
����������
�������

Citation: Kim, B.S.; Lee, S.H.; Lee,

Y.R.; Park, Y.H.; Jeong, J. Design and

Implementation of Cloud Docker

Application Architecture Based on

Machine Learning in Container

Management for Smart

Manufacturing. Appl. Sci. 2022, 12,

6737. https://doi.org/10.3390/

app12136737

Academic Editor: Joon-Min Gil

Received: 13 June 2022

Accepted: 29 June 2022

Published: 3 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Design and Implementation of Cloud Docker Application
Architecture Based on Machine Learning in Container
Management for Smart Manufacturing
Byoung Soo Kim 1, Sang Hyeop Lee 2, Ye Rim Lee 3, Yong Hyun Park 3 and Jongpil Jeong 1,*

1 Department of Smart Factory Convergence, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu,
Suwon 16419, Korea; jmk9996@gmail.com

2 Department of System Management Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu,
Suwon 16419, Korea; sanghyeop96@g.skku.edu

3 Department of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu,
Suwon 16419, Korea; dldpfla1024@g.skku.edu (Y.R.L.); east1ifeP@gmail.com (Y.H.P.)

* Correspondence: jpjeong@skku.edu; Tel.: +82-31-299-4267

Abstract: Manufacturers are expanding their business-process innovation and customized man-
ufacturing to reduce their information technology costs and increase their operational efficiency.
Large companies are building enterprise-wide hybrid cloud platforms to further accelerate their
digital transformation. Many companies are also introducing container virtualization technology to
maximize their cloud transition and cloud benefits. However, small- and mid-sized manufacturers
are struggling with their digital transformation owing to technological barriers. Herein, for small-
and medium-sized manufacturing enterprises transitioning onto the cloud, we introduce a Docker
Container application architecture, a customized container-based defect inspection machine-learning
model for the AWS cloud environment developed for use in small manufacturing plants. By link-
ing with open-source software, the development was improved and a datadog-based container
monitoring system, built to enable real-time anomaly detection, was implemented.

Keywords: cloud docker; docker container; machine learning; monitoring; smart manufacturing;
container management

1. Introduction

The digital transformation of the traditional manufacturing industry has been delayed
compared to other industries owing to time and cost. Meanwhile, with the outbreak of
COVID-19, manufacturers have been directly affected by issues in the overall manufactur-
ing value chain, including production, supply, and distribution. To overcome such crises
and enhance competitiveness, we are preparing for a new leap into digital transformation.
Many manufacturing companies conduct maintenance through server management and by
using monitoring systems in an on-premises-based IT infrastructure environment. However,
the complexity of IT services and surges in network traffic are creating inefficiencies that con-
tinually increase costs. Manufacturing companies are considering moving to a public cloud
as an alternative for efficient server management and adapting to the rapidly changing man-
ufacturing IT infrastructure. The introduction of container-based virtualization technology
is essential for maximizing the benefits of cloud usage, including scalability, cost-efficiency,
and global coverage. With the recent and continuous development of container-based
virtualization environments, server administrators (hardware/application/service) can
run multiple operating systems on the same hardware simultaneously, making it possible
to also package and distribute various applications. Supporting continuous development
and improving the efficiency and reliability of runtime environments, container-based
virtualization is gaining popularity in many different areas [1].

Appl. Sci. 2022, 12, 6737. https://doi.org/10.3390/app12136737 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136737
https://doi.org/10.3390/app12136737
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4061-9532
https://doi.org/10.3390/app12136737
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136737?type=check_update&version=2

Appl. Sci. 2022, 12, 6737 2 of 16

In addition, as the connection among containers continues to increase, sophisticated
management and analysis must be conducted to prevent additional problems from oc-
curring. Thus, a monitoring tool that supports the reliable management and security of
containers has been proposed. However, it is difficult to select a lightweight, open-source-
based container application and a monitoring tool with excellent portability [2].

