therefore, graphic representations should
be familiar to the user. In this sense, scatter plots are straightforward; however, they
have limitations and could suffer from visual scalability. Occlusion occurs as the number
of points becomes larger than screen resolution [46]; overlapping occurs when there are
very close dots on each other, obscuring the individual legibility of the symbols [44]. An
important issue regarding the scatter plots in a multidimensional projection context is:
that there are no coordinated axes. The reason is that variables belonging to different
scalar types are processed to extract similarity information between each instance, and,
in the visual space, the transformed data points must express their relative position as
information. According to Nonato and Aupetit [7], references such as orthogonal axes
perturb the analysis by raising questions about the meaning of the axes, inducing users to
read the absolute positions of points in visual space.

In the following sections, we will discuss approaches and techniques that apply the
points reviewed in this section.

4. Multidimensional Projection Approaches and Domains

This section addresses the main dimensionality reduction techniques found in the
literature, emphasizing the review of well-established multidimensional projection ap-
proaches. This methodological choice is justified due to the recent interest in applying this
approach in the information visualization context, that is, when the p-dimensional space is
2D or 3D. Here, each method will be described in a subsection containing discussions about
its characteristics and properties and some variations and improvements. The following
subsections were organized according to the development chronology of the methods.

4.1. Principal Component Analysis

Principal Component Analysis (PCA) was introduced in the earlier 1900s. It was prob-
ably the first dimensionality reduction technique and has been well-known and used [47].
PCA maps data from a high dimensional space to a low one by encountering orthogonal
linear combinations that better represent original data variability. These combinations
are named principal components. The process is performed so that the first component
is related to the highest data variance direction; the second component is related to the
second higher variance, orthogonal to the previous component, and so on.
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One can obtain the components a1, a2, . . . , ap by calculating the covariance of the m
attributes of a dataset X (Section 3.3). Being xi and xj two attributes of X and x̄i, and x̄j
their means, the covariance between them is defined as

cov(xi, xj) =
1

n− 1

n

∑
k=1

(xik − x̄i)(xjk − x̄j) (8)

With this formulation, it is possible to build a square matrix Cm×m with each posi-
tion representing the covariance between each data attribute pair. Following, spectral
decomposition can be applied to encounter eigenvectors and eigenvalues by writing C as:

C = UΛUT , (9)

such that Λ = diag(λ1, λ2, . . . , λm), with λ1 ≥ λ2 ≥ · · · ≥ λm, is a diagonal matrix with
the eigenvalues of C and Um×m is the orthogonal matrix with its eigenvectors. Finally,
the principal components that represent the p-dimensional space are generated by the
application of eigenvectors in the data matrix:

A = X× [u1, u2, . . . , up], (10)

with each ui being the columns of the U matrix.
It is possible to obtain the number of principal components equal to the number of

original data dimensions. However, the number p of dimensions should be sufficiently
large to represent the initial space without significant information loss. It is important to
observe that the first components generated by PCA can absorb the more significant part of
data variance. This characteristic makes PCA a suitable approach to identifying data trends
and patterns [48], beyond weeding out part of data noise and catching data variability in a
few dimensions.

Due to numerical and practical questions, PCA is implemented by Singular Value
Decomposition (SVD), which can be similarly interpreted as the eigendecomposition afore-
mentioned. The process centers on X columns, subtracting each value by the respective
column mean. SVD decomposes the centered matrix with

B = USVT , (11)

being U columns left singular vectors, V columns right singular vectors, and S a diagonal
matrix with the singular values. Then, the p-dimensional space is created with A = US [49].
In this case, covariance was not calculated, but the centralized data force the meaning of
singular vectors and values to be similar to eigendecomposition results.

As a projection technique, PCA preserves more global structures than the local ones,
owing to the preservation of the large variances that appear in orthogonal principal
axes [7,15]. Nevertheless, it is not capable of well-representing datasets formed by nonlin-
ear relations among attributes [31]. Besides, PCA is unsuitable for representing data with
several groups that have distinct variances since, for visualization purposes, just 2 or 3 first
components are used [31].

4.2. Multidimensional Scaling

One of the first global multidimensional projection techniques is Multidimensional
Scaling (MDS), a classic algorithm that originated from psychophysics, becoming famous
after the Torgerson [50] paper. Nowadays, MDS comprises a family of nonlinear methods
that seek to define an injective mapping of data objects from a multidimensional space
to a lower one, maintaining data distance relations [9]. The way that preserves distances
throughout the transformation process determines the differences among approaches based
on MDS.

Classical Scaling is the best-known MDS method. This technique builds a transformed
space by applying spectral decomposition of a symmetric matrix generated from distances
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of multidimensional objects [6,27]. More specifically, it seeks to satisfy δ(xi, xj) = d(yi, yj),
in Euclidean space, with δ(xi, xj) being the dissimilarity between objects xi and xj, and
d(yi, yj) the dissimilarity between projected objects. The step of spectral decomposition is
similar to the step demonstrated in PCA (Section 4.1).

The outcomes attained by Classical Scaling are considered satisfactory and precise
concerning global distance preservation. However, its computational complexity of O(n3)
bounds the approach application. Thus, applying Classical Scaling in large datasets (more
than millions of items) is not viable. To mitigate this problem, some alternatives were
developed, such as Landmark MDS (LMDS) [51] and Pivot MDS [52].

Instead of decomposing the complete dissimilarity matrix, LMDS selects an initial
subset from the original dataset containing s reference instances named landmarks. These ref-
erence instances can be selected randomly or by an algorithm that maximizes the distances
among them. The approach performs Classical Scaling in the landmarks subset, projecting
these reference points on the Rp. Finally, the remaining data instances are mapped on the
new space through distance-based triangulation.

LMDS preserves MDS characteristics and is more efficient with its complexity of
roughly O(s3 + sn). Nonetheless, it should be selected at least p + 1 landmarks to generate
a good projection.

4.3. Sammon’s Mapping and Related Projections

In some cases, the obligation of dissimilarities maintenance during the transformation
process can be restrictive, generating poor mapping. In this scenario, techniques based on
nonlinear optimization emerged. This class of global methods is derived from MDS theory
and maps original space to the visual space by minimizing a loss function g in such a way
that d(yi, yj) ≈ g(δ(xi, xj)).

Gradient descent is a well-known algorithm for minimization problems, and it is
used in the following projection methods. Gradient descent walks in the opposite sense
of the function gradient −∇ f (~x(k)), with steps that have an α size (varying each iteration
defined by a line search satisfying the Wolfe conditions or the Barzilai–Borwein method).
The step size is defined by applying some algorithm or a heuristic method. Finally, each
update step is defined as ~x(k + 1) = ~x(k)− α(k)∇ f (~x(k)) and the algorithm is finished
when the gradient function stops the changes or a maximum number of k > 0 is reached.
The gradient, also known as the slope of a line, is defined as the ratio of the change, and
whenever the gradient is perpendicular to ~x(k), then it will be the negative reciprocal of
the original line.

Kruskal [35] was the first one to model the projection problem as an optimization
problem that seeks to generate a layout that minimizes the quadratic difference between
original data dissimilarities and the projected data distances. This quadratic difference is
well-known as the stress function (Equation (5)) and will be identified here by ST . Then,
Kruskal [35] used Gradient Descent to find values that minimize the stress function. With
~x(k) being a vector with all the n instances of X after the k-th interaction, the minimization
process updates the mapping with the following equation:

~x(k + 1) = ~x(k)− α

(
∂ST(k)
∂~x(k)

/∣∣∣∣∂ST(k)
∂~x(k)

∣∣∣∣) (12)

In this process, the normalization of the gradient is applied not to change the magni-
tude of ~x(k).

Kruskal’s method is related to Sammon’s Mapping [53], one of the best-known dimen-
sionality reduction techniques in the InfoVis area. The latter introduces a loss function
normalization in a different way, which can be figured out when comparing Equation (5)
(used by Kruskal) and Equation (13) (applied by Sammon). Sammon [53] mapping also
uses Gradient Descent to minimize the information lost in the transformation process while
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preserving the global data dissimilarities of the original space by finding a local minimum
solution [9,54].

