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Abstract: The detection of students’ behaviors in classroom can provide a guideline for assessing the
effectiveness of classroom teaching. This study proposes a classroom behavior detection algorithm
using an improved object detection model (i.e., YOLOv5). First, the feature pyramid structure
(FPN+PAN) in the neck network of the original YOLOv5 model is combined with a weighted
bidirectional feature pyramid network (BiFPN). They are subsequently processed with feature fusion
of different scales of the object to mine the fine-grained features of different behaviors. Second, a
spatial and channel convolutional attention mechanism (CBAM) is added between the neck network
and the prediction network to make the model focus on the object information to improve the
detection accuracy. Finally, the original non-maximum suppression is improved using the distance-
based intersection ratio (DIoU) to improve the discrimination of occluded objects. A series of
experiments were conducted on our new established dataset which includes four types of behaviors:
listening, looking down, lying down, and standing. The results demonstrated that the algorithm
proposed in this study can accurately detect various student behaviors, and the accuracy was higher
than that of the YOLOv5 model. By comparing the effects of student behavior detection in different
scenarios, the improved algorithm had an average accuracy of 89.8% and a recall of 90.4%, both of
which were better than the compared detection algorithms.

Keywords: classroom behavior detection; attention mechanism; pyramid network; non-maximal
suppression

1. Introduction

With the continuous development of artificial intelligence, intelligent education has
become a popular topic in recent years [1]. Students are the main body of classroom learning
activities. The introduction of artificial intelligence into classroom teaching activities and
the use of deep learning to identify students’ behaviors in the classroom will help to
understand the students’ learning status and improve classroom teaching efficiency. For
example, if a student is attracted by interesting materials, he will show signs of listening,
standing up, or engaging in Q&A with the teacher. If a student is bored in class, he will
put his head down, get distracted, and even sleep on his desk. Therefore, the detection
of students’ behavior in the classroom is of great significance. However, large numbers
of students sitting in classroom scenarios can lead to severe object occlusion, which poses
a significant challenge to behavior detection. In traditional methods, students’ behavior
in class is recorded manually, which not only results in the lack of behavior record, but
also consumes a lot of human resources. The introduction of the Flanders’ interactive
system marked the beginning of the modern quantitative analysis classroom [2]. Various
optimization analysis systems have been devised, but most of them still rely on teachers’
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judgment or observations after class. Therefore, traditional teaching evaluation lacks
automatic classroom behavior analytical tools.

In 2006, scholars proposed the concept of deep learning, suggesting the use of
computers to perform high-latitude matrix operations to describe the properties and
characteristics of objects at a deeper level [3]. With the development of computer per-
formance, image feature extraction methods based on convolutional neural networks
(CNN) such as VGGNet [4], GoogleNet [5], and ResNet [6] were proposed to increase the
accuracy of image recognition and feature extraction. The authors of [7] used ConvNet
for feature extraction from complex EEG signals and achieved high accuracy, demon-
strating the superiority of deep learning-based convolutional neural networks in the
field of image processing. In the library of behavior recognition based on deep learning,
the two-stream convolutional neural network input RGB images and optical flow images
into the network separately to extract spatial and temporal features [8,9]. The 3D convo-
lution algorithm adds temporal dimension to the 2D CNN [10], and learns both spatial
and temporal information. The authors of [11] proposed ResNet based on a 3D network
to further improve the accuracy of behavior recognition. On this basis, a pseudo 3D
network (P3D) that simulates a 3D neural network in 2D is proposed in [12]. However,
these methods require a complete analysis of a video, which is computationally expen-
sive and cannot mark the position of each behavior. Therefore, it is not appropriate to
conduct behavior detection in multi-person classroom scenarios. As shown in Figure 1,
the dataset used in this paper was developed in an ordinary classroom environment.
The goal of this study was to identify multiple students’ posture states in the classroom,
such as listening, looking down, lying down, and standing. These classroom behaviors
are difficult to recognize using existing behavior recognition algorithms because of
occlusions among students. The skeletal keypoint-based detection method identifies
behavior by learning changes in a person’s joint points [13], but it is difficult to pinpoint
each person’s joint points in a complex classroom scene.
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havior is less variable due to their relatively fixed positions during the class. The object 
categories are actually static postures or appearances, e.g., listening, looking down, and 
standing, which do not require multiple frames of temporal information. Therefore, this 
study does not consider the temporal characteristics of the behavior in order to maintain 
the accuracy and speed of recognition. 

