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Abstract: In order to improve the accuracy of bearing-only localization in three dimensional (3D)
space, this paper proposes a novel bias compensation method and a new single-sensor maneuvering
trajectory algorithm, respectively. Compared with traditional methods, the bias compensation method
estimates the unknown variance of bearing noise consistently, which is utilized in pseudo-linear
target localization to achieve higher precision. The sensor maneuvering algorithm designs the next
moment sensor location in consideration of all the past sensor locations, unlike other approaches that
only consider finite past locations. Research shows that the trajectories generated by our algorithm
have greater Fisher information matrix (FIM) determinants and better localization accuracy.

Keywords: bearing-only localization; three dimensional space; bias compensation method; Fisher
information matrix (FIM) determinant; sensor maneuvering algorithm

1. Introduction

Target localization has applications in both civilian and military domains including
wireless communications, environmental monitoring [1], network security [2,3], medical
diagnosis, etc. The commonly used methods for target localization can be characterized
into four categories according to the type of sensors: bearing-only (also called angle of
arrival (AOA)), range-only, time-of-arrival (time-difference-of-arrival) and received signal
strength [4]. The problem of using only angle measurements to locate a target is referred to
as bearing-only target localization which is the focus of this paper.

The bearing-only target positioning problem can usually be solved in the following
two categories. The first category is based on Kalman filtering and its various evolutionary
versions [5,6], Kalman filter, extended Kalman filter and unscented Kalman filter have
been applied to the bearing-only target localization problem in [7,8]. Due to nonlinear-to-
linear transformation of the angle measurement equations, there exists a serious deviation
problem. Dogançay et al. [9] propose a new two-step pseudo-linear Kalman filter for
bearing-only target tracking in 3D space. In the second category, many batch form methods
based on the ordinary least squares are used to deal with target localization under small
measurement noise [10–12]. To deal with the serious deviation of the pseudo-linear esti-
mator (PLE) in two dimensional (2D) target localization problem, Dogançay [13] proposes
a closed-form reduced-bias PLE to realize the asymptotic unbiased estimation of target
motion parameters by using the instrumental variable (IV) method. In the case of small
noise, Dogançay also proposes pseudo-linear estimator for AOA target motion analysis
in 3D space [14]. Adib et al. [15] proposes a two-stage weighted Stansfield geolocation
algorithm based on maximum likelihood estimation in 3D space, and it has the advan-
tages of consistency and statistical efficiency. In addition, the position of the sensor has
a great influence on positioning accuracy [4,16]. In order to minimize the uncertainty of
the target estimation, the position of the sensor at the next moment needs to be reasonably
planned. The optimal localization of the sensor is generally determined by maximizing
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the determinant of FIM or minimizing the trace of error covariance matrix of the estima-
tor [2,17–19]. The optimal trajectory of a single mobile sensor is determined by maximizing
the determinant of FIM under the condition of adding state constraints on the observer
trajectory [20]. When the absolute elevation of the sensor is constant, Sheng et al. [21]
proposes a new simple sensor optimal deployment criterion based on minimizing the trace
of error covariance matrix. Based on the optimization criterion of minimizing the mean
square error (MSE), an own-ship path optimization algorithm by using the gradient-descent
method in xy plane and the grid search optimization method in z axis is presented [22].
A distributed path optimization algorithm is applied when the communication distance
constraints and no-fly zone are considered [23].

Most estimation methods generally assume that the variance of measurement noise is
known a priori for the purpose of bias compensation. In fact, the noise variance is generally
unknown and needs to be approximated in advance. The least-square solution for the
target dynamics is calculated and plugged into bearing measurement equations to compute
the noise in the first step. Then the “true” noise is used to construct the pseudolinear
vector and form the final bias-compensation PLE result which is still biased [24]. As the
first contribution of this paper, we analyze the properties of Gaussian noise along with the
angle measurement equations and newly discover the potential relationship between the
determinant of the extended coefficient matrix of the equation and the noise variance. A
BC method for target localization on xy plane and the target position in z-axis direction
based on the pseudo-linear estimation method is proposed thereafter.

Optimizing the increment of FIM determinant over a finite time horizon rather than the
whole time span makes trajectory planning less effective [25]. As the second contribution
of this paper, a sensor trajectory planning algorithm based on greedy strategies maximizes
the increment between two consecutive FIM determinants to realize the next location of a
single sensor. It is proven that the increment equals the aggregation of FIM determinants
constituted by the sensor location at next time step and the combination of all past locations.
Considering the spherical constraints of target safety area and sensor movement area, the
optimal solution always sits on the area surface. Based on this fact, an analytical solution is
suggested to solve the maximization problem.

The rest of this paper is organized as follows. Section 2 formulates the problem of
target localization in 3D space, including the notations and localization methods. Section 3
proposes a BC estimator and bias compensation weighted instrumental variable (BC-
WIV) estimator. In Section 4, the sensor maneuvering algorithm in the composition of
two trajectories is designed in detail with the analysis of the FIM increment. Numerical
examples are studies to validate the method studies in Section 5. Section 6 concludes the
whole paper and points out future research directions.

2. Bearing-Only Localization in 3D Space

As shown in Figure 1, the location of target T =
[
xt yt zt

]′ is unknown in 3D space.
T needs to be estimated based on the azimuth φ̂i and elevation angle θ̂i measurements
collected from a mobile sensor Si =

[
xsi ysi zsi

]′
(i = 1, . . . , n) at n locations. t and si

are the coordinates of the target and the sensor on xy plane, respectively. The true bearing
information φi and θi received by the sensor from the target are:

φi = tan−1
(

yt − ysi

xt − xsi

)
, (1)

θi = tan−1
(

zt − zsi√
(xt − xsi )

2 + (yt − ysi )
2

)
. (2)

The bearing information φ̂i and θ̂i are the sensor measurements corrupted by the noise ei
and δi at n locations, i.e.,

φ̂i = φi + ei, (3)
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θ̂i = θi + δi, (4)

where ei and δi are independent identically distributed white Gaussian noise with zero
mean and unknown variance of σ2 and ξ2, respectively.

z

y
x

Figure 1. Target and sensor in R3.

The problem of target localization in 3D space is solved in two steps. Firstly, the
bearing line is projected onto the xy plane. The corresponding 2D estimator is used
to solve the resulting 2D positioning problem. Then the estimated position of T along
the z axis is obtained from the estimated x and y coordinates. The 2D pseudolinear
estimator (PLE) algorithm is used to estimate t by using n azimuth measurements φ̂i.
To turn a nonlinear problem into a linear one, small noise assumption also appears in
the development and analysis of the Stansfield algorithm [26] and the total-least-squares
solution [27] for localization. The pseudolinear equation from (1) and (3) between t and the
given information is described as:

sin φ̂ixt − cos φ̂iyt = sin φ̂ixsi − cos φ̂iysi + ||t− si|| sin ei, (5)

which can be expressed in matrix form as:

Ant = Bn + nn (6)

where

An =

sin φ̂1 − cos φ̂1
...