E =
1

∑
i<j

δ(xi, xj)
∑
i<j

(δ(xi, xj)− d(yi, yj))
2

δ(xi, xj)
(13)

Note that Equation (13) is weighted by the sum of δ(xi, xj)
−1, which gives more im-

portance to small dissimilarities. This characteristic enables Sammon’s Mapping to project
data with high dimensionality; however, it can generate distortions in multidimensional
data with nonlinear relations, an issue that also appears in Kruskal’s method [9].

Sammon [53] defined the update steps as the following equation:

yi(k + 1) = yi(k)− β∆i(k), (14)

such that the step size β can be into the interval 0.3 ≤ β ≤ 0.4 and defined by:

∆it(k) =
∂E(k)
∂yit(k)

/∣∣∣∣∂2E(k)
∂y2

it(k)

∣∣∣∣. (15)

Another issue related to Sammon’s and Kruskal’s methods is the quadratic compu-
tational complexity (O(kn2) operations, see Table 1). To mitigate it, Pekalska et al. [54]
developed a strategy that, in the first step, maps a subset with s samples to visual space
using Sammon’s Mapping. Then, the remaining samples are positioned by applying some
interpolation method, such as triangulation, neural network, or linear transformation. With
this change, the approach attained a good precision and improved the efficiency with the
complexity of O(s3 + sn) [12]. On the other hand, the new approach needs representative
samples of “high quantity” to perform the initial projection, with the authors suggesting
half of the dataset, n/2.

Table 1. Multidimensional projection methods. The column “Complexity” presents the computational
load related with the amount of instances (n), dimensions (m), iterations (k), samples (s), and graph
edges (E).

Technique Transformation Nature Complexity

PCA Linear Global O(m3)

Classical MDS Linear Global O(n3)

Kruskal Nonlinear Global O(kn2)

Sammon’s Nonlinear Global O(kn2)

FastMap Nonlinear Global O(n)

Chalmers Nonlinear Local O(n2)

Pekalska Nonlinear Global O(s3 + sn)

Isomap Nonlinear Global O(n3)

Chalmers Hybrid Nonlinear Local O(n
√

n)

L-Isomap Nonlinear Global O(sn log n)

SNE Nonlinear Local O(n2)

Force Scheme Nonlinear Global O(n2)

LMDS Nonlinear Global O(s3 + sn)
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Table 1. Cont.

Technique Transformation Nature Complexity

LSP Nonlinear Global O(n3)

HiPP Nonlinear Global O(n
√

n)

t-SNE Nonlinear Local O(n2)

Glimmer Nonlinear Global O(n2)

PLMP Partially linear Global O(n3)

PLP Nonlinear Local O(n
√

n)

LAMP Nonlinear Local-Hybrid O(sn)

LoCH Nonlinear Local O(n
√

n)

UMAP Nonlinear Local O(n1.14)

TopoMap Nonlinear Global O(n log n)

GRMP Nonlinear Local O(n + |E|)
Source: elaborated by the authors.

4.4. Isometric Feature Mapping

Another important variation of Classical Scaling is the Isometric Feature Mapping
(Isomap) [55], a global nonlinear projection technique. Isomap transforms the distance
relationships among multidimensional data instances before projecting them into the
visual space [31]. Isomap aims to capture the data’s topological (manifold) structure by
computing geodesic distances by turning the dataset into a graph structure and considering
distances based on the shortest path between vertices. Isomap is probably the first projection
technique to resort to topological data analysis mechanisms to achieve dimensionality
reduction [56].

Isomap builds an undirected weighted graph G = (V, E), such that vi ∈ V represents
a data instance xi and wij = δ(xi, xj) is the weight function. The graph edges can be created
with the k-nearest neighbor (k-NN) approach, which considers a data distance to define
each ei ∈ E. Therefore, the k closest vertices to a specific vertex v are connected. With
this process, the δ function information is surrogated by the shortest path between points
calculated by some path algorithm, such as Dijkstra [57]. Moreover, the graph’s adjacent
matrix D is considered as the “distance” matrix of data, with cells related to data with no
edge filled up by ∞ value.

Finally, the visual space is created by applying some projection technique, such as
MDS, in the D matrix. Sadly, the calculation of distance and the spectral decomposition
affect computational performance that attains complexity O(n3). The topological stability
of Isomap depends on the correct choice of k [58]. Moreover, isometric mapping of high
dimensionality into low one is possible only in particular conditions, resulting in mistakes
and distortions [7].

Silva and Tenenbaum [59] created a more computationally efficient version of Isomap,
named L-Isomap. First, it selects s landmarks to generate the graph representing relation-
ships among the landmarks and the other data instances. After that, the LMDS technique
is applied to project the landmarks and approximate the positions of the remaining points.
It reduces the Isomap complexity to O(sn log n).

4.5. FastMap

Faloutsos and Lin [60] created the FastMap projection, a global nonlinear technique
that reaches high efficacy but generates low accuracy, depending on the structure of the
projected data. FastMap maps objects from an Rm space into an Rp, with p < m, where
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each data item is projected into p orthogonal hyperplanes representing projected data
coordinates. The approach’s core is to project items in a particular line segment contained
on a hyperplane.

The process starts with a set of instances O and the distance matrix D generated with
the Euclidean distance function δ of the instances. As depicted in Figure 2, two instances, Oa
and Ob, furthest apart, are selected from the high-dimensional space. This selection requires
O(n2) computations; however, Faloutsos and Lin [60] also proposed a linear heuristic to
perform it. Firstly, it selects an arbitrary instance Or. In the sequel, it chooses the farthest
apart instance from Or to be the Oa pivot. Finally, it selects the instance that is farthest apart
from Oa to be the Ob pivot. The line OaOb is into a hyperplane Y, and it will represent the
first coordinate of the new projected space Rp.

Figure 2. Projection of Oi and Oj into H hyperplane that is orthogonal to the previous one. The
points Oa and Ob remain in the previous hyperplane and the triangles OaOiOb and OaOjOb, such as
the respective points E and D, were considered to generate previous coordinates. Source: Faloutsos
and Lin [60].

Then, each object Oi is projected into OaOb line through the calculation of xi coordinate
that manipulates the cosine-law formulation as in Equation (16). In Figure 2, xi is calculated
using the OaOiOb triangle and xj is calculated using OaOjOb.

xi =
δ(Oa, Oi)

2 + δ(Oa, Ob)
2 − δ(Ob, Oi)

2

2δ(Oa, Ob)
(16)

The next step involves calculating distances in the hyperplane Y, generating a new D
matrix. As described by Equation (17), the new distance is related to the previous one and
the difference between the coordinates of the new point-object:

δ(x′i , x′j)
′ =

√
δ(Oi, Oj)2 − (xi − xj)2, i, j = 1, . . . , n (17)

Lastly, other dimensions can be generated by applying the same process. For example,
according to Figure 2, starting now with the new distance matrix, encountering new pivot
objects in a hyperplane H, calculating the position of all objects on the pivot line, and
creating another distance matrix. This process guarantees that the current line OaOb, and
consequently the hyperplane H that contains it, is orthogonal to the previous one. The
process continues until all p dimensions are calculated.

FastMap is based on classical Euclidean geometry, requiring only data dissimilarities
and employing just two representative samples to guarantee orthogonality of dimensions
to lead data projection [6]. The algorithm has linear complexity, being faster than other
ones. Sadly, it presents high levels of information loss and can not represent nonlinear
datasets properly.
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4.6. Force-Based Placement

Force-based techniques are simple approaches applied to data projection that consider
data instances connected by “virtual springs” and attempt to minimize the sum of the
forces that act upon each data instance. Low dimensional positions are randomly initialized,
and the repulsion forces between the springs adjust positions towards balancing [9]. The
forces are calculated by δ(xi, xj)− d(yi, yj), being δ and d dissimilarity functions in original
and projected space, respectively. Therefore, distant points in the original space repel each
other in the projected space, and close points in the original space attract each other in the
projected space.