The authors of [14] used the object detection approach and proposed a Faster R-CNN 
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Figure 1. Some representative images in the classroom scenes. The red dashed boxes denote ‘listening’
samples, the green dashed boxes denote ‘looking down’ samples, the blue dashed boxes denote ‘lying
down’ samples, and the purple dashed boxes denote ‘standing’ samples.

Classroom behavior detection is a non-trivial task because there are typically a number
of students in the same space, and the front and back rows of students do not have the same
proportion of pixels in the image which causes severe occlusion issues. In order to detect
classroom behaviors more accurately, the detection of the fine-grained features regarding
these occlusions is one of the most important tasks. Moreover, the students’ behavior is less
variable due to their relatively fixed positions during the class. The object categories are
actually static postures or appearances, e.g., listening, looking down, and standing, which
do not require multiple frames of temporal information. Therefore, this study does not
consider the temporal characteristics of the behavior in order to maintain the accuracy and
speed of recognition.
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The authors of [14] used the object detection approach and proposed a Faster R-
CNN algorithm combining ROI pooling and local hold learning to classify classroom
behavioral images. They transformed the problem of classroom behavior detection
into a fine-grained classification problem of behavioral images. However, the inference
speed of the two-stage detection framework is slow, which cannot be used in practical
applications. To address this problem, this study follows this line of research, using the
object detection algorithm to locate the targets of students in the classroom and perform
behavioral classification.

We propose a superior solution for classroom behavior detection by combining both
detection accuracy and speed. In order to serve real classroom scenarios and improve
detection efficiency, we focus on single-stage detection algorithms proposed in [15] and
claim that this kind of algorithm is mainly affected by two factors: the learning of multi-
scale fine-grained features and non-maximum suppressed post-processing methods. The
mining of multi-scale features is crucial for detecting the fine-grained features of dense
objects, and non-maximum suppression post-processing methods are key to solving the
occlusion problem and improving the detection rate.

In summary, this study has the following contributions:

1. We propose an end-to-end single-stage classroom behavior detection algorithm using
a bidirectional weighted feature pyramid network to enhance the learning of multi-
scale features.

2. The intersection ratio strategy based on the centroid distance with a penalty term is used
to improve the post-processing problem of non-maximum suppression, so as to address
the problem of repeated detection and false detection in severely occluded scenes.

3. A series of experiments are conducted to show that the proposed algorithm outper-
forms the current mainstream detection algorithms in classroom behavior detection
with respect to the detection accuracy.

2. Related Work
2.1. Object Detection

The basic task of object detection is to determine the object categories to be detected
in the image and give the corresponding confidence. In addition, the rectangular border
is used to determine the location and size of the object. It is also an active and rapidly
growing area of computer vision. Until the development of deep learning methods, the
field of object detection developed slowly. In the ImageNet classification task in 2012,
the application of convolutional neural networks greatly improved the effect of image
classification tasks. Modern object detection methods are based on CNN, which can be
divided into two-stage methods and single-stage methods. The authors of [16] proposed
the first two-stage object detection algorithm called R-CNN. First, the region proposal
network was used to extract candidate frames from the image, and then the object of
the candidate frame was re-corrected to obtain the detection results. The authors of [17]
proposed SPP-Net in 2014, using a spatial pyramid pooling layer to solve the problem
of image distortion caused by image scaling. Subsequently, Fast R-CNN [18], Faster
R-CNN [19], and Mask R-CNN [20] were also proposed. The two-stage object detection
algorithm has the problem of slow detection speed. In order to speed up the inference,
the single-stage object detection algorithm has been proposed. The YOLO algorithm
directly exploits the entire image by using a single neural network without the need
for a region proposal network. On this basis, SSD [21] and RetinaNet [22] algorithms
were proposed successively, using contextual information or feature pyramid network
to solve the problem of object multi-scale.