...
sin φ̂n − cos φ̂n

, Bn =

sin φ̂1xs1 − cos φ̂1ys1
...

sin φ̂nxsn − cos φ̂nysn

,

nn =

||t− s1|| 0 0

0
. . . 0

0 0 ||t− sn||


sin e1

...
sin en

. (7)

The 2D PLE estimator of (6) is:

t̂ple = (A
′
nAn)

−1A
′
nBn, (8)

where A
′
n represents the transpose of An.
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The target position of the projection in 2D space has been estimated. According to the
geometric relationship, the target position in the z axis direction can be estimated according
to the elevation angle measurements and other information as:

z0 =
1
n

n

∑
i=1

(
zi +

√
(x0 − xsi )

2 + (y0 − ysi )
2 tan θ̂i

)
, (9)

where x0 and y0 are the target position estimated by different methods in 2D space.

3. Bias Compensation Estimator for Localization in 3D Space
3.1. Bias Compensation Localization in 2D Space

In [28], a bias compensation method for bearing-only localization is proposed, which
can effectively solve the problem of nonlinear localization. Dividing cos φ̂i on both sides of
(5) gives:

tan φ̂ixt − yt = tan φ̂ixsi − ysi +
||t− si|| sin ei

cos φ̂i
. (10)

Rewrite (10) into the matrix form as:

Zn = W̄nt + CnNn, (11)

where

Zn =

tan φ̂1xs1 − ys1
...

tan φ̂nxsn − ysn

, W̄n =

tan φ̂1 −1
...

...
tan φ̂n −1

,

Cn =


−||t− s1||

cos φ̂1
0 0

0
. . . 0

0 0 −||t− sn||
cos φ̂n

, Nn =

sin e1
...

sin en

. (12)

Based on

σ̂2 = min λ,

s.t. det
(

1
n
[
W̄n Zn

]′[W̄n Zn
]
− λ

 1 0 − 1
n ∑n

i=1 xsi

0 0 0
− 1

n ∑n
i=1 xsi 0 1

n ∑n
i=1 x2

si

) = 0
(13)

of σ2, the Bai estimator is:

t̂σ̂2 =

(
1
n

W̄′nW̄n − σ̂2
[

1 0
0 0

])−1( 1
n

W̄′nZn + σ̂2
[ 1

n ∑n
i=1 xsi

0

])
. (14)

Inspired by [28], a corresponding bias compensation estimator is designed for (5).
Firstly, the matrix An and Bn are processed as:

1
n
[
An Bn

]′[An Bn
]
=

1
n

n

∑
i=1

ai
11 ai

12 bi
1

ai
12 ai

22 bi
2

bi
1 bi

2 ci

, (15)
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where

ai
11 = sin2 φi cos2 ei + 2 sin φi cos φi cos ei sin ei + cos2 φi sin2 ei, (16)

ai
12 = − sin φi cos φi cos2 ei − cos2 φi cos ei sin ei

+ sin2 φi cos ei sin ei + cos φi sin φi sin2 ei, (17)

ai
22 = cos2 φi cos2 ei − 2 cos φi sin φi cos ei sin ei + sin2 φi sin2 ei, (18)

bi
1 = ai

11xsi + ai
12ysi , (19)

bi
2 = ai

12xsi + ai
22ysi , (20)

ci = ai
11x2

si
+ 2ai

12xsi ysi + ai
22y2

si
. (21)

To derive the bias compensation estimator in detail, two lemmas are proposed.

Lemma 1. E(cos ei sin ei) = 0, E(sin2 ei) = (1− e−2σ2
)/2, E(cos2 ei) = (1+ e−2σ2

)/2 where
E(·) represents the mathematical expectation.

Proof of Lemma 1. Since cos ei sin ei = sin 2ei/2 is an odd function, we have:

1
2
√

2πσ

∫ ∞

−∞
sin 2ei · e

−
e2
i

2σ2 dei = 0. (22)

From

E(cos2 ei − sin2 ei) = E(cos 2ei)

=
∞

∑
i=0

(−1)i22i

(2i)!
· 1√

2πσ

∫ ∞

−∞
e2i

i e−
e2
i

2σ2 dei

=
∞

∑
i=0

(−1)i22i

(2i)!
· σ2i(2i)!

2i(i)!
(23)

=
∞

∑
i=0

(−1)i(2σ2)i

(i)!

= e−2σ2

and E(cos2 ei + sin2 ei) = 1, E(sin2 ei) = (1− e−2σ2
)/2, E(cos2 ei) = (1 + e−2σ2

)/2.

Define

P(γ) =
1
n
[
An Bn

]′[An Bn
]
− γ

n



n 0
n

∑
i=1

xsi

0 n
n

∑
i=1

ysi

n

∑
i=1

xsi

n

∑
i=1

ysi

n

∑
i=1

x2
si
+

n

∑
i=1

y2
si


(24)

as the extended coefficient matrix.

Lemma 2. γmin = E(sin2 ei) is the smallest real value s.t. det(P(γ)) = 0 in probability as
n→ ∞.

Proof of Lemma 2. With Lemma 1, we have:
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1
n
[
An Bn

]′[An Bn
]
− P(γmin) =

γmin

n



n 0
n

∑
i=1

xsi

0 n
n

∑
i=1

ysi

n

∑
i=1

xsi

n

∑
i=1

ysi

n

∑
i=1

x2
si
+

n

∑
i=1

y2
si


in probability where:

P(γmin) =
E(cos(2ei))

n
∗

n

∑
i=1

( sin φi
− cos φi

sin φixsi − cos φiysi

 sin φi
− cos φi

sin φixsi − cos φiysi


′)

. (25)

Through observation, P(γmin) is positive semi-definite. Its null space is one dimen-
sional in the form of: β

[
xt yt −1

]′, where β ∈ R. Let vector v =
[
v1 v2 v3

]
be

arbitrary in R3×1. So we have

v
′
P(γ)v = v

′
P(γmin)v−

γ− γmin

n
∗ v

′



n 0
n

∑
i=1

xsi

0 n
n

∑
i=1

ysi

n

∑
i=1

xsi

n

∑
i=1

ysi

n

∑
i=1

x2
si
+

n

∑
i=1

y2
si


v. (26)

The second term

γ− γmin

n
v
′



n 0
n

∑
i=1

xsi

0 n
n

∑
i=1

ysi

n

∑
i=1

xsi

n

∑
i=1

ysi .
n

∑
i=1

x2
si
+

n

∑
i=1

y2
si


v

=
γ− γmin

n

n

∑
i=1

(v2
1 + 2v1v3xsi + v2

2 + 2v2v3ysi + v2
3x2

si
+ v2

3y2
si
) (27)