Sadly, the mapping accuracy is impaired by the computational complexity of O(n3) (n
iterations of O(n2) force calculations), making its application in large datasets unfeasible.
Chalmers [61] handled this problem with a limited-size neighborhood of each data instance.
After randomly initializing the projected space, considering an object xi, the process creates
a Vi subset that contains k-near-neighbor of xi and calculates δmaxi with the maximum
dissimilarity between xi and the members of Vi. In an iterative process, a subset Si is loaded
until reaching k′ instances. Each iteration randomly selects a new xj object that does not
belong to Vi. If δ(xi, xj) < δmaxi, then xj is inserted into Vi (since the corresponding point is
deleted from Vi) and δmaxi is updated; otherwise, xj is inserted into Si. When Si is fulled
with k′ instances, Equation (18) returns the resultant force to be applied to yi that is linearly
proportional to δ(xi, xj)− d(yi, yj).

Fi = ∑
v∈Vi

Fiv + ∑
s∈Si

Fis (18)

Therefore, instead of calculating n(n − 1) forces in each iteration, Chalmers [61]
seeks to preserve original distances in projected space, considering a reduced subset of
instances. Despite the computational complexity improvement and preservation of small
neighborhoods with linear iterations [6], O(n2) operations to balance the layout still hinder
its application in real applications [9].

Morrison et al. [62] also tried to reduce the computational complexity with a hybrid
version of the technique based on a sampling strategy. The process generates a random sam-
ple with

√
(n) instances and projects them with Chalmers’ model. The n−

√
(n) remaining

data instances are interpolated with a modified version of the Brodbeck and Girardin [63]
strategy. These modifications reduced complexity to O(n

√
n), but it can be inaccurate when

applied to complex data structures or can get stuck in a local minimum [64].
Another approach was proposed by Tejada et al. [26] and named Force Scheme. This

projection moves all points in a Ni neighborhood towards an yi point instead of moving yi
towards its neighbors. In other words, each yi attracts or repulses other yj points during
an iteration. Positions are updated with a force fraction considering the residual distance
function between original and projected spaces, defined as

∆ =
δ(xi, xj)− δmin

δmax − δmin
− d(yi, yj), (19)

where δmax and δmin are the more significant and the smallest dissimilarities in the original
space, respectively. The formulation respects original global dissimilarities, but this charac-
teristic allows the large dissimilarities to dominate the projection process and distort small
local neighborhoods. Consequently, in datasets that contain instances with high dissimilari-
ties, the process tends to concentrate points in the out-most edges of the projection. Force
Scheme can generate accurate layouts and reach stabilization with few iterations compared
with other force projections. Sadly, the amount of operations in each iteration is O(n2),
which is high computational complexity.

Ingram et al. [64] developed Glimmer, a technique that seeks to reduce the processing
time of forces calculation using the processing power of GPUs (Graphics Processing Units).
The algorithm projects the data with a multi-level variation of Chalmers’ model, starting
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with one data instance and adding new instances until the whole dataset is mapped to the
projected space. The method presents a good data cohesion and separation performance,
reaching small stress values. Sadly, even with the efforts to reduce computational complexity,
force-directed projections are unfeasible for huge datasets [12].

4.7. Stochastic Neighbor Embedding

Hinton and Roweis [65] developed the Stochastic Neighbor Embedding (SNE), a
nonlinear statistical technique based on the minimization of the Kullback–Leibler (KL) di-
vergence [66] that takes probabilities distributions to represent dissimilarities from original
and projected spaces. SNE models two Gaussian distributions, one P over the original
m-dimensional space and another Q over the projected p-dimensional space (initialized
with random positions). In this scenario, pairs of instances with small Euclidean dis-
tances are associated with high probability values, and pairs with large distances have
low probabilities.

Equation (20) defines the conditional probability pi|j between each par of instances
xi and xj, being δ the Euclidean distance and σi related to the size of the xi neighborhood,
being smaller in dense regions and bigger in the sparse ones [67]. The best value of
σi is encountered by a binary search in the [1, perplexity] range in such a way that the
Shannon entropy of p probabilities reaches log2 perplexity, being perplexity frequently
defined by the user in the [5, 50] range [65]. Meanwhile, Equation (21) defines probabilities
in p-dimensional space, being σi = 1/

√
2 without generality loss. In both spaces, self-

probabilities are null, i.e., pi|i = qi|i = 0.

pi|j =
exp(−δ(xi, xj)

2/2σ2
i )

∑k 6=i exp(−δ(xi, xk)
2/2σ2

i )
(20)

qi|j =
exp(−‖yi − yj‖2)

∑k 6=i exp(−‖yi − yk‖2)
(21)

KL divergence between probability distributions Pi and Qi is minimized by the appli-
cation of the gradient descent algorithm [68] to discover the best values of p-dimensional
coordinates [67] such as in Equation (22).

arg min
y

∑
i

KL(Pi‖Qi) = ∑
i

∑
j

pi|j log
pi|j
qi|j

(22)

This optimization process can be interpreted as a system with attraction/repulsion
forces between yi and all yj points because it approximates similar points and segregates
the dissimilar ones.

Sadly, KL divergence generates space distortions due to its asymmetric characteristics
and is sensitive to the crowding problem [28]. These issues were mitigated by Maaten and
Hinton [28] with the introduction of t-Distributed Stochastic Neighbor Embedding (t-SNE),
which applies to the original space a symmetrized version of conditional probabilities,
such as

pij = pji =
pj|i + pi|j

2n
(23)

being pii = 0. In the projected space, the authors replaced the Gaussian distribution
with the t-Student distribution because the latter is simpler and faster to compute while
maintaining similarities with the former distribution [28]. In addition, at the projected
space is defined qij = qji and qii = 0.

Both SNE and t-SNE can represent global structures and reveal local data characteris-
tics, preserving some levels of data neighborhood. The t-SNE and other similar techniques
are robust against norm concentration, a typical characteristic of the curse of dimensional-
ity [7], because of the shift-invariant similarities [69]. Although attaining good results if
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compared to other methods, in t-SNE projections, the observed distance between clusters
is unreliable and sensitive to parametrization (perplexity parameter) [70], which can gen-
erate a misleading effect of cluster distance and shape resulting from the local nature of
optimization and how hyperparameters are set up [8]. Nonetheless, t-SNE presents compu-
tational complexity equal to O(n2), which impairs practical applications, but Maaten [67]
developed an accelerated version that reaches O(n log n) through approximations.

4.8. Least Square Projection

The Least Square Projection (LSP) [9] is a nonlinear global projection that preserves
neighbor relationships at a high level and allows user interactions. It consists of two
steps: (i) a small subset of data samples is carefully chosen and projected with some MDS
approach; (ii) the positions of the remaining data instances are calculated with a linear
system that considers the previous projected points and a Laplacian matrix operator that
maps the neighbor relations of each instance to place it close to its nearest points.

The initial subset of samples, named here as control points, leads the geometry of
the final map, and its position in the projected space significantly impacts the LSP result;
thus, they must accurately represent the different groupings of instances from the original
space. To select them, a dataset X with n instances is split into s =

√
n clusters using

the k-medoids algorithm [13], and the clusters’ medoids are then considered as the control
points. According to Paulovich et al. [9], the definition of s with the squared root of dataset
size can accurately represent the whole dataset, keeping LSP complexity feasible. An
MDS technique or a user interaction-based method is applied to lay the control points out,
allowing the user to manipulate the mapping process.

In the next step, LSP maps the remaining instances xi with a strategy that generates
a list Vi with k neighbors of xi. The coordinates of the projected point yi are generated
through the solution of Equation (24) that bounds yi points to their neighbor convex hull.
Each αij weights the impact of neighbors over yi position and when αij =

1
|Vi |

, yi turns into
Vi centroid.

yi − ∑
xj∈Vi

αijyj = 0, , being 0 ≤ αij ≤ 1 and ∑
j

αij = 1 (24)

The solution of Equation (24) reaches the linear system LY = 0, where Ln×n is a
Laplacian matrix (a matrix representation of a graph) and its elements are defined as:

lij =


1 if i = j,
−αij if xj ∈ Vi,
0 otherwise.

(25)

Sadly, L has no geometric information, and the system solutions can be useless. This
issue is handled through the insertion of new lines in L containing geometric information
of the projected control points turning the Laplacian system into a new non-homogeneous
system AY = b, where A =

[ L
S
]
, Ss×n, and b vector (let us consider Ȳ the inner product

space) defined as:

sij =

{
1 if yj ∈ Ȳ,
0 otherwise.

e bi =

{
0 if i ≤ n,
yi otherwise.