Compared with the two-stage algorithm, The single-stage object detection algorithm
has faster detection speed, but the detection of small objects is not ideal, especially in the
case of severe occlusion. In order to solve these problems, a multi-scale feature fusion
strategy based on the YOLOv5 algorithm is adopted, which is combined with attention
network and improves the non-maximum suppression post-processing.
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2.2. Behavior Detection in Classroom Scenarios

In a related study of behavior detection in classroom scenes, the authors of [23] used
a matrix of pressure sensors mounted on seats and the backs of chairs to collect students’
various postures. The extracted posture features are fed into a feedforward neural network
for training, and nine kinds of postures are classified with high precision. The authors of [24]
used Hexiware to collect students’ heartbeat data and categorize them by the K-Means
algorithm as a measure of students’ learning status in the classroom. The authors of [25]
proposed a student body gesture recognition method based on the Fisher Broad learning
system, and defined seven learning behaviors, which achieved good results on the self-
built dataset. The authors of [26] used OpenPose framework to collect students’ skeleton
information, build a neural network to classify the extracted skeletal data by normalizing
joint position, joint distance, and skeletal angle, and propose a student behavior recognition
system based on human skeleton estimation and person detection. The authors of [27]
built a deep convolutional neural network to identify head poses, used cascaded facial
feature point positioning to extract facial expression key points, and distinguished students’
classroom behaviors by combining head poses and facial expressions. The authors of [28]
proposed a face tracking algorithm based on area of interest to detect students’ standing
behavior in the classroom, and also developed an algorithm based on skin color detection to
recognize students’ hand behavior. The authors of [29] introduced a cascaded RFB module
in the YOLOv3 algorithm, which improves the feature extraction capability of the original
network and realizes the goal of identifying small and medium-sized target students in
the classroom. At the same time, the SE attention mechanism was introduced to express
feature information in a finer-grained manner.

Through the above research and analysis, we can find that there are still some short-
comings in classroom behavior detection. (1) Although the behavior detection method
using hardware has a high recognition rate, it needs to use hardware for multi-modal data
collection, which is difficult to be applied to real classroom scenarios and is not suitable
for large-scale popularization. (2) When using deep learning methods in the classroom,
some algorithms cannot detect multiple objects in the same image frame at the same time
and are not suitable for classroom scenarios with multiple students; or, although multiple
people can be detected in the same frame, the algorithm lacks real-time performance. There
is still a lack of a real-time classroom behavior detection methods. (3) The lack of classroom
behavior datasets: there are currently no public large-scale classroom scene datasets, which
makes it difficult for researchers to train in deep learning.

To address the above points, this paper marks the datasets of classroom behavior
detection on real class scenarios and optimizes the behavior detection model according
to the difficulties in class scenarios, and the optimized algorithm was tested to achieve
good results.

3. Methods

Our purpose is to accurately detect a variety of student behaviors in the classroom
environment in real time, so both detection accuracy and inference speed are important.
At present, there is a problem of slow inference in Fast R-CNN and other two-stage
object detection algorithms, so we consider using the YOLOv5 algorithm with good real-
time performance.

3.1. YOLOv5 Framework

The YOLO series algorithm is a typical single-stage regression detection algorithm,
which can accomplish both object localization and object classification at the same time.
The YOLOv5 combines many of the advantages of previous versions [30,31], and strikes a
good balance between accuracy and speed of detection. The YOLOv5 network structure
is mainly composed of the input, the backbone network, the neck network, and the
prediction head.
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Input: YOLOv5 first resizes the incoming images of different sizes to 640 × 640 size,
and completes the tasks of mosaic data enhancement, adaptive anchor frame calculation,
and adaptive image scaling at the input side, and then sends them to the backbone network.

Backbone: The backbone network is used for feature extraction and consists mainly
of Focus module, CSP module [32], and CBL module. The most critical part of the Focus
structure is the slicing operation, as shown in Figure 2, where the original input size of
640 × 640 × 3 is sliced into a 320× 320× 12 feature map, and then undergoes a convolution
operation with 32 convolution kernels to finally become a 320 × 320 × 32 feature map.
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Neck: The neck network is mainly used to continue using the features extracted
by the backbone network, and the feature pyramid type structure of FPN+PAN is used
to process the feature maps extracted at different stages [33,34], so that the feature
information can be passed under different scales of the object, as well as to solve the
multi-scale challenges.