= (γ− γmin)((v1 +
v3

n

n

∑
i=1

xsi )
2 + (v2 +

v3

n

n

∑
i=1

ysi )
2

+
v2

3
2n2

n

∑
i=1

n

∑
j=1

(xsi − xsj)
2 +

v2
3

2n2

n

∑
i=1

n

∑
j=1

(ysi − ysj)
2) > 0,

when γ < γmin, the first term v
′
P(γmin)v in (26) is no less than 0. This makes v

′
P(γ)v

always greater than 0. Hence, the minimum γ that leads to v
′
P(γ)v = 0 or det(P(γ)) = 0

satisfies γ = γmin when v = β
[
xt yt −1

]′.
It is worthwhile to point out that γmin can be found by getting the minimum root of

the third-order polynomial function det(P(γ)) = 0. To sum up, the 2D positioning results
with bias compensation can be obtained, as

Theorem 1.

t̂bc =

(
1
n

A
′
nAn −

[
γmin 0

0 γmin

])−1

∗
(

1
n

A
′
nBn −

γmin

n

n

∑
i=1

[
xsi

ysi

])
(28)

converges to t in probability as n→ ∞ when E(cos2ei) 6= 0.
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Proof of Theorem 1. As n→ ∞,

1
n

A
′
nAn −

[
γmin 0

0 γmin

]
=

E(cos(2ei))

n

n

∑
i=1

([
sin φi
− cos φi

][
sin φi
− cos φi

]′)
, (29)

1
n

A
′
nBn −

γmin

n

n

∑
i=1

[
xsi

ysi

]
=

E(cos(2ei))

n

n

∑
i=1

([
sin φi
− cos φi

][
sin φi
− cos φi

]′)[
xt
yt

]
. (30)

From (29) and (30), Theorem 1 stands when E(cos 2ei) 6= 0.

3.2. Bias Compensation Method in Z-Axis

The geometric relationship in 3D space is:

zt cos θ̂i = r̂i sin θ̂i + zi cos θ̂i, (31)

where r̂i =
√(

t̂bc(1)− xsi

)2
+
(
t̂bc(2)− ysi

)2. Rewrite (31) into the matrix form

Ynzt = Fn, (32)

where

Yn =

cos θ̂1
...

cos θ̂n

, Fn =

 zs1 cos θ̂1 + r̂1 sin θ̂1
...

zsn cos θ̂n + r̂n sin θ̂n

. (33)

Similarly, we handle the matrix Yn and Fn,

1
n
[
Yn Fn

]′[Yn Fn
]
=

1
n

n

∑
i=1

[
di

1 di
2

di
2 di

3

]
, (34)

where

di
1 = cos2 θi cos2 δi − 2 cos θi sin θi cos δi sin δi + sin2 θi sin2 δi, (35)

di
2 = zsi d

i
1 + r̂i(sin θi cos θi cos2 δi − sin2 θi cos δi sin δi

+ cos2 θi cos δi sin δi − sin θi cos θi sin2 δi), (36)

di
3 = z2

si
di

1 + 2zsi r̂i(sin θi cos θi cos2 δi − sin2 θi cos δi sin δi + cos2 θi cos δi sin δi

− sin θi cos θi sin2 δi) + r̂2
i (sin2 θi cos2 δi + 2 sin θi cos θi sin δi cos δi + cos2 θi sin2 δi). (37)

We also define

Q(µ) =
1
n
[
Yn Fn

]′[Yn Fn
]
− µ

n


n

n

∑
i=1

zsi

n

∑
i=1

zsi

n

∑
i=1

zsi
2 +

n

∑
i=1

r̂2
i

. (38)

According to Lemma 2, the same reasoning process can be concluded. µmin = E(sin2 δi) is
the smallest real value s.t. det(Q(µ)) = 0 in probability as n→ ∞. The difference is µmin
can be found by getting the minimum root of a second-order equation det(Q(µ)) = 0.

Theorem 2.

ẑbc =

(
1
n

Y
′
nYn − µmin

)−1( 1
n

Y
′
nFn −

µmin

n

n

∑
i=1

zsi

)
(39)

converges to zt in probability as n→ ∞ when E(cos2δi) 6= 0.
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Proof of Theorem 2. As n→ ∞,

1
n

Y
′
nYn − µmin =

E(cos(2δi))

n

n

∑
i=1

(
cos θi ∗ cos θi

)
, (40)

1
n

Y
′
nFn −

µmin

n

n

∑
i=1

zsi =
E(cos(2δi))

n

n

∑
i=1

(
cos θi ∗ cos θi ∗ zt

)
. (41)

From (40) and (41), Theorem 2 stands when E(cos 2δi) 6= 0.

From (28) and (39), the 3D bias compensation estimator result is T̂bc =
[
t̂bc; ẑbc

]′.
3.3. BC-WIV Estimator in 3D Space

To improve the accuracy, the researchers often apply the weighted instrumental vari-
able algorithm by constructing instrumental variable matrix Gwiv and weighted matrix
Wwiv,

Gwiv =

sin φ̄1 − cos φ̄1
...

...
sin φ̄n − cos φ̄n

, Wwiv =

||t− s1||2 0 0

0
. . . 0

0 0 ||t− sn||2

, (42)

where φ̄i is calculated from 2D PLE estimator via (8) and

φ̄i = tan−1
(

t̂ple(2)− ysi

t̂ple(1)− xsi

)
. (43)

Then the 2D weighted instrumental variable estimator can be expressed as:

t̂wiv = (G
′
wivW−1

wivAn)
−1G

′
wivW−1

wivBn. (44)

Similarly, the accuracy of bias compensation method in 2D space can be improved by
constructing matrix,

Gbc =

sin φ′1 − cos φ′1
...

...
sin φ′n − cos φ′n

, Wbc =

||t̂bc − s1||2 0 0

0
. . . 0

0 0 ||t̂bc − sn||2

, (45)

where

φ′i = tan−1
(

t̂bc(2)− ysi

t̂bc(1)− xsi

)
. (46)

The 2D bias compensation weighted instrumental variable estimator is:

t̂bc−wiv = (G
′
bcW−1

bc An)
−1G

′
bcW−1

bc Bn. (47)

Here

1
n

G∗bcW−1
bc An ≈

E(cos ei)

n

n

∑
i=1


sin2 φi

||t̂bc − si||2
− sin φi cos φi

||t̂bc − si||2

− sin φi cos φi

||t̂bc − si||2
cos2 φi

||t̂bc − si||2

, (48)

1
n

G∗bcW−1
bc Bn ≈

E(cos ei)

n

n

∑
i=1


sin2 φixsi − sin φi cos φiysi

||t̂bc − si||2
− sin φi cos φixsi + cos2 φiysi

||t̂bc − si||2

 (49)

in probability as n → ∞. Hence t̂bc−wiv is an asymptotically unbiased estimator. Its
covariance
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E((t̂bc−wiv − t)(t̂bc−wiv − t)
′
)