(26)

LSP calculates the system solution with the least square method [68] minimizing
‖AY− b‖2 since an exact solution is unlikely. As a result, the final system is sparse and
symmetric, which facilitates an interactive solution [9].

LSP presents a good level o neighbor preservation, but there are n variables to solve
the system with an O(n2) complexity, which is infeasible in huge datasets [6]. Then,
Paulovich et al. [71] created Piecewise Laplacian-based Projection (PLP) to mitigate this com-
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plexity issue. PLP splits the dataset and maps the subsets with LSP. The spatial coherence
is achieved through the initial projection of the control points, and the computer time is
reduced because PLP calculates small systems instead of a big and more complex ones.
However, this solution is often less accurate than LSP [6].

4.9. Part-Linear Multidimensional Projection

Part-Linear Multidimensional Projection (PLMP) [72] is a global and partially linear
multidimensional projection method that can deal with huge amounts of data due to its
low complexity level. It consists of two steps: (i) a nonlinear step that projects a subset of
representative samples; (ii) a linear step that projects the remaining instances with a linear
transformation, justifying the “part-linear” name.

PLMP selects s control points (see Section 4.8), a subset of representative instances of
X̄ dataset that are projected with the Force Scheme, generating the Ȳ low-dimensional set.
In the next step, a linear transformation Φ : Rm → Rp minimizes the differences between
the projected distances and the original dissimilarities, such as

Φ = arg min
Φ̂∈Lm,p

{
1

∑ij δ(xi, xj)2 ∑
ij
(δ(xi, xj)− ‖Φ̂(xi)− Φ̂(xj)‖)2

}
, (27)

xi, xj ∈ X and Lm,p being a space of linear transformations that maps Rm to Rp.
Sadly, Equation (27) is computationally impractical in large datasets. To mitigate this

issue, PLMP determines an approximation Φ̂, which takes information from a subset X̄
of the projected control points. Consequently, the final solution is a linear mapping that
approximates the transformation of the control points [72].

To execute the approximation, PLMP creates a new system Φ̂m×pX̄s×m = Ȳs×p, where
X̄ and Ȳ are, respectively, the control points and their projections. Each line of Φ̂m×p
generates a sub-system, and the least square is applied to solve it. The projection of the
remaining instances is achieved by repeating the process to Φ (Equation (27)), that is
XΦ = Y, a simple matrix multiplication with O(n) computational complexity.

As in the before-mentioned techniques, the users can manually define the position
of the projected control points. Nonetheless, PLMP requires a number of control points
superior to the data attribute number, that is, s > m, to build a good quality layout, and this
characteristic can limit its use with very high-dimensional datasets such as text represented
with a bag of words.

The results presented by Paulovich et al. [72] highlighted that PLMP is faster than
projections such as LSP. Moreover, besides the initial step, PLMP formulation does not need
data dissimilarities information, reducing computational complexity.

4.10. Local Affine Multidimensional Projection

Following Section 3.4, projection techniques that apply linear transformations are
based on one function that maps high-dimensional data into the visual space. This function
can be very generic in dealing with all data characteristics, even when it is optimized to
treat each data subset, such as PLMP (see Section 4.9). On the other hand, most of the
nonlinear transformations depend on dissimilarity matrices whose calculation demands
high computational complexity. Some techniques project representative instances to guide
the process to outperform complexity-related issues, but it demands the choice of several
samples to execute the initial projection.

In this context, Joia et al. [12] developed the Local Affine Multidimensional Projection
(LAMP). This method also uses representative instances (control points) to guide the pro-
jection at the first step. It then maps the remaining instances locally through interpolation
using a family of orthogonal affine mappings—one linear function for each instance to
be projected.

More specifically, LAMP executes a process similar to LSP (see Section 4.8), where
s representative samples are randomly selected from a dataset X and projected on the
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visual space with Force Scheme (see Section 4.6). With this initial information from control
points’ positions, each remaining instance xi ∈ X will be mapped with a linear function
fX(p) = pM + t, that matrix M and vector t are unknowns (by taking partial derivatives
with respect to t equal to zero, one can write t in terms of M) that minimizes:

s

∑
i=1

αi‖x̄i M− ȳi‖2, such that MT M = I, (28)

being x̄i = xi − ∑i αixi
α , and ȳi = yi − ∑i αiyi

α , respectively, a control point and its projection,
and αi =

1
‖x̄i−x‖2 a weight that leads the control points to influence other data instances,

where α = ∑i αi. Finally, the matrix M is going to be computed from the product of the left
and right singular vectors derived from the SVD of the vector column (x̄) × vector line (ȳ)
(for further information, please see Section 3.1 in [12]). Consequently, the more a point has
similarities to xi, the more it affects Equation (28), which reinforces local characteristics of
the LAMP process.

Following Joia et al. [12], the orthogonality restriction imposed on Equation (28)
guarantees an isometric transformation, avoiding scaling and shear effects. Moreover, the
restriction reduced the high error levels generated during the projection of control points
and propagated during the other transformations, keeping the (inevitable) distortions as
small as possible.

The authors rewrote Equation (28) into matrix notation and generated a Procrustes
Orthogonal problem [73], a well-known mathematical problem of matrix approximation. This
equation can be expressed as ‖AM− B‖F, tal que MT M = I, being ‖ · ‖F the Frobenius
norm and:

A =


√

α1 x̂1√
α2 x̂2
...√

αs x̂s

, B =


√

α1ŷ1√
α2ŷ2
...√

αsŷs

. (29)

Finally, the matrix equation is solved using SVD, being M = UV and AT B = UDV,
which demands O(s) operations. As a result, the position of data points is obtained with
y = fX(x) = (x− x̃)M + ỹ.

LAMP was classified as a hybrid projection because its behavior can be local or global
depending on the number of control points [6], which can be seen as a positive correlation,
i.e., the more control points, the more global will be the mapping. Joia et al. [12] performed
tests that revealed LAMP generates high-quality layouts even with a small number of con-
trol points. The formulation makes LAMP efficient with O(sn) computational complexity.

4.11. Hierarchical Approaches

Hierarchical Point Placement Strategy (HiPP) is a projection technique built to preserve
the clustering and segregation of a dataset [10]. It generates a hierarchical structure that
allows exploration in several levels of detail. With this asset, HiPP can be applied to
larger datasets than several other projections. The authors reported that all process has a
computational complexity of O(n

√
n), being n the total number of data instances.

The authors divided the HiPP process into three stages. In the first one, HiPP creates
a tree that has all data instances as children of the root node. With Bisecting k-means [74],
the children’s level is split into k clusters. One node is inserted as a child of the ancestor
node representing each cluster created. After this, all cluster items are connected with
their related group node. This process is recursively applied to each new node until a
global threshold of items inside each node is reached. Paulovich and Minghim [10] used a
threshold equal to the square root of the dataset instances,

√
n, and a local k =

√
m, with m

being the number of items inside the node (group) being divided.
In the second stage, the authors applied LSP to project tree nodes. They represented

groups as circles, being its center point related to the group centers, and the size of the
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circle proportional to the number of items in the group. Thus, the first level is projected
with these attributes, placing the circles on the plane. Next, internal data are projected
when one interacts with a circle (group), zooming in and out on the structure.

In the third stage, a spreading algorithm removes overlapping in the visual layout.
A vector between every two nodes is calculated and used to spread them. The nodes are
dislocated in the vector orientation but opposite senses.

Furthermore, the authors used HiPP to explore text datasets. Thus, they present topic
terms as labels of each group and colored circles based on topics. The technique also
allows split and reassemble groups interactively. HiPP is suitable when one needs to tailor
clustering. On the other hand, it does not allow for flexibility of clustering and projection
techniques or data types.

To enhance HiPP capabilities, Dias and Minghim [75] proposed the eXtend Hierarchical
Point Placement Strategy (xHiPP). First and foremost, the authors use three cluster techniques
in the tree construction process: k-means, k-medoids, and a basic Hierarchical Agglomerative
Clustering. Instead of using

√
n to decide how many groups will be generated, the authors

used Sturges’ Rule [76], which defines k = 1+ 3.3× log(n). It results in a smaller number of
clusters than the previous technique, which is better when one works with a large dataset.
In addition, the user also can modify this parameter.