Head: After the neck network passes the fused feature map, the predictor head
is responsible for predicting the features of the image, generating bounding boxes and
predicting the category. The prediction head will use three grids of different scale sizes to
detect small, medium, and large objects in the image, respectively.

The classroom behavior detection process based on the improved YOLOv5 model is
shown in Figure 3. We use a BiFPN structure [35] to enhance the extraction of multi-scale
features by modifying the feature pyramid structure in the neck network. A new link is
established between the Concat layers and we perform adaptive multi-scale fusion on the
three-layer CSP2_1 structure to improve the recognition accuracy using multi-scale small
object fine-grained features [36]. The CBAM convolutional attention module [37] is further
introduced after the multi-scale fusion weighting to enhance the saliency of the behavioral
objects. The DIoU component with penalty terms is used to improve the non-maximum
suppression and characterize the regression of object box in terms of centroid distance and
overlap rate [38]. The following three aspects are introduced in detail from the feature
pyramid structure, attention mechanism, and non-maximum suppression.
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3.2. Feature Pyramid Structure

Different camera angles in the classrooms and the distances between students and the
camera can lead to different size of students in the top and bottom rows of the classroom in
the same image frame, so how to represent and deal with multi-scale features effectively is
a difficult problem in classroom behavior detection. Figure 4a Feature Pyramid Network
(FPN) proposes a top-down approach that combines multi-scale features for prediction
using composite feature layers with more semantic information. In line with this idea,
Figure 4b PANet continues to add a bottom-up path aggregation network on top of FPN,
taking into account both the semantic information of the top layer and the location in-
formation of the bottom layer. The YOLOv5 framework integrates multi-scale features
with the FPN+PAN structure, but due to the different resolution of input features, the
contribution of the FPN+PAN structure to the fusion output features is often uneven and
the features between different scales cannot be fully exploited. Therefore, a simple and
efficient weighted bidirectional feature pyramid network (BiFPN) has been introduced to
the neck of the YOLOv5 framework to improve the detection accuracy. The fusion steps are
as follows:
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1. First remove those nodes that have only one input edge, because if a node has
only one input edge without feature fusion, its contribution to a feature network that
incorporates different feature information is usually weak. Therefore, BiFPN eliminates
the intermediate nodes of P3 and P7 in PANet, which leads to a simplified bidirectional
network. 2. Add a jump connection between input nodes to output nodes at the same
scale because they are on the same layer and can incorporate more features and enhance
feature representation without adding too much computational overhead. 3. Combine each
bidirectional (top-down and bottom-up) path considered as a feature network layer so that
it can be repeatedly stacked to achieve higher level feature fusion. The structure of the
BIFPN in this paper is shown in Figure 5.
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BiFPN uses the fast normalization method for weighted feature fusion, in which
the fast normalization directly divides the weight by the weighted sum of all values for
normalization, and the value of each normalization weight is also between 0 and 1, in order
to increase the speed of calculation, the formula is as follows:

O = ∑i
ωi

∈ +∑j ωj
· Ii (1)

In the formula, ωi represents the learnable weight, which is obtained by the network
training, and Ii represents the input feature. The weights ωi ≥ 0 are ensured by using a
ReLu activation function after each ωi, and the value of the output weights is controlled
between 0 and 1 by regularization. Finally, BiFPN integrates bidirectional cross-scale
connection and fast normalization fusion. Taking node P6 in Figure 6 as an example, the
two feature fusion processes formed are as follows:
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In the formula, Ptd
6 represents the top-down intermediate feature layer, Pout

6 represents
the bottom-up intermediate special layer, Conv represents the convolution operation, and
Resize represents the up-sampling or down-sampling operation. Based on the above
advantages, BiFPN is introduced to improve the feature pyramid structure, enhance multi-
scale feature fusion, and improve model detection accuracy.