≈
(

1
n

G
′
bcW−1

bc Gbc

)−1( 1
n2 G

′
bcWbc

−1
E((Bn −Ant)(Bn −Ant)

′
)Wbc

−1Gbc

)(
1
n

G
′
bcW−1

bc Gbc

)−1

(50)

≈ E(sin2 ei)

n

(
1
n

G
′
bcW−1

bc Gbc

)−1

≈ CRLB

, when E(sin2 ei) is small as n→ ∞. In z-axis direction, by constructing matrix

Gzbc =

cos θ̄1
...

cos θ̄n

, Wzbc =

||T̂bc − S1||2 0 0

0
. . . 0

0 0 ||T̂bc − Sn||2

, (51)

where

θ̄i = tan−1
(

ẑbc − zsi

r̂bc−wiv

)
, (52)

r̂bc−wiv =

√(
t̂bc−wiv(1)− xsi

)2
+
(
t̂bc−wiv(2)− ysi

)2. (53)

The bias compensation weighted instrumental variable estimator in z axis is:

ẑbc−wiv = (G
′
zbcW−1

zbcYn)
−1G

′
zbcW−1

zbcFn. (54)

4. Sensor Trajectory Design

In this section we propose the one-step-ahead sensor maneuvering strategies for
Sk+1(n ≥ k ≥ 3) based on S1, . . . , Sk and discuss the properties of such strategies. It is
worth pointing out beforehand that S1, . . . , S3 are prefixed for motion model initialization
and do not need to be designed.

4.1. Constraints

As shown in Figure 2, sensor trajectory planning is implemented under the following
constraints [17,29]:

z

xy

Figure 2. Sensor motion area and target safety area.
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Target safety area: In order to ensure no collision between the sensor and the target,
the distance between Sk+1 and T̂k should be greater than or equal to the safe distance R.

Sensor motion area: Since the motion of the sensor is limited by the maximum speed,
the sensor motion area is set to be spherical centering at Sk with the radius of r (including
the boundary of the sphere). Their boundaries are governed by polynomial equations
ftsb(xsk+1 , ysk+1 , zsk+1 ; T̂k) = 0 and fsmb(xsk+1 , ysk+1 , zsk+1 ; Sk) = 0, where

ftsb(xsk+1 , ysk+1 , zsk+1 ; T̂k) = ||Sk+1 − T̂k||2 − R2, (55)

fsmb(xsk+1 , ysk+1 , zsk+1 ; Sk) = ||Sk+1 − Sk||2 − r2. (56)

4.2. Sensor Trajectory Planning Strategies

The position of sensor is deployed to improve the subsequent target positioning
accuracy. According to [19], define:

M1 =
1
σ2

k+1

∑
i=1

1
||t− si||2


sin2 φi − 1

2 sin 2φi 0

− 1
2 sin 2φi cos2 φi 0

0 0 0

, (57)

M2 =
1
ξ2

k+1

∑
i=1

1
||T− Si||2


sin2 θi cos2 φi

1
2 sin2 θi sin 2φi − 1

2 sin 2θi cos φi

1
2 sin2 θi sin 2φi sin2 θi sin2 φi − 1

2 sin 2θi sin φi

− 1
2 sin 2θi cos φi − 1

2 sin 2θi sin φi cos2 θi

, (58)

where the matrix M1 represents the azimuth FIM over k + 1 measurements, as it corre-
sponds to the 2D projection of the localization problem onto xy plane, and the matrix
M2 represents the elevation FIM over k + 1 measurements. Therefore, the FIM over k + 1
measurements in 3D space is:

FIMk+1 = M1 + M2. (59)

Lemma 3.

det(FIMk+1) =
(2(k+1)

3 )

∑
{p1, p2, p3}

det(Vp1 + Vp2 + Vp3), (60)

where the set {p1, p2, p3} is the combination selected from {1, . . . , 2(k + 1)}.

V2i−1 and V2i (i = 1, 2, 3, ..., k + 1) are the azimuth FIM and the elevation FIM,
respectively.

Proof of Lemma 3. By the definition of matrix determinant, we have:

det(FIMk+1) =
(2(k+1)

3 )

∑
{p1, p2, p3}

det(Vp1 + Vp2 + Vp3)

+ Ψ1

(2(k+1)
2 )

∑
{p4, p5}

det(Vp4 + Vp5) + Ψ2

(2(k+1)
1 )

∑
{p6}

det(Vp6), (61)

where the set {p4, p5} and {p6} are the combinations selected from {1, . . . , 2(k + 1)}. Ψ1
and Ψ2 are constant factors decided by the combination numbers. Under rank(Vp4 + Vp5) ≤
2 and rank(Vp6) = 1, det(Vp4 + Vp5) = det(Vp6) = 0. Then (61) turns into (60).



Appl. Sci. 2022, 12, 6739 11 of 24

Theorem 3.

det(FIMk+1) = det(FIMk) +
(2k

2 )

∑
{p7, p8}

det(V2k+1 + Vp7 + Vp8) (62)

+
(2k+1

2 )

∑
{p9, p10}

det(V2(k+1) + Vp9 + Vp10), (63)

where the set {p7, p8} and {p9, p10} are the combination selected from {1, . . . , 2k} and {1, . . . , 2
(k + 1)}.

Proof of Theorem 3. From Lemma 3,

det(FIMk) =
(2k

3 )

∑
{p11, p12, p13}

det(Vp11 + Vp12 + Vp13), (64)

where the set {p11, p12, p13} is the combination selected from {1, . . . 2k}.

det(FIMk+1)− det(FIMk) =
(2k

2 )

∑
{p7, p8}

det(V2k+1 + Vp7 + Vp8) (65)

+
(2k+1

2 )

∑
{p9, p10}

det(V2(k+1) + Vp9 + Vp10) (66)

naturally follows.

Let the location Sk+1 on the trajectory is generated pointwisely through the maximiza-
tion of

max
S4 ,...Sn

det(FIMn) ≥
n

∑
k=4

max
Sk+1

(det(FIMk+1)− det(FIMk)) + det(FIMk), (67)

which shows the trajectory is suboptimal. According to Theorem 3, it is still a reasonable
choice because the design of Sk+1 considers information given by Sk+1 and all the past
sensor locations jointly. Defining

f (Sk+1) = det(FIMk+1)− det(FIMk) (68)

as the objective function of solving Sk+1. Formally defining

Trajectory 1. the location Sk+1 on the trajectory is generated pointwisely through the maximization
of

max
Sk+1

f (Sk+1) (69)

s.t. ||Sk+1 − Sk|| 6 r, (70)

||Sk+1 − Tk|| > R (71)

with respect to Sk+1 given S1, . . . , Sk(k > 3).