In the second change proposed, the user can choose which projection better fit the
data under analysis. It is possible to choose among LSP MDS, Force Scheme, t-SNE, PLMP,
LAMP, or the PCA, all previously described in this review. Force Scheme is always used to
project internal data to improve performance.

Dias and Minghim [75] allowed xHiPP to cluster data before the projection stage (such
as the original approach) and also the projection stage, followed by the clustering stage. It
takes advantage of the projection techniques’ ability of data points that have come together
in projected space and partition the dataset with high precision.

Beyond text exploration tools implemented in the original HiPP, the authors added
word clouds to summarize the content of both groups and individual documents. Authors
also added functionalities to facilitate the exploration of image datasets, audios, and general
data. The groups’ medoids are used to represent image sets and spectrograms of audio
ones. Heatmap images are employed to map attributes’ distribution of general data. The
capabilities to present text, image, audio, and value attributes of general data were added
to support the examination of these data types. If data are labeled, colors represent the
node and predominant group labels.

Following the authors, with these changes and additions, it is possible for the user to com-
bine different methods to find the better set of them that represent the data under analysis.

4.12. Local Convex Hull

The Local Convex Hull (LoCH) [6] is a local technique built to project data embedded
into multidimensional sparse space through three steps. In the first step, LoCH generates√

n data clusters and finds their medoids (similar to LSP control points seen in Section 4.8),
and these medoids are used to calculate distances among clusters. For each xi data instance,
the projection creates a k-neighborhood, considering the data inside the s closest clusters
of xi.

In the second step, the clusters’ medoids are projected with Force Scheme [26]. Accord-
ing to Fadel et al. [6] testing, Force Scheme preserves global distance relationships despite
the high-precision of its results.

In the final step, the remaining xi instances are projected, applying an interpolation
that considers the previous projected points and the xi distance to the convex hull of the k-
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neighborhood generated in the first step. Based on this idea, the xi position in the projected
space is determined by the linear combination ŷi = ∑ αjyj; then,

αj =
1

δ(xi, xj) · ∑
xk∈Ni

1
δ(xi, xk)

, being


Ni xi neighborhood

αj > 0

∑ αj = 1
δ distance function in the original space.

(30)

With this formulation, the distance relationships are preserved; however, it does
not guarantee that ŷi is placed inside the correct convex hull. Therefore, the initial ŷi is
iteratively moved toward ỹi:

ỹ = ŷ + γi

−→v
‖−→v ‖

, being


γi =

1
ki ∑

xj∈Ni

(
τj +

√
δ(xi, xj)2 + τ2

j − ‖
−→uj ‖2

)
τj =

−→v
‖−→v ‖ ·

−→uj
−→uj a director vector from ŷ and a point yj in the xi neighborhood.

(31)

In this context, γi is a preservation factor of the original distances between xi and
its neighborhood Ni. This process needs almost

√
n iterations to approximate yi and

the convex hull [6]. LoCH is simple to implement and presents a low computational
complexity, namely O(n

√
n). Sadly, LoCH characteristics (well suited to multidimensional

sparse datasets) limit its application in a large range of applications.

4.13. Uniform Manifold Approximation for Dimension Reduction

Uniform Manifold Approximation and Projection (UMAP) [29] is a multidimensional
projection technique with a solid base on geometry and topology theories. UMAP is a
manifold learning method that relies on Riemannian geometry and algebraic topology
to perform dimensional reduction [77]. The authors highlighted that UMAP is scalable,
which turns it suitable in real applications with large datasets. Furthermore, UMAP
presents results as good as t-SNE (currently one of the widely used projection techniques)
in visualization quality; nonetheless, it better preserves global data structures and is faster
than t-SNE. In addition, UMAP was developed with machine learning applications in
mind [8].

To perform data mapping, UMAP considers the following assumptions: (i) data are
uniformly distributed in a manifold, and (ii) the manifold is locally connected, i.e., there
are no isolated points. McInnes et al. [29] used manifold approximations and patching
associated with local fuzzy simplicial set [78] to construct a topological representation for
original and projected spaces. Following this step, UMAP minimizes the cross-entropy
function between the original topology and the projected one.

The authors presented mathematical bases and a practical and computational vision of
the process. UMAP is described as steps that construct and manipulate a weighted graph
in the latter. The first step creates a graph, considering the weight function as

w(xi, xi j) = exp

(
−max(0, d(xi, xi j)− ρi)

σi

)
, (32)

ρi = min{d(xi, xi j)|1 ≤ j ≤ k, d(xi, xi j) > 0} and σi being calculated to satisfy:

k

∑
j=1

exp

(
−max(0, d(xi, xi j)− ρi)

σi

)
= log2(k). (33)

These formulations consider a parameter k and some similarity function d. Thus, the
not directed graph G used by UMAP has an adjacent matrix B = A + AT − A ◦ AT , being A
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a matrix generated with the previous weight function and the operator ◦ of the Hadamard
product [79].

UMAP applies a Force Directed approach to place the graph nodes in the projected
space. The algorithm uses attraction and repulsion functions, respectively, defined as

−2ab‖yi − yj‖
2(b−1)
2

1 + ‖yi − yj‖2
2

w(xi, xj)(yi − yj) and (34)

2b
(ε + ‖yi − yj‖2

2)(1 + a‖yi − yj‖2b
2 )

(1− w(xi, xj)(yi − yj)), (35)

where a and b are hyperparameters, with ε being a small number to avoid division by zero
(the authors used ε = 0.001). McInnes et al. [29] highlighted that the initial projection could
be randomly generated; however, they used a spectral layout to initialize the projection. As
a result, it provides faster convergence and superior algorithm stability.

In the last projection step, UMAP minimizes with gradient descent a smooth approxi-
mation of the strength between two elements (the original data instance and the projected
one), which is defined as Φ(x, y) = (1 + a(‖x− y‖2

2)
b)−1. The parameters a and b are

defined with a nonlinear least-square that fits one function dependent on the original
instance and projected point position and a parameter that defines the desired separation
of the points on transformed space.

As stated by its authors, UMAP provides highly similar visual results to t-SNE, and
for this reason, it is often seen as a modern, faster, and more scalable alternative to t-SNE,
providing visually similar outputs [56]. Figure 3 depicts a comparison between UMAP
and t-SNE applied to well-known datasets, namely COIL20 [80], MNIST [81], Fashion
MNIST [82], and Google News [83]. One can figure out that UMAP results are comparable
with t-SNE ones, segregating and maintaining the same data structures.

Figure 3. Comparing UMAP and t-SNE applied to some well-known datasets. Point colors represent
data labels in each dataset. Source: McInnes et al. [29].

4.14. TopoMap

Following the topological approach, Doraiswamy et al. [56] developed TopoMap, a
projection method devoted to mapping data from a high-dimensional space to a visual
space preserving the global 0-dimensional topological persistence diagram defined by a
Rips filtration over the m-dimensional data. Furthermore, TopoMap ensures that Rips
filtrations generate the same connected components when applied to the original and
the projected data by preserving the minimal spanning tree (MST) of the original data
embedding in the projection [84].



Appl. Sci. 2022, 12, 6799 24 of 36

Geometric relations such as distances or the proximity relationship between data
instances are not the only attractive property to be preserved in a projection. According to
TopoMap’s authors, particular structures such as clusters and outliers could be more reliable
and meaningful if the mapping reveals some topological invariants such as connected
components and loops.

In contrast to dissimilarity-based projections, TopoMap is based on the non-differentiable
0-homology topological persistence evolution of cycles in the simplicial complexes resulting
from a Euclidean distance-based Rips filtration [85]. Given a set of m-dimensional data
instances P, TopoMap builds a complete weighted graph over P, weighting each edge (pi,
pj) with the Euclidean distance between the corresponding endpoints, d(pi, pj). The Rips
filtration [86] grows a high-dimensional ball around the data instances, adding an edge
(simplexes) to the filtration, one at a time, when two (or more) balls intersect each other. The
addition of each new simplex can change the topology. The ordered set of changing edges
is the MST of edges computed over the graph. TopoMap projects the data while preserving
the evolution of cycles, such that the topological filtrations over the high-dimensional and
projected data generate the same connected components (0-cycle) at the same instances of
the respective filtrations.