3.3. Convolutional Attention Module CBAM

Because there are walls, desks, chairs, windows, and other background environments
in the real classroom environment, when facing a large area of untargeted regions in an
image, the YOLOv5 model is improved by introducing an attention mechanism in order
to make the model better focus on the information of students’ regions. The attention
mechanism selects a small amount of important information from a large amount of
information and focuses on this important information, ignoring most of the unimportant
information. The Convolutional Block Attention Module (CBAM) used in this paper is a
hybrid attention mechanism model that combines spatial and spatial channels; compared
with SENAT [39], which only focuses on the channel itself, CBAM integrates both channel
and spatial attention mapping processes and can retain more feature information. The
structure of CBAM is shown in Figure 7.
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The above figure shows the overall flow structure of the CBAM module, which consists
of two separate submodules, the channel attention module and the spatial attention module.
The input features first pass through a channel attention module, which attaches the
corresponding attention weights to each feature channel, and after getting the weighted
results, they then pass through a spatial attention module, which applies the corresponding
attention weights to different spatial locations of the feature map, and then weighted to
obtain the output result of the convolutional layer.

Each channel of features represents a specific detector, so it makes sense for channel
attention to focus on the features. The channel attention module compresses the feature
map in the spatial dimension to obtain a one-dimensional vector and then operates.

The channel attention module shown in Figure 8 first performs global max pool-
ing and global average pooling on the input feature map in the width and height
dimensions, respectively, in order to aggregate the spatial information of the feature
map. The result is then passed into the multilayer perceptron for processing using the
shared fully connected layer [40]. Finally, through the sigmoid activation operation,
the final channel attention feature map Mc(F) is generated. The result of this feature
map, after weighting with the input feature map, is used as the input feature for the
spatial attention module.
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The mathematical expression of the channel attention feature map Mc(F) is:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (2)

where σ is the sigmoid activation function, MLP is the connection weight operation between
layers, and AvgPool and MaxPool represent the maximum pooling and average pooling
operations, respectively.

After the channel attention module, we introduce the spatial attention module shown
in Figure 9 to focus on where features make sense. Similar to channel attention, the spatial
attention mechanism compresses channels, and performs mean pooling and max pooling
in the channel dimension, respectively. First, the input feature layer takes the maximum
value and average value on the channel of each feature point. After that, the two results are
stacked, and the number of channels is adjusted by convolution with a channel number of
1. Finally, the spatial attention map Ms(F) is generated by the sigmoid function, and its
mathematical expression is:

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (3)
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In the formula, 7 × 7 represents the size of the convolution kernel, that is, a 7 × 7 con-
volution operation is performed on the feature map. Experience shows that the convolution
kernel of 7 × 7 is better than the convolution kernel of 3 × 3. This paper adds the CBAM
attention mechanism between the neck network and the prediction network.

As can be seen in Figure 10, after adding the attention mechanism, the algorithm
proposed in this paper focuses more on the student targets in the classroom, ignoring
the irrelevant factors in the cluttered background of the classroom. Using saliency of the
objects is beneficial by improving the learning of student target features and improving the
detection accuracy.
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3.4. Non-Maximum Suppression Improvement

In the prediction stage, the object detection algorithm usually uses non-maximum
suppression to eliminate the redundant detection frames. The idea is to traverse all de-
tection frames and retain the highest-scoring prediction frame, calculate the intersection
ratio IoU between the remaining frames and the highest-scoring prediction frame, and
reject the detection frame if the IoU is greater than the set threshold. In most cases, the
NMS method is effective, but in the case of dense target scene, due to the large number
of detected objects and serious occlusion, the objects to be detected are too close to each
other, and the overlapping area of detection frames of adjacent objects is too large, which
easily leads to the NMS incorrectly rejecting the detection frames of a certain object. In the
experiments of this paper, the classrooms are densely packed with students and heavily
occluded, and the traditional NMS is not applicable to the dataset of this paper, so DIoU is
introduced in this paper to improve the post-processing NMS process.

The blue box in Figure 11 is the real frame, and its center point is marked as bgt, the
green box is the predicted frame, and its center point is marked as b, and the outer frame is
the smallest box that wraps both the real frame and the predicted frame. Denoted as C, c is
the length of the diagonal of the outer frame, d is the length of the center of the real frame
and the center of the predicted frame, and the gray shaded part is the intersection of the
real frame and the predicted frame.
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Compared with IoU, DIoU takes into account the distance, overlap rate, and scale
between the object and the anchor, making the object box regression more stable, as shown
in formula:

DIoU = IoU− ρ2(b, bgt)

c2 (4)

In the formula, ρ2(·) represents the Euclidean distance, and the definitions of b, bgt,
and c are the same as in Figure 9.