When optimizing f (Sk+1), unknown T, φi, θi, σ2 and ξ2 (i = 1, . . . , k) are replaced
by the estimated T̂k, φ̂i(T̂k) and θ̂i(T̂k), σ̂2(T̂k) and ξ̂2(T̂k). This method updates target
location and re-estimates all the historical data in each step. To circumvent this weakness,
we present
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Trajectory 2. the location Sk+1 on the trajectory is generated pointwisely through the maximization
of

max
Sk+1

f̂ (Sk+1) (72)

s.t. ||Sk+1 − Sk|| 6 r, (73)

||Sk+1 − Tk|| > R (74)

with respect to Sk+1 given S1, . . . , Sk(k > 3).

When optimizing f̂ (Sk+1), σ2 and ξ2 are replaced by (∑k
i=1 σ̂2

i (T̂
i−1) + σ̂2

k+1(T̂
k))/(k +

1) and (∑k
i=1 ξ̂2

i (T̂
i−1) + ξ̂2

k+1(T̂
k))/(k + 1), respectively. Distinct with trajectory 1, φ̂i and

θ̂i (i = 1, . . . , k) are not updated by T̂k.
In Trajectory 1 and 2, the computation time to generate the sensor position at the

(k+ 1)th moment includes the time to obtain the objective function and the time to optimize
the objective function. Trajectory 1 needs (k + 1)∗(49 additions/multiplications, three
square roots, nine trigonometric function calculations) and 18 additions/multiplications
for the calculation of det(FIMk+1) to obtain the objective function, while trajectory 2
requires only 49 additions/multiplications, three square roots, nine trigonometric functions
and 18 additions/multiplications for the calculation of det(FIMk+1). The generation of
trajectory 2 reduces k ∗ (49 additions/multiplications, three square root, nine trigonometric
function calculations) calculations compared to trajectory 1. In addition, the objective
function structure is similar, the optimization time of the objective function is almost equal
depending on the optimization method.

4.3. Optimal Solution Region

Through the analysis of (62) , we have:

Theorem 4.

det(FIMk+1)− det(FIMk) = ∑
ci∈{p7, p8, p9}
ci 6∈{p13, p14}

∑
ji∈{1, ... 3}

( 3

∏
i=1

sgn(j)L(ci)
i,ji

)
, (75)

where the set {p7, p8, p9} is the combination selected from {1, . . . 2(k+ 1)} with ∃pj(7 ≤ j ≤ 9)
∈ {2k + 1, 2(k + 1)}. The set {p13, p14} is the combination selected from {p7, p8, p9}. j
represents the permutation of {j1, j2, j3}. The sign function sgn(j) = −1 when the number of
exchanges that {j1, j2, j3} takes to be the standard order {1, 2, 3} is odd. Otherwise, sgn(j) = 1.
L(ci)

i,ji
is the ith row and jith column element in Vci .

Proof of Theorem 4. From Theorem 3 and the Leibniz formula,

det(FIMk+1)− det(FIMk) = ∑
ci∈{p7, p8, p9}

∑
ji∈{1, ... 3}

( 3

∏
i=1

sgn(j)L(ci)
i,ji

)
. (76)

In addition,

∑
{p13, p14}

det(Vp13 + Vp14) = ∑
ci∈{p13, p14}

∑
ji∈{1, ... 3}

( 3

∏
i=1

sgn(j)L(ci)
i,ji

)
= 0. (77)

Deducting (77) from (76) leads to (75).
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From Theorem 4, (62) can be rewritten uniformly into:

f (Sk+1) =

4

∑
h=0

4

∑
q=0

2

∑
l=0

αhql xh
sk+1

yq
sk+1 zl

sk+1

10

∑
h+=0

10

∑
q+=0

6

∑
l+=0

βh+q+ l+xh+
sk+1

yq+
sk+1 zl+

sk+1

, (78)

where the coefficient αpql and βp+q+ l+ can be zero. According to Theorem 4, when the terms
2k + 1 and 2(k + 1) in (75) are selected in set {p7, p8, p9}, the numerator and denominator
of f (Sk+1) have the highest order with respect to x, y and z. Since V2k+1 and V2(k+1)
contain x, y and z, when only the term 2(k + 1) in (75) is selected in set {p7, p8, p9},
neither of the numerator and denominator in (78) has the highest order. To make V2k+1
and V2(k+1) in matrix form with xsk+1 , ysk+1 , zsk+1 , we get the expression:

V2k+1 =
1

σ2
k+1

1
||t̂k − sk+1||2

(ysk+1−T̂k(2))2

||t̂k−sk+1||2
− (xsk+1−T̂k(1))(ysk+1−T̂k(2))

||t̂k−sk+1||2
0

− (xsk+1−T̂k(1))(ysk+1−T̂k(2))

||t̂k−sk+1||2
(xsk+1−T̂k(1))2

||t̂k−sk+1||2
0

0 0 0

, (79)

V2(k+1) =
1

ξ2
k+1

1
||T̂k − Sk+1||2

(zsk+1−T̂k(3))2(xsk+1−T̂k(1))2

||T̂k−Sk+1||2||t̂k−sk+1||2
(zsk+1−T̂k(3))2(xsk+1−T̂k(1))(ysk+1−T̂k(2))

||T̂k−Sk+1||2||t̂k−sk+1||2
− (zsk+1−T̂k(3))(xsk+1−T̂k(1))

||T̂k−Sk+1||2

(zsk+1−T̂k(3))2(xsk+1−T̂k(1))(ysk+1−T̂k(2))

||T̂k−Sk+1||2||t̂k−sk+1||2
(zsk+1−T̂k(3))2(ysk+1−T̂k(2))2

||T̂k−Sk+1||2||t̂k−sk+1||2
− (zsk+1−T̂k(3))(ysk+1−T̂k(2))

||T̂k−Sk+1||2

− (zsk+1−T̂k(3))(xsk+1−T̂k(1))

||T̂k−Sk+1||2
− (zsk+1−T̂k(3))(ysk+1−T̂k(2))

||T̂k−Sk+1||2
||t̂k−sk+1||2
||T̂k−Sk+1||2

.


. (80)

Take the highest order of xsk+1 as an example. Only when the item (xsk+1 − T̂k(1))2/||t̂k−
sk+1||2 in V2k+1 and the item (zsk+1 − T̂k(3))2(xsk+1 − T̂k(1))2/||T̂k − Sk+1||2||t̂k − sk+1||2
in V2(k+1) are selected, the numerator and denominator of f (Sk+1) have the highest order
with respect to x, which are the 4th order and the 10th order, respectively.

Ω̄ = Ω ∪ ∂Ω is a compact and connected set in 3D space which Ω stands for all
internal points of the feasible area, ∂Ω represents the boundary of the feasible area. When
the target point T̂k is outside the sensor motion area, make tangent lines from point T̂k to
the sensor motion area and all tangent points can form a circle. Denote the cone formed by
vertex T̂k and the circle as4TAB in Figure 3 (the tangent points A and B are symmetrically
distributed).

In order to solve the proposed optimization problem quickly, according to the relative
position of the sensor motion area and the target safety area, the feasible region of the
sensor trajectory optimization problem can be analyzed in following cases.