TopoMap is a different approach from Isomap and UMAP. Isomap does not consider
0-homology groups, which are therefore not preserved. UMAP is based on category
theory [29] and TopoMap focuses on persistent homology. Topological methods have been
used to evaluate the projection process [87]. Since TopoMap bears theoretical guarantees,
a side contribution is that it can be applied as an analytical tool helping to probe and
illustrate how other projection methods behave, especially regarding distortions and cluster
preservation. In this context, Doraiswamy et al. [56] demonstrated that clusters visualized
in a t-SNE layout, in fact, tend to correspond only to pieces of clusters present in the
m-dimensional data.

TopoMap can be used with an alternative distance metric than Euclidean distance.
However, changing the metric requires computing the MST using this new metric, which
means the running time for computing the MST will degenerate TopoMap complexity to
O(n2) due to the computation of the distance matrix.

4.15. Graph Regularization Multidimensional Projection

The recently introduced Graph Regularization Multidimensional Projection (GRMP) [77]
generates two-dimensional visualizations (2D) that reproduce the groups present in the
high-dimensional space while preserving distance relationships between dataset instances.
In addition, based on a similarity graph, GRMP uses the Graph Signal Processing theory
(GSP) [88] and graph regularization as fundamental tools to incorporate these groups’
information into the projected space.

A graph is a structure that represents data instances (vertices) and their relationships
(edges). Signal theory adds extra information to the graph allowing the processing of a
signal through the graph structure. In this context, graph regularization is based on signal
smoothing by solving a minimization problem, which is equivalent to applying a low-pass
spectral filter [77].

The GRMP method can be divided into three main steps. The initial step is related to
the construction of the similarity graph. Similar to the previous topological-based methods,
GRMP builds a similarity graph from the m-dimensional dataset matching data instances
as the graph vertices set, establishing a one-to-one correspondence between instances and
vertices. Every two vertices are connected according to the similarity relationship between
their corresponding instances. In the second step, GRMP defines the coordinate graph
signals in the 2D space through the spreading control given by a phyllotactic distribution.
Note that the method moves away from all points using this distribution and only approxi-
mates the points that should be close in the final step, using regularization. In the third
and last step, the coordinate graph is seen as signals to be processed and regularized using
GSP tools.
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GPS application is motivated because the neighbor points in the 2D space tend to
have similar coordinates in the high-dimensional space. The smoothing effect of the graph
regularization resets the coordinates of the points given by a phyllotactic distribution. The
final GRMP projection is allocated in the visual space using control points selected from the
medoids of each component. The control points are projected using MDS or other multidi-
mensional projection techniques that preserve distances. Then, the smoothed components
are translated and positioned, matching the control points’ projection counterparts.

GRMP uses the k-NN graph [89] to build the similarity graph, which means GRMP
inherits its main properties and difficulties in dealing with outliers. Parameterization is
simplified in GRMP, comprising essentially only two parameters: the number of neighbors
and the graph regularization parameter. However, the authors based their parameter
choices on empirical tests referring to the need for fine-tuning to achieve better groupings.

4.16. SHAP Clustering

A fundamental challenge in the multidimensional projection domain is related to
metric spaces. As we have seen through this section, most projection methods rely on the
concept of distance to build similarities relationships between instances that will embed
the high-dimensional space in the visual one. However, in projection and clustering tasks,
we often need to handle data with features bearing very different types, i.e., features
may be unitless scores, grams, meters, and others. Using features with different types as
dimensions in a single multidimensional space forces any distance metric to compare the
relative relationship in different units (grams vs. meters, for example) [90].

To tackle this issue, Lundberg et al. [90] applied SHAP values to convert the input fea-
tures into importance values with the same units. SHAP (SHapley Additive exPlanations)
is a computationally efficient way to verify the relationship between input features and
the output of supervised machine learning methods. Specifically, SHAP is a feature impor-
tance model-agnostic method applied in the context of Explainable Artificial Intelligence
(XAI) [91] to explain machine learning predictions through effect measurements reflecting
the importance of input features. It is based on Shapley values [92] cost-sharing problem
from classical cooperative game theory to share and allocate each feature a fair importance
value for a particular prediction. The explicit definition is:

φi = ∑
S⊆m\{i}

|S|!(m− |S| − 1)!
m!

( f (S ∪ {i})− f (S)) (36)

where S ⊆ {1, . . . , m} is a feature subset of all m features, f (S ∪ {i}) and f (S) represents
a mapping function (a trained machine learning model, for example) with the feature
i present and withheld, respectively. Thus, the Shapley value of a feature i can be un-
derstood as a weighted average of i’s marginal contributions to every possible subset
of features [93], which means Shapley values exact computation is an NP-hard problem
unfeasible to be applied over high-dimensional data. Then, Lundberg and Lee [94] pro-
posed SHAP as an approximation of classical Shapley values based on statistical samplings.
SHAP is currently a state-of-the-art XAI method used to explain machine learning pre-
dictions in the more variate domains, ranging from aerospace to medicine and social
sciences [95–97]. Lundberg et al. [90] extended SHAP to unsupervised learning context
presenting SHAP Clustering.

SHAP Clustering converts all input features into SHAP values, unitless measures of
feature importance. Moreover, even when all original inputs are in the same units, often
some of them are more important than others. SHAP Clustering also introduces the concept
of “supervised clustering” as a consequence of converting input features into SHAP values
to obtain their effect information. In other words, SHAP values are log-odds attributing the
impact of each feature to a machine learning model, then fluctuations in the feature values
only affect the clustering if those fluctuations have significance to the outcome [90].
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SHAP Clustering differs significantly from everything in previous multidimensional
projection literature by applying concepts from game theory, positioning itself as an inter-
esting and little-explored alternative. Moreover, SHAP Clustering handles one challenging
issue in the multidimensional projection domain allowing direct comparisons between the
relative importance of features bearing the more different units. Similarly, a recent approach
used Shapley values as a tool to provide explanations regarding important features of the
clustering process of multidimensional projection methods [98].

In the next section, we will discuss a comparative summary of the approaches reviewed
in this section.

5. Discussions about the Multidimensional Projection Techniques

A challenging issue is a balance between projection quality and the required process-
ing amount to generate good mappings. The high computational costs virtually block the
application of some projection techniques in medium-sized datasets, even for the accurate
techniques. As we saw above, an alternative strategy employed to mitigate the compu-
tational bound and enable the use of multidimensional projections, even in interactive
and real-time applications, is the sampling of representative instances. From a subset of
samples, it is possible to apply a precise (and more expensive) projection technique to
generate the control points, which will guide the remaining mapping (now using a less
expensive technique) in the visual space.

Although the original purpose of control points is to reduce computational time,
control points can also be applied to incorporate some degree of user interactivity in pro-
jection processes [64]. However, there are still no comprehensive studies that quantify
the impact introduced in manipulating control points by users, either in terms of quality
or reasonability of generated maps [7]. Furthermore, the proper choice of representa-
tive samples is a central question in some circumstances. For example, authors such as
Paulovich et al. [9], Paulovich and Minghim [10], Joia et al. [12], and Fadel et al. [6] sug-
gested a random selection of large quantities of instances due to the difficulty in determining
an ideal amount that effectively represents all the classes contained in the dataset, but
exactly how large this must be this quantity is an open issue.

The larger the representative subset, the greater the computational effort required
in the initial projection stage. Although it is statistically possible to infer that a random
sample contains significant information from the dataset, there is no guarantee that it
will always be true. Furthermore, the random selection introduces an undesirable effect:
the same dataset is mapped into different layouts, something that can generate some
confusion for the users. Thus, there is a need for an alternative to reducing the complexity
of multidimensional projection techniques while producing effective and deterministic
layouts in a reduced time.

Figure 4 presents a performance comparison between some of the state-of-the-art
multidimensional projection techniques. According to Fadel et al. [6], global techniques
usually yield better dissimilarity preservation averages (stress) and computational perfor-
mance. Note that LAMP, which is essentially a local method, is highlighted as one of the
best balances between stress (see Figure 4 left-hand) and computational performance (see
Figure 4 right-hand).