Appl. Sci. 2022, 12, 6790 11 of 18

The definition of DIoU is as formula:

si =

{
si, DIoU(M, Bi) < ε
0, DIoU(M, Bi) ≥ ε

}
(5)

In the formula, si represents the classification score, M represents the prediction frame
with the highest score, Bi represents the prediction frame to be eliminated, and ε represents
the artificially set IoU threshold. Compared with IoU, the calculation of DIoU takes into
account the information of the center points of the two frames, which helps to solve the
occlusion problem caused by the object distance being too close. Therefore, the NMS effect
judged by DIoU is more realistic and the effect is better.

4. Experimental Results and Analysis
4.1. Dataset Production

Existing object detection public datasets, such as COCO and PASCAL VOC, are used
to detect specific categories, and there is no public data information for classroom students’
behavioral states. Therefore, this paper manually constructed a classroom behavior de-
tection dataset, based on real classroom videos, which contains four types of behaviors:
listening, looking down, lying down, and standing. As shown in Figure 12, students who
looked at the blackboard or read books carefully were labeled as listening state. Students
who lowered their heads or played with cellphones were labeled as looking down state.
Students who lay on their sides or buried their heads were labeled as lying down state.
Students who stood up and answered questions were labeled as standing state. Since the
head features of listening and looking down states were more obvious, only the head region
was marked in this paper, while lying down and standing need to be identified by body
posture, so the whole-body region was marked.
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Dataset images were captured at frame intervals from recorded class videos. In order
to ensure good generalization performance and robustness, each image contains multiple
student objects and multiple action poses. The images were screened out with insignificant
actions and small changes before and after, and the LabelImg tool was used to manually
label each image. The xml file generated by each image includes the label category (listening,
looking down, lying down, standing) and the coordinate information of the real frame. A
total of 10,826 labels were marked, and the training set and test set were divided by 8:2.
The number of labels for each label is shown in Table 1.
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Table 1. The number of labels in the student behavior dataset.

Category Training Set Test Set Total

Listening 3105 776 3881
Looking down 2742 685 3427

Lying down 1843 460 2303
Standing 972 243 1215

Total 8662 2164 10,826

Unbalanced training data will cause the network model to pay more attention to a
large number of objects during the training process, and it is easy to cause the model to
overfit. In the dataset of this paper, the number of standing samples is relatively small, and
in real life, sample collection is not easy. Therefore, we used data augmentation to expand
the number of samples of standing poses to improve network performance. In this paper,
a selection of images was intercepted of the student objects in the standing posture and
data enhancement was carried out. Horizontal flip, brightness enhancement, and Gaussian
noise were added to the cropped image, and the enhancement effect is shown in Figure 13.
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4.2. Experimental Settings and Model Training

In this paper, the experimental environment was conducted on Ubuntu 18.04 operating
system, the CPU configuration was Intel(R) Xeon(R) Sliver 4110 CPU@2.10HZ, the graphics
card GeForce GTX 1080ti was selected for computing, the video memory size was 11 GB,
and the runtime environment was built using the deep learning framework Pytorch version
1.7.0, and the Python environment was 3.6.13.

The image input was set to 640 × 640 size, the momentum size parameter was set to
0.937, and the initial learning rate was set to 0.01. The warm-up method was used to warm
up the learning rate and slow down the phenomenon of overfitting the model to small
batch data at the early stage of training. The learning rate was updated by one-dimensional
linear interpolation in the warm-up phase, and the learning rate was adjusted by the cosine
annealing strategy after the warm-up. The total number of epochs was 100, the epoch batch
size was set to 16, the SGD optimizer was used, and the mosaic data enhancement strategy
was used for the first 90 epochs and turned off for the last 10 epochs.