1. When the sensor motion area and the target safety area are separated, define the
boundary part of the sensor motion area inside4TAB as surface 1 in Figure 3a. The
feasible region is the sensor motion area;

2. When the sensor motion area intersects with the target safety area, the feasible region
is the sensor motion area where the part inside the target safety area is excluded, and
the surface is where part of the target safety boundary is inside the sensor motion
area. According to the position of T̂k, it can be divided into three sub-cases: (i) when
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T̂k is outside the sensor motion area and4TAB is not contained by the target safety
area, define the part of the sensor motion boundary inside 4TAB with the section
inside the target safety area replaced by the section of the target safety boundary
inside the sensor movement area, such as surface 2 in Figure 3b. E and F (E and F are
symmetrically distributed) are the points where the two spheres intersect; (ii) when
the T̂k is outside the sensor motion area and if4TAB is contained by the target safety
area, define the part of the target safety boundary inside the sensor motion area as
surface 3 in Figure 3c; (iii) when the T̂k is inside the sensor motion area, define the part
of the target safety boundary inside the sensor motion area as surface 4 in Figure 3d;

3. when the sensor motion area contains the target safety area, the feasible region is the
sensor motion area where the interior section of the target safety area is excluded. The
target safety boundary is defined as surface 5 in Figure 3e.

( )a

( )c ( )d

( )e
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r

R

Surface 1

kS

ˆ kT

1kS
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r
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B
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r kS
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ˆ kT
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Figure 3. Surface 1 (red part in (a)) when the two areas are separated, surface 2 (red part in (b)),
surface 3 (red part in (c)) and surface 4 (red part in (d)) when the two areas intersect, the target safety
boundary (red part in (e)) when the target safety area is in the sensor movement area.
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Proposition 1. In case 1, the maximizer of the f (Sk+1) exists on the spherical crown (surface 1).
In case 2(i), the maximizer of the f (Sk+1) exists on surface 2 where the two areas intersect in the
sensor motion area, and the side of the circular truncated cone (lower bottom circle with AB as the
diameter and upper bottom circle with EF as the diameter). In cases 2(ii) and 2(iii), the maximizer
of the f (Sk+1) exists on surfaces 3, 4 where the two areas intersect. In case 3, the maximizer of f
(Sk+1) is on the boundary of the target safety area (surface 5).

Proof of Proposition 1. Regardless of the relative location of the two areas, a straight blue
dotted line is drawn between T̂k and any point in the feasible region; all the points on this
line have the same φ̂k+1(T̂k) and θ̂k+1(T̂k) as shown. Therefore the maximizer of f (Sk+1)
on the line segment is the closest one D∗ to T̂k in the Euclidean sense. Gathering up these
maximizers gives different surfaces such as the red part in Figure 3.

4.4. Analytical Derivation for the Global Maximizer

According to (78), the partial derivative of f (Sk+1) over xsk+1 , ysk+1 and zsk+1 can be
written into:

∂ f (Sk+1)

∂xsk+1

=

13

∑
h=0

14

∑
q=0

8

∑
l=0

α1
hql(y

q
sk+1 , zl

sk+1
)xh

sk+1

20

∑
h+=0

20

∑
q+=0

12

∑
l+=0

β+
h+q+ l+xh+

sk+1
yq+

sk+1 zl+
sk+1

, (81)

∂ f (Sk+1)

∂ysk+1

=

14

∑
h=0

13

∑
q=0

8

∑
l=0

α2
hql(y

q
sk+1 , zl

sk+1
)xh

sk+1

20

∑
h+=0

20

∑
q+=0

12

∑
l+=0

β+
h+q+ l+xh+

sk+1
yq+

sk+1 zl+
sk+1

, (82)

∂ f (Sk+1)

∂zsk+1

=

14

∑
h=0

14

∑
q=0

7

∑
l=0

α3
hql(y

q
sk+1 , zl

sk+1
)xh

sk+1

20

∑
h+=0

20

∑
q+=0

12

∑
l+=0

β+
h+q+ l+xh+

sk+1
yq+

sk+1 zl+
sk+1

, (83)

where the coefficient α1
hql , α2

hql , α3
hql and β+

h+q+ l+ can be zero. From Proposition 1, the feasible
region always lies on the area boundary. Take the case when the two areas are separated
as an example.

[
∂ f (Sk+1)/∂xsk+1 ∂ f (Sk+1)/∂ysk+1 ∂ f (Sk+1)/∂zsk+1

]′ should be colinear
with the normal vector

[
xsk+1 − xsk ysk+1 − ysk zsk+1 − zsk

]′ at the optimal, i.e.,

∂ f (Sk+1)

∂xsk+1

(ysk+1 − ysk )−
∂ f (Sk+1)

∂ysk+1

(xsk+1 − xsk ) = 0, (84)

∂ f (Sk+1)

∂xsk+1

(zsk+1 − zsk )−
∂ f (Sk+1)

∂zsk+1

(xsk+1 − xsk ) = 0. (85)

Otherwise, any infinitesimal move along the tangent vector that constructs an obtuse
angle with −

[
∂ f (Sk+1)/∂xsk+1 ∂ f (Sk+1)/∂ySk+1 ∂ f (Sk+1)/∂zSk+1

]′ increases the value
of f (Sk+1), (84) is equivalent to:

15

∑
h=0

gh(ysk+1 , zsk+1)xh
sk+1

= 0, (86)

where gh(ysk+1 , zsk+1) is the polynomial of ysk+1 , zsk+1 . Define η(ysk+1 , zsk+1) = (ysk+1 −
ysk )

2 + (zsk+1 − zsk )
2 + xsk

2 − r2. The movement boundary condition is rewritten into:

η(ysk+1 , zsk+1)− 2xsk xsk+1 + x2
sk+1

= 0. (87)
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The joint solution of (84) and (87) can be developed as follows. The (15 + 2)× (15 + 2)
Sylvester matrix of (84) and (87) with respect to ysk+1 , zsk+1 is:

Syl1((84), (87); ysk+1 , zsk+1) =

g15(ysk+1 , zsk+1) 0 1 0 ... 0
g14(ysk+1 , zsk+1) g15(ysk+1 , zsk+1) −2xsk 1 ... 0
g13(ysk+1 , zsk+1) g14(ysk+1 , zsk+1) η(ysk+1 , zsk+1) −2xsk ... 0

...
...

...
...

...
...

g1(ysk+1 , zsk+1) g2(ysk+1 , zsk+1) 0 0 ... 1
g0(ysk+1 , zsk+1) g1(ysk+1 , zsk+1) 0 0 ... −2xsk

0 g0(ysk+1 , zsk+1) 0 0 ... η(ysk+1 , zsk+1)


. (88)

The Sylvester resultant det(Syl1((84), (87); ysk+1 , zsk+1)) is a bivariate polynomial with an
upper bound of the 58th order for ysk+1 and the 46th order for zsk+1 .