Table 1 summarizes the main approaches reviewed throughout the text. In addi-
tion to these techniques, there are other derivations, modifications, and improvements.
Maaten et al. [16] also carried out a valuable review of the subject. However, the interest in
developing and improving multidimensional projection strategies has been intense over
the past ten years. In this scenario, Nonato and Aupetit [7] carried out comprehensive and
updated research about multidimensional projection methods, clarifying limitations and
strengths from the perspective of visual analytics.
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Figure 4. Comparative charts presenting stress and running times between some multidimensional
projection techniques. Source: Fadel et al. [6].

As we are demonstrating here, the multidimensional projection has a large field of
application possibilities. To finish this Discussion section, we highlight one emerging
application in a new effervescent research domain: Explainable Artificial Intelligence (XAI).
Artificial Intelligence has a significant growing development interest in the last decade,
especially Machine Learning algorithms. On the one hand, Machine Learning models such
as those based on Artificial Neural Networks and Gradient Boosting can outperform human
capabilities in many tasks and, for this reason, have been often applied in decision-making
processes [99,100]. On the other hand, these kinds of Machine Learning models are based
on high-complex structures, which makes them “black boxes” virtually impossible to be
interpreted, which raises several issues regarding trust in their predictions when applied to
sensitive contexts, e.g., medicine, finances, autonomous cars, and so on [91].

XAI methods are designed to “open” the Machine Learning black boxes providing
information to justify and understand the work logic of these algorithms. An interesting
and few explored use of multidimensional projections is in the XAI context. We can
cite applications of t-SNE as part of XAI proposes aiming to cluster images according to
neuron activation in networks [101], to visualize latent variables [102], clustering genetic
variables [103], and the above-mentioned SHAP Clustering. XAI is a challenging subject,
and we argue that visualization approaches such as multidimensional projections can
improve explainability systems because visualization can produce high-informative and
human-centered explanations [104]. The interested reader can consult Arrieta et al. [91]
and Adadi and Berrada [104] surveys for a detailed view of XAI theory.

5.1. Real Data Applications

In order to illustrate the performance of some of the exposed multidimensional pro-
jection algorithms, two different applications were chosen: The clothing E-Commerce text
mining task and the DNA microarray Cancer Classification task. It is essential to mention
that some embedding techniques are based on distance metrics, such as Euclidean, Manhat-
tan, Cosine, Minkowski, Jaccard, and Chebyshev. Nonetheless, for illustration, we adopted
only the Euclidean distance based on the Classical MDS, Force Scheme, LAMP, t-SNE, and
UMAP; in addition, compared to the PCA, which used the observation value itself. The
first example was solved using R software [105] and the second through Python [106].

5.1.1. Text Mining Data

The first motivation was adopted from the KAGGLE website, which is related to the
Women’s Clothing E-Commerce database. These data were anonymous recorded reviews
derived from customers, which its dataset shows ten features (Clothing ID, reviewers Age,
Title, Review Text, Rating, Recommended IND, Positive Feedback Count, Division Name,
Department Name, and Class Name). Further details can be found at [107].

After pre-processing steps such as removing numbers, punctuation, and stopwords
and transforming them all into lowercase, the frequency of the terms was calculated.
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Figure 5 shows the description of the Review Text feature, a suitable analysis that helps
verify words’ importance and their relation with the recommendations.

Figure 5. Text summary: the 20 words more frequent (left), and a word cloud of 100 terms colored by
the recommended (positive or negative).

In addition to these analyses, the multidimensional projection algorithms can cluster
observations alike embedded in 2D. Figure 6 shows the MP exemplification considering the
review from the item Jacket only, adopting the algorithms PCA, MDS, Force Scheme, LAMP,
t-SNE, and UMAP, whereas the blue words are used in positive comments, and the red
used in negative comments. Whereas these engines are helpful in monitoring and tracing
some characteristics that can maximize the rating from the clothing store. In this case, it
is challenging to identify clusters between positive and negative comments. Thus, other
types of features could be considered to represent that segregation. On the other hand, one
can analyze isolated clothing classes to determine the segregation between positive and
negative comments.

Figure 6. Projections of the user reviews, colored by the recommended labels (negative or positive).
Source: elaborated by the authors.
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For instance, by selecting PCA visualization and adopting the package factoextra, the
text reviews can be seen through their similarity (in Figure 7). Selecting the extreme values
on the top right (ID #8551) versus the bottom right (ID #12374), it is easy to detect we have
a positive review versus a negative one. Moreover, those obtained patterns can unravel
other characteristics across the formed clusters.

Figure 7. PCA of the reviews related to Jacket item. Numbers around points represent review IDs.
The individual’s color (point) was randomly allocated according to their qualities of representation.
Source: elaborated by the authors.

Review ID #8551—“This brand makes the best jackets. I got a vest from them last year
and an olive moto jacket. Both fit amazing. This one is no different. It fits great! I love that
it is a great casual jacket with structure and drape. I cannot say enough good things about
this Jacket. Every time I wear it, I feel so pulled together. Fun light gray color that you do
not see too often in jackets. This is a jacket I will see in my wardrobe for years to come.
must-have”.

Review ID #12374—“This is a very loose-fitting style jacket. If you like your jackets
oversized, get your regular size; if you prefer the slightly loose (but not baggy) fit like the
product photo, size down. As noted by another reviewer, the sleeves are incredibly long. I
would say if you are a typical size 0 or 2 (unless you like the oversized fit), you are likely
sized out of this Jacket. It is a shame because the quality is great, and the windowpane
print is beautiful. I am sadly sized out”.

5.1.2. Bio-Informatics (Cancer Classification Data)

Golub et al. [108] discussed gene expression monitoring (via DNA microarray) related
to patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).
This dataset targets identifying new cancer classes and assigning tumors to known classes,
though it deals with high-dimensional data. Dataset and further details can be found
at [109].

The adopted dataset presents 7129 observations, showing 78 gene expressions (fea-
tures). Figure 8 shows the correlation matrix across the 78 gene expressions.

Moreover, Figure 9 presents six multidimensional projection techniques (PCA, MDS,
Force Scheme, LAMP, t-SNE, UMAP), implemented in Python, to embed characteristics in
two dimensions. The specialist can combine those finds derived and combined from all
of them. One can say those projections can be complementary, and by using visual data
mining, hidden patterns may be found.
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Figure 8. Correlation matrix across the 78 gene expressions (DNA microarray). Source: elaborated by
the authors.

Figure 9. Projections of the DNA micro-array, represented by 78 gene expressions characteristics.
Source: elaborated by the authors.

6. Challenges, Open Questions, and Future Research Directions

Given visual analytics’ relevance as a significant part of mining tools in data science
applications, multidimensional projection techniques are a powerful resource due to their
ability to generate visual representations of complex data instances groupings belonging
to high-dimensional spaces. However, significant gaps still need to be addressed in the
multidimensional projection context.

The trade-off between computational costs and precision is one of the significant
challenges regarding the development and application of multidimensional projections.
Because of the increasingly large datasets we are facing nowadays, both in terms of the
number of instances and the number of attributes per instance (dimensionality), the de-
velopment of computationally efficient and accurate techniques is a challenging issue that
involves research in sophisticated mathematical solutions. This challenge is intensified
when applications need to handle real-time or growing datasets, such as time series and
streaming data.

An open opportunity in the projection domain is to handle time-varying data, i.e.,
how to project multidimensional time series. Research in multidimensional time series has
a long and rich history [110], but properly exploring the time component imposes a major
challenge in the projection domain. Though it is possible to project time slices of the data
and analyze the evolution of these time slices, it can easily become an overwhelming task
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when a long time series is considered. The literature is not so rich regarding multidimen-
sional projection methods able to capture dynamic data evolving [111]. We can cite some
extensions of well-known methods such as t-SNE [112–114] and even PCA [115,116].

Real-time data also highlights an issue already identified by the research community
in multidimensional projections: stability. A stable method must be able to incorporate
new data in the visual space without significant modifications in the position of points
already projected. In addition, in a scenario with continuously generated data, it might
be too expensive to recalculate the entire projection so that the number of instances is
increased/decreased. Methods that rely on matrix decomposition are not stable since the
addition/removal of a single instance demands the recalculation of all matrix operations,
which can significantly change the mapping [7]. Optimization-based techniques depend on
initial conditions, so there is no way to guarantee their stability.