4.3. Evaluation Indicators

In order to evaluate the superiority of the algorithm objectively, the evaluation indica-
tors use the precision rate, the recall rate, the mean average precision mAP, and the number
of frames per second to detect the pictures to evaluate the performance of the algorithm in
this paper. The calculation formula for each indicator is as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
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mAP =
∑n

j=0 AP(j)

n
(8)

FPS =
Figure Numbers

Total Time
(9)

Among them, TP, FP, and FN represent the number of correct detections, the number
of false detections, and the number of missed detections, respectively, AP(j) is the average
precision of the jth type of defects, Figure Numbers represents the total number of detected
pictures, and Total Time represents the total detection time.

4.4. Experimental Results

The comparison results of the average precision value curve of the improved network
model in this paper and the YOLOv5 model are as follows:

In Figure 14, mAP@0.5 represents the average precision when the IoU value is 0.5, and
mAP@0.5:0.95 represents the average mAP when the IoU value is 0.5 to 0.95. As can be seen
from the figure, the average accuracy of this algorithm is significantly improved compared
to YOLOv5. When the algorithm in this paper iterates to the 40th round, mAP@0.5 rises
to about 0.8, and finally increases steadily to about 0.898, while the YOLOv5 algorithm
iterates to the 60th round. The mAP@0.5 only rose to 0.8 in the round, and finally stabilizes
at around 0.842.
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As can be seen in Table 2, the algorithm performed well in the classroom behavior
detection dataset, with mAP@0.5 reaching 89.8 and the average recall rate reaching 90.4. The
detection accuracy of standing position is higher because the standing position occupied
a more obvious image area, so the detection accuracy of standing position reached 93.3.
The detection accuracy of listening and lying down behaviors is slightly lower than other
behaviors because the area occupied by head is less.

Table 2. Average precision and recall for each behavior.

Category mAP@0.5 (%) Recall (%)

Listening 88.7 89.4
Looking down 86.9 85.8

Lying down 90.4 91.7
Standing 93.3 94.8

Average for all categories 89.8 90.4
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As can be seen from Table 3, the detection accuracy of the algorithm in this paper
is improved by 5.6% compared with the original YOLOv5 algorithm. In order to get a
more intuitive feeling of the detection effect of the improved algorithm in this paper and
YOLOv5, the images under the dense scene of classroom and the obscured scene were
selected for the detection comparison, and the results are shown in Figures 15 and 16.

Table 3. Comparison before and after adding different modules.

Model CBAM BiFPN DIoU Precision/% Recall/% mAP@0.5/%

YOLOv5 × × × 83.7 85.3 84.2
+CBAM

√
× × 87.1 90.1 88.7

+BiFPN ×
√

× 86.5 89.3 87.4
+DIoU × ×

√
85.4 87.6 85.9

ours
√ √ √

88.2 90.4 89.8
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From the test results, it was found that the YOLOv5 model will have some missed
detections in the classroom scene with intensive student targets, and the detection effect
of the small target students in the back row is not satisfactory. The improved algorithm
in this paper can not only identify the missing object of YOLOv5, but also most object
recognition is more accurate than the YOLOv5 model. This is due to the introduction
of the CBAM attention mechanism and the improvement of the BiFPN feature pyramid,
which allow our model to better handle multi-scale features and capture more high-level
semantic information, and then focus more attention on the object features of the image to
be detected, and the accuracy of the final recognition increases.
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For images in occluded scenes, when there are multiple student targets interfering
with each other, the YOLOv5 model does not suppress redundant detection frames, and
sets two detection frames for the occluded targets. Based on the introduction of DIoU to
improve non-maximum suppression, the algorithm in this paper calculates the distance
between the center points of adjacent target detection frames, so that the prediction frame
can predict targets more accurately and eliminate redundant detection frames.

In order to evaluate the advantages of the algorithm objectively, the algorithm in this
paper is compared with the mainstream object detection algorithms. To ensure fairness,
all algorithms in the experiment use the same training parameters and the same training
samples, and the experimental results are shown in Table 4.

Table 4. Comparison and detection results of each algorithm.

Algorithm mAP@0.5/% FPS

Faster R-CNN 81.5 7.1
SSD 73.2 32.5

YOLOv5 84.2 41.6
Ours 89.8 33.8

It can be seen from the comparison results of the algorithms in Table 4 that the average
accuracy of the improved algorithm in this paper is higher than that of the other three
algorithms. Because of the improved feature pyramid structure and the introduction of the
attention mechanism, the detection speed of the algorithm in this paper is slightly lower
than the YOLOv5 model, but it can still detect 33 frames of images per second, achieving
the goal of detecting student behavior in real time.