Similarly, the joint solution of (85) and (87) can be developed as the (15 + 2)× (15 + 2)
Sylvester matrix of (85) and (87) is similar to (88). det(Syl2((85), (87); ysk+1 , zsk+1)) is also a
bivariate polynomial with an upper bound of the 58th order for ysk+1 and the 46th order for
zsk+1 . The real solution can be obtained by solving the equations given by the determinants
of the two Sylvester matrices.

Comparing only the real solutions lying on surface 1 in terms of f (Sk+1) gives the
global maximizer. For surface 2, the real solutions of the surface equation and (86) are
compared with the two intersection points to generate the global maximizer. For surfaces 3
and 4, the real solutions of the surface equation and (86) on the surface are compared with
the two intersection points to provide Sk+1. When the movement area contains the safety
area, the real solutions of the safety constraint and the (86) that has the biggest f (Sk+1) are
the global maximizer.

Remark 1. The position of a sensor should not be collinear with the target position in the z-axis
direction so that the target is observable. It is necessary to set the cylindrical as a non-flying area in
Figure 4. It means to insert a cylinder centering at the target position with the radius of ρ in the
target safety area, and the z-axis direction extends to infinity. The constraint is formulated as:

(xk+1 − T̂k(1))2 + (yk+1 − T̂k(2))2 > ρ2. (89)

If the maximum solution of f (Sk+1) falls into the section where the surface intersects the
cylinder, we choose the other one which leads to the second largest f (Sk+1), and so forth. If all the
maximum solutions of f (Sk+1) fall within the intersection section, a point is randomly selected from
the feasible region as the solution of f (Sk+1).

z

xy

Figure 4. Sensor motion area, target safety area and cylindrical non-flying area.
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4.5. Single Sensor Trajectory Design Procedure

We summarize the sensor trajectory design procedure in the following algorithm.

Trajectory design based localization algorithm:
Initialization: Use the initial position of the sensor to generate the initial estimator parameter
by localization algorithm, e.g., Kalman-related methods.
Repeat until n is reached:

1. Generate Sk+1 through the maximization of (69) or (72). The maximizer of (69) or (72)
can be produced in an analytical way described in Section 4.4;

2. Gather the measurement information φ̂k+1, θ̂k+1, σ̂2 and ξ̂2 from the sensor at Sk+1;
3. Use localization technique to generate T̂k+1;
4. k = k + 1.

Output the target location.
In many applications, various location-based services need to determine accurate

positioning information, such as for public safety services, field rescue and other fields.
It is necessary to track the target under motion constraints. Unlike static sensors, which
have a fixed density and perception range, mobile sensors can cover a larger area over
time without increasing their number. In addition, their spatial distribution can change
dynamically to accommodate the movement of the target, thus providing measurements of
information about its position. Choosing the best sensing location is particularly important,
especially given time-constrained applications such as tracking hostile targets. For example,
autonomous underwater vehicles (AUV) are underwater unmanned autonomous vehicle
platforms without a cable connection that can be applied for underwater environment
monitoring, offshore oil engineering operations, underwater search and mapping after
loading appropriate sensors. In the main-slave UUVS (Unmanned Underwater Vehicles)
system, the slave-UUV only carries the azimuth information of the main-UUV under a
cluttered environment and realizes the convergence with the main-UUV as soon as possible
through autonomous optimization of its movement trajectory. The localization method and
trajectory planning method proposed in this paper can be applied to the above scenarios.

5. Simulation

In this section, the bias compensation method and sensor trajectory planning algorithm
are compared with other benchmarks through MATLAB R2020a simulation. The location
unit used for the following experiments is a metre.

5.1. Example 1

We now explore the positioning performance of the proposed method and estimate
the deviation through simulation. The simulation is performed in 3D space, where the
target is assumed to be at position T =

[
30 40 50

]′ m. The sensor collects N = 100
azimuth/elevation angle measurements, which ensure the target is observable. The initial
sensor is located at S1 =

[
0 0 0

]′ m, the motion velocity components of the sensor in x, y
and z directions are 0.5 m/s, 0.8 m/s, 1 m/s, respectively. The bearing angle measurement
noise standard deviations σ = ξ are set in between

√
0.01 and

√
0.08 radian with the

variance difference of 0.01 radian2. One thousand independent Monte Carlo experiments
are run. We use the mean square error (MSE) and bias norm as evaluation indicators. The
MSE and bias norm are defined as:

MSE =

1000

∑
i=1

3

∑
j=1

(T̂i(j)− T(j))2

1000
, (90)

bias =

1000

∑
i=1

3

∑
j=1
|T̂i(j)− T(j)|

1000
, (91)
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respectively. The first simulation is about the MSE and bias norm comparison between the
proposed BC method and the original 3D localization method (PLE) in [15]. As shown in
Figures 5 and 6, the BC method has lower MSE and bias norm compared to the PLE method.
In addition, the MSE and bias norm increase as measurement noise level increases. The
positioning accuracy of the two methods is significantly improved by using the weighted
instrumental variable method. The PLE-WIV estimator, as expected, suffers from more
serious bias than the BC-WIV estimator.
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Figure 5. MSE with increasing noise standard deviation with a variance difference of 0.01 radian2 for
each method.
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Figure 6. Bias norm MSE with increasing noise standard deviation with the variance difference of
0.01 radian2 for each method.

The second simulation based on positioning methods is carried out with the increase of
sensor number. The bearing angle measurement noise standard deviation is assumed to be√

0.001 radian. The number of known sensors is changed from 60 to 260 with a difference
of 40. The position of sensors is set as xsi ∈ (0 50) m, ysi ∈ (0 50) m, zsi ∈ (0 50) m
(i = 1, . . . , n).
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Under the same conditions of each experiment, as shown in Figures 7 and 8, the
BC and the BC-WIV methods still show the best positioning performance. The MSE and
bias norm decrease when the number of sensors increases. However, there can be low
positioning accuracy occasionally when the number of sensors is large. This is because in
the process of the random generation of sensors, the position of some sensors makes the
target unobservable, resulting in low positioning accuracy.
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Figure 7. MSE with increasing sensor number at the difference of 40 for each method.
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Figure 8. Bias norm with increasing sensor number at the difference of 40 for each method.

5.2. Example 2

The third simulation is about sensor trajectory planning. For fairness and completeness,
we use the pseudolinear Kalman filter method in [30] for target localization as the platform
to compare the performance of trajectories. One fitness function,

L(T̂) = 100 ∗ (1− ||T− T̂||2
||T||2

), (92)
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in [31] is used to demonstrate the performance of each estimator over n runs. It could even
be much less than zero when the estimators deviate far from the real values. To downplay
the effect of the extremum points, L(T̂) is modified into:

Ĺ(T̂) = max(0, 100 ∗ (1− ||T− T̂||2
||T||2

)). (93)

Trajectory 3. The location Sk+1 on the trajectory is generated through the maximization of
det(FIMk+1)-det(FIMk−2) with respect to Sk+1 recursively. The design of Sk+1 is given by
the (k + 1)th measurement jointly with its two temporal nearest predecessors.