Control points-based strategies are more resilient alternatives to perturbations, as long
as the control points are kept fixed. However, these kinds of approaches open other ques-
tions. As mentioned before, the random sampling of control points has been a commonly
applied solution. However, there is no guarantee that a random sample encompasses all
the nuances of a dataset (besides may render some confusion when generating different
layouts). Another issue we raised in this context is related to the sampling size. How
many control points are needed to compose a good sample? Thus, these open questions are
waiting for future research that establishes metrics and parameters for the generation of
the initial sample subsets.

Most of the multidimensional projection techniques were tailored to operate on nu-
merical data. Thus, we identified a gap between projection tools in their ability to handle
non-numerical values, such as ordinal, textual, categorical data [117], and so on. For exam-
ple, one-hot-encoding is a well-known method applied for a long time in digital circuits
and machine learning environments that can be used in our context to transform categorical
variables into numerical combinations of binary nature. However, there is still work to
properly deal with non essentially numerical variables, although some classic strategies
can be applied to alleviate this deficiency, such as one-hot-encoding.

One major challenge of multidimensional projection techniques, in our opinion, is
interpretability. In practical terms, there is a lack of information transmission when a user
with little or no additional training analyzes the result of a multidimensional projection
mapping. Although some studies have already worked on improving scatter plots’ percep-
tual capabilities [118–121], only the presentation of points or clouds of points into scatter
plots does not effectively inform the user about the complex relationships between data
instances. What features on the m-dimensional space lead to the produced mapping on
the p-dimensional space? As we can see, there is a demand for layouts with designs that
properly explore the users’ graphic perception abilities, enriched with statistical informa-
tion, and interactive tools that enable the user to conduct an exploratory visual analysis.
There is a clear need for enrichment of multidimensional projection mappings, which could
lead users to generate insights over the available information, transforming the perception
of point distances on the visual space into the decoding of the original (dis)similarities
between data instances.

7. Conclusions

In this study, we discussed the main multidimensional projection techniques and,
whenever possible, their more applied derivations. Our taxonomy and formalization
include definitions not only of the covered techniques of this research but also seminal
concepts about application domains, the pre-processing data tasks, and the limitations
that multidimensional projection techniques addresses. Furthermore, the ability to pre-
serve data similarity while generating visual representations renders multidimensional
projection techniques highly informative as a visualization mechanism that can enrich
many problem-solving and decision-making applications [122,123]. Thus, we believe that
multidimensional projection is an effervescing research area with a considerable applicabil-
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ity potential that comes to contribute to the existing exploratory tools in a wide range of
domains within the data sciences. Nevertheless, many important issues are still open to be
explored, and we pointed out several scenarios and directions where multidimensional
techniques can evolve in future works.

Author Contributions: Conceptualization, methodology, software, validation, data curation, writing–
original draft preparation, visualization, E.S.O., F.F.D., and D.C.d.N.; funding acquisition, D.C.d.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001. The views expressed are those of the authors
and do not reflect the official policy or position of the sponsor.

Informed Consent Statement: Not applicable.

Data Availability Statement: Further details regarding data support and scripts in R and Python
programming languages can be found at https://github.com/ProfNascimento/MP (accessed on 20
May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Javed, W.; McDonnel, B.; Elmqvist, N. Graphical Perception of Multiple Time Series. IEEE Trans. Vis. Comput. Graph. 2010,

16, 927–934. [CrossRef] [PubMed]
2. Shneiderman, B. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the 1996

IEEE Symposium on Visual Languages, VL’96, Boulder, CO, USA, 3–6 September 1996; IEEE Computer Society: Washington, DC,
USA, 1996; p. 336.

3. Heer, J.; Kong, N.; Agrawala, M. Sizing the Horizon: The Effects of Chart Size and Layering on the Graphical Perception of Time
Series Visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems CHI’09, Boston, MA,
USA, 4–9 April 2009; ACM: New York, NY, USA, 2009; pp. 1303–1312.

4. Chi, E.H. A Framework for Visualization Information; Springer: Berlin/Heidelberg, Germany, 2002.
5. Telea, A.C. Data Visualization: Principles and Practice, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014.
6. Fadel, S.G.; Fatore, F.M.; Duarte, F.S.L.G.; Paulovich, F.V. LoCH: A neighborhood-based multidimensional projection technique

for high-dimensional sparse spaces. Neurocomputing 2015, 150, 546–556. [CrossRef]
7. Nonato, L.G.; Aupetit, M. Multidimensional projection for visual analytics: Linking techniques with distortions, tasks, and layout

enrichment. IEEE Trans. Vis. Comput. Graph. 2018, 25, 2650–2673. [CrossRef] [PubMed]
8. Cantareira, G.D.; Etemad, E.; Paulovich, F.V. Exploring Neural Network Hidden Layer Activity Using Vector Fields. Information

2020, 11, 426. [CrossRef]
9. Paulovich, F.V.; Nonato, L.G.; Minghim, R.; Levkowitz, H. Least Square Projection: A Fast High-Precision Multidimensional

Projection Technique and Its Application to Document Mapping. IEEE Trans. Vis. Comput. Graph. 2008, 14, 564–575. [CrossRef]
[PubMed]

10. Paulovich, F.V.; Minghim, R. HiPP: A Novel Hierarchical Point Placement Strategy and Its Application to the Exploration of
Document Collections. IEEE Trans. Vis. Comput. Graph. 2008, 14, 1229–1236. [CrossRef]

11. Paulovich, F.V.; Moraes, M.L.; Maki, R.M.; Ferreira, M.; Oliveira, O.N.; de Oliveira, M.C.F. Information visualization techniques
for sensing and biosensing. Anal. R. Soc. Chem. 2011, 136, 1344–1350. [CrossRef]

12. Joia, P.; Coimbra, D.; Cuminato, J.A.; Paulovich, F.V.; Nonato, L.G. Local Affine Multidimensional Projection. IEEE Trans. Vis.
Comput. Graph. 2011, 17, 2563–2571. [CrossRef]

13. Berkhin, P. A Survey of Clustering Data Mining Techniques; Springer: Berlin/Heidelberg, Germany, 2006; pp. 25–71.
14. Lee, J.; Verleysen, M. Nonlinear Dimensionality Reduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007.
15. Buja, A.; Swayne, D.F.; Littman, M.L.; Dean, N.; Hofmann, H.; Chen, L. Data Visualization With Multidimensional Scaling. J.

Comput. Graph. Stat. 2008, 17, 444–472. [CrossRef]
16. Maaten, L.V.D.; Postma, E.; Herik, J.V.D. Dimensionality Reduction: A Comparative Review. J. Mach. Learn Res. 2009, 10, 13.
17. Osipyan, H.; Kruliš, M.; Marchand-Maillet, S. A Survey of CUDA-based Multidimensional Scaling on GPU Architecture. In

Proceedings of the 2015 Imperial College Computing Student Workshop (ICCSW 2015), London, UK, 24–25 September 2015;
OpenAccess Series in Informatics (OASIcs); Schulz, C., Liew, D., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik:
Dagstuhl, Germany, 2015; Volume 49, pp. 37–45.

18. Sacha, D.; Zhang, L.; Sedlmair, M.; Lee, J.A.; Peltonen, J.; Weiskopf, D.; North, S.C.; Keim, D.A. Visual Interaction with
Dimensionality Reduction: A Structured Literature Analysis. IEEE Trans. Vis. Comput. Graph. 2017, 23, 241–250. [CrossRef]

https://github.com/ProfNascimento/MP
http://doi.org/10.1109/TVCG.2010.162
http://www.ncbi.nlm.nih.gov/pubmed/20975129
http://dx.doi.org/10.1016/j.neucom.2014.07.071
http://dx.doi.org/10.1109/TVCG.2018.2846735
http://www.ncbi.nlm.nih.gov/pubmed/29994258
http://dx.doi.org/10.3390/info11090426
http://dx.doi.org/10.1109/TVCG.2007.70443
http://www.ncbi.nlm.nih.gov/pubmed/18369264
http://dx.doi.org/10.1109/TVCG.2008.138
http://dx.doi.org/10.1039/c0an00822b
http://dx.doi.org/10.1109/TVCG.2011.220
http://dx.doi.org/10.1198/106186008X318440
http://dx.doi.org/10.1109/TVCG.2016.2598495


Appl. Sci. 2022, 12, 6799 33 of 36
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