In order to verify the robustness of the algorithm, two kinds of Gaussian noises with
different variance were added to the images of long, medium, and short-range camera
scenes. The experimental results are shown in Table 5 and Figure 17.

Table 5. Detection results after adding different variance noises.

Gaussian Noise mAP@0.5/% Recall/%

variance 0.01 89.3 89.6
variance 0.05 88.5 88.7
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As can be seen from Figure 17, the algorithm in this paper can still accurately detect a
variety of classroom behaviors after adding Gaussian noise. As can be seen from Table 5,
mAP@0.5 and Recall were still high even though the accuracy of the algorithm decreases
slightly with the addition of noise, proving the robustness of our algorithm.

5. Conclusions and Discussions

This paper detects students’ classroom behavior based on the improved YOLOv5
algorithm and transforms the problem of classroom behavior detection into a fine-grained
classification problem of behavior images. By introducing the weighted bidirectional
feature pyramid network BiFPN, the multi-scale features of the object are more effectively
expressed, mining the fine-grained characteristics of object behavior, reducing the number
of missed detections of small target students in the back row of the classroom; the attention
mechanism CBAM is integrated into the YOLOv5 algorithm to enhance the saliency of the
object area in the complex background, effectively improving the accuracy of the detector;
and using DIoU to improve the original non-maximum suppression, further improving
the accuracy of the detector, while improving the problem of false detection caused by the
problem of classroom occlusion.

The experimental results show that the improved algorithm in this paper can accu-
rately detect different classroom behaviors and has higher accuracy than the YOLOv5
algorithm in dense classroom scenes and occlusion scenes, and has better accuracy and ro-
bustness. The mAP values of the proposed algorithm are bigger than those values of Faster
R-CNN, SSD and the original YOLOv5 algorithm, indicating that the proposed algorithm
has a better detection accuracy. The results presented in Figures 15 and 16 also show that
the algorithm proposed in this study can be used for detection in dense classroom scenes
and occlusion scenes. Moreover, the results show that the proposed algorithm achieves
an inference speed of 33 frames per second under GeForce GTX 1080ti, which meets the
requirements of real-time video detection.

Although the results are encouraging, the work is limited due to the following reasons.
First, students’ behaviors often occur coherently and video datasets in real classrooms are
difficult to obtain. Second, it is difficult to consider the temporal contextual information of
behavior occurrence to increase the accuracy. We did not consider the temporal features
before and after each behavior occurrence but focused on the behavior classification prob-
lem on single-frame images. Unlike running and jumping that require multiple frames of
information, the behaviors performed by students in the classroom often tend to be static
and can be judged by single-frame images.

The findings of this study have the following potential applications in the classroom
scenarios. To monitor students’ behavioral status, it is very common to arrange cameras
in front of the classroom and connect it to our back-end server. Deploying the algorithm
proposed in this study, the way in which students behave can be presented in a timely
manner on both the teacher and administration sides. The status of students can be
evaluated automatically by classifying their behaviors into positive behaviors (e.g., listening
and standing), neutral behaviors (e.g., looking down), and negative behaviors (e.g., lying
down). The educational system calculates the proportion of positive, neutral, and negative
behaviors by counting the recognized behaviors. If the proportion of negative behaviors
exceeds a certain threshold, feedback can be provided to the teacher and suggest he/she
improves the teaching strategy of the class. The educational system can also count the
number of times that each student’s behavior occurs and the period during which positive
or negative behavior lasts. In this way, teachers can get more insights on the teaching
method that is more appropriate for them at different teaching stages.

Despite the performance of the algorithm being improved, the accuracy of student
behavior recognition for complex features or state combinations in practical application
environments needs to be further investigated. Further work to be undertaken includes
the use of contextual information of behaviors for more accurate behavior classification
and the accuracy improvement for small target students. Doing this, it is necessary to
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expand the dataset by adding more behavior types and improving the generalizability of
the algorithm in diverse classroom scenarios. The coordinate information of the student’s
position and face features can be utilized to achieve one-to-one correspondence between
student identification and their behavior status in the smart classroom.
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