Trajectory 4. The location Sk+1 on the trajectory is generated through the minimization of the
state estimate covariance.

The four trajectories planning methods are simulated and compared. The positions
of the target and sensors are located at T =

[
20 35 55

]′ m, S1 =
[
10 25 20

]′ m, S2 =[
30 20 40

]′ m, S3 =
[
70 50 15

]′ m, S4 =
[
12 80 70

]′ m, S5 =
[
59 22 18

]′ m,
S6 =

[
120 150 90

]′ m, respectively. For each test, the four trajectories share the same six
initial sensor locations. The noise of the angle measurements are Gaussian independently
distributed with zero mean and the standard deviation is

√
0.1 radian. The anti-collision

distance and the maximum distance of sensor movement are set to R = 5 m, r = 10 m,
respectively. The radius of the cylindrical non-flying area is set to ρ = 0.5R. One hundred
independent Monte Carlo experiments are run.

Performance of the four trajectories is measured and displayed at two observation
points when k = 10 and k = 15. Table 1 shows that Trajectory 1 and 2 contribute to
greater det(FIMk+1) in over 90% of tests where trajectory 4 is used as a benchmark. This is
consistent with the numerical results given in Table 2 where Trajectory 1 has the highest
Ĺ(T̂) at k = 10 and k = 15. Compared with Trajectory 3 and 4, the target estimations are
more accurate under Trajectory 1 and 2 as the corresponding Ĺ(T̂) values are closer to 100.
The accuracy of target localization is related to det(FIMk). The larger the det(FIMk), the
higher the positioning accuracy.

Table 1. Statistics that sum up the number of tests when det(FIMi
k)− det(FIM4

k) > 0(i = 1, 2, 3) for
trajectory i at two observations.

Observation Point
det(FIM1

k)−
det(FIM4

k) > 0
det(FIM2

k)−
det(FIM4

k) > 0
det(FIM3

k)−
det(FIM4

k) > 0

k = 10 98/100 96/100 3/100
k = 15 99/100 96/100 2/100

Table 2. Mean values of Ĺ(T̂) for four trajectories at two observation points.

Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4

mean of Ĺ(T̂)(k = 10) 91.16 90.58 89.62 90.49
mean of Ĺ(T̂)(k = 15) 93.42 92.86 88.85 90.99

From Theorem 3, det(FIMk+1) − det(FIMk) for trajectory 1 and det(FIMk+1) −
det(FIMk−2) for Trajectory 3 both are parts of det(FIMk+1). Since Trajectory 3 only uti-
lizes the sensor location of the past two moments, det(FIMk+1)− det(FIMk−2) weighs
less in det(FIMk+1) than det(FIMk+1)− det(FIMk). The maximizer of det(FIMk+1)−
det(FIMk−2) is less likely to be close to the global optimizer of det(FIMk+1). Under such
circumstances, Trajectory 3 contributes a smaller information increment than Trajectories 1
and 2. Trajectory 4 is achieved by minimizing the trace of the state estimation covariance
matrix. Due to the inverse relation between the covariance and FIM, the generation of
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Trajectory 4 also utilizes more past information than Trajectory 3. However, compared with
Trajectories 1 and 2, not all the information is used.

Comparison of the mean of det(FIMk) for four trajectories can be seen intuitively in
Figure 9. When the sampling step increases, det(FIMk) of the proposed method increases
more. In addition, more det(FIMk) can be obtained when the angles are updated in
Trajectory 1 at the cost of increasing the calculation amount. Less computation time is
consumed by generating Trajectory 2. When the measurement noise is small, the difference
of the determinant obtained by Trajectories 1 and 2 is subtle as seen in the inner plot of
Figure 9.
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Figure 9. Comparison of the mean of det(FIMk) for four trajectories over 100 Monte Carlo runs.

The trajectories simulation results are shown in Figure 10. In the process of trajectory
planning, the predicted sensor position keeps getting closer to the target. When the sensor
motion area is separated from the target safety area, Sk+1 sits on the movement boundary
sphere centering at Sk.

Figure 10. Sensor trajectories in typical runs. The trajectories in other runs are similar to the
ones in this run. Trajectories 1, 2, 3 and 4 are represented by circle, cross, upper triangle and square,
respectively. The black sphere is the boundary of the target safety area. The target position represented
by the five pointed star.

As shown in Figure 10, Trajectories 1 and 2 approach the target much faster because
the trajectory planning method proposed in this paper takes into account sensor position
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information at all past moments and have higher FIM determinant. Since Trajectories 3 and
4 correspond to lower and mild FIM determinants, their curves reach the target in a slow
and mild speed, respectively, amongst four trajectories; although it seems that Trajectory 3
distances itself from the target.

For each scenario, the whole computation complexity includes the following parts:
initialization, Kalman-related localization, objective function construction and optimization.
The average runtime for each trajectory is given in Table 3 to describe the complexity.

Table 3. Averaged runtimes for four trajectories.

Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4

runtime(s) 0.5558 0.5240 0.6996 0.5899

In Table 3, it can be seen that the time consumed for Trajectory 2 is the shortest.
The generation of Trajectory 2 can effectively reduce the computational complexity in
the optimization of (62) in return for no update of the bearing angles. The generation of
Trajectory 3 takes a longer time since the objective function is different from Trajectories 1
and 2. For Trajectory 4, inverse operation of Fisher information matrix results in a longer
calculation time.

6. Conclusions and Future Works

This paper studies the bearing-only localization from the improvement of target lo-
calization method and the reasonable planning of a sensor trajectory strategy. Under the
condition of Gaussian noise, a potential relationship exists between the determinant of
the extended coefficient matrix and the noise variance in the angle measurement equation.
When the determinant of the extended coefficient matrix is zero, the variance of zero-mean
Gaussian noise can be derived. Based on this estimated variance, the bias compensation
localization of the target on the 3D space is realized. The estimator can be further refined
by the BC-WIV method. In addition, a trajectory planning algorithm encapsulating two
trajectory planning strategies are proposed to improve localization accuracy under several
constraints. The next moment sensor position is given by optimizing quantified FIM deter-
minant increment as the objective function that evaluates all the historical measurements.
The optimal solution always lies on the constraint boundary. Simulation results show that
Trajectory 1 leads to a higher localization accuracy at the cost of more computation time
while Trajectory 2 has a comparable result with a mild computation burden.

In the future, we plan to extend our current approach to multiple sensors localization.
The research work in this paper is only carried out at the theoretical level, the next research
will test the method proposed in the practical communication environment. A team of
three Pioneer robots is expected to be deployed in a rectangular area, with one Pioneer
robot as the target and the other two Pioneers as tracking sensors to locate the target by the
obtained bearing information.
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