Docker is the most representative lightweight virtualization technology for container
platforms. It can be used to package web applications as Docker images and run them on
any cloud host that has a Docker execution environment. Web application deployment has
become increasingly convenient and flexible. There is no need to rely on a single provider,
and one can easily migrate web applications between different cloud providers, avoid a
lock-in by the providers, and take advantage of competitive pricing markets [3]. Docker
provides the ability to package and run applications in loosely isolated environments, called
containers. Isolation and security allow many containers to operate concurrently on a given
host. Containers are lightweight and contain everything required to run an application;
therefore, there is no need to depend on current installations on the host. Containers can
easily be shared while working, and everyone with sharing access will have the same
containers that behave in the same way [4]. As another reason for choosing Docker, it
provides an open-source-based Docker Node Visualizer to visualize user-friendly container
nodes, and it has a community edition that allows managing Docker resources (e.g., con-
tainer, images, volume, and network) through Portainer. An administrative web UI is also
provided. In addition, the deployment, management, scaling, and networking of container-
ized applications are automated through Docker Swarm Orchestration, and computational
resources, including hardware resources (e.g., CPU, memory, storage, and I/O), can be
efficiently managed and easily accessed through the cloud. They can also be relocated or
moved [5].

The contributions of this paper are as follows:

1. By learning a container-based machine-learning application and building a defect
inspection system, we aim to lower the barriers to entry into a digital transformation
for small- and medium-sized manufacturers.

2. We hope to help improve the quality of application building/distribution services
(time/CPU/memory) for the use versus non-use of containers.

3. We aim to contribute to container life-cycle management by predicting real-time
anomalies and failures through container-monitoring management tools and visual-
izations.

The remainder of this paper is organized as follows. Section 2 describes the related
operations. Section 3 describes the proposed container-based architecture and all of its com-
ponents. Section 4 describes the experimental progress, evaluation indicators, and results.
Section 5 presents some concluding remarks and areas of future research.

2. Related Work
2.1. Docker Container

Docker [6] is currently the most widely used container platform [7]. Because Docker
containers do not virtualize hardware, they are much lighter and faster. As shown in
Figure 1, Docker containers can run on small devices to large servers, and on average,
containers run 26× faster than virtual machines (VMs) [7,8]. According to the survey [9],
approximately 25% of organizations have adopted Docker technology. According to a
survey conducted by DataDog in early April 2018, the percentage of hosts running Docker
containers has continued to increase. According to a survey conducted in April 2018, 21%
of all hosts used Docker containers. Since 2015, the share of customers running Docker has
grown at a rate of about 3 to 5 points per year [10].

Appl. Sci. 2022, 12, 6737 3 of 16

The survey also noted that usage rates have increased as the underlying host infras-
tructure has grown in size [9]. Among the organizations with 1000 or more hosts, 47% have
adopted Docker technology, whereas only 19% have fewer than 100 hosts [10]. The advent
of Docker containers is providing a transition into an alternative to traditional VMs. Many
studies have compared containers and VMs using Docker as the container technology. Con-
tainers use a Linux kernel mechanism for resource allocation. When creating a container,
any user can allow the allocation of resources, such as the network configuration, CPU,
and memory. Although allocated resources can be dynamically adjusted, containers cannot
use more resources than specified [9].

Figure 1. Virtual machines vs. containers.

2.2. Docker Container Management Tool

Container technology is primarily used for the background execution of programs
without a graphical user interface (GUI). However, many applications require GUI support
to enable interaction with the user [11]. For the Visualizer [12] tool for Docker Swarm,
there is a project available on Github [13], the Docker Swarm Visualizer. This project is
visible to the user of the host container. However, it does not provide insight into overlay
networks [11]. Docker applies a poor platform monitoring approach. By default, the only
type of monitoring solution that Docker provides is the stat command. This is appropriate
only if extremely basic container information, not advanced monitoring, is needed [14].

Figure 2 shows Portainer, which is used to manage containerized Nginx web servers
and can be used with Kubernetes, Docker, Docker Swarm, and other services, providing
significant benefits for building better self-hosted data centers. By providing a GUI instead
of the Docker graphical user interface, i.e., a command line interface (CLI), one can quickly
deploy, manage, and observe the behavior of the web server containers and provide appro-
priate and immediate security whenever needed [15]. Portainer builds additional features
for developers and infrastructure teams, such as application management, cluster manage-
ment, registry/image management, identity and access management, storage management,
network management, monitoring, and alerts [16].

Appl. Sci. 2022, 12, 6737 4 of 16

Figure 2. Portainer GUI for Docker container management.

2.3. Machine Learning

A support vector machine (SVM) is a new machine-learning method proposed by
Vapnik [17,18]. This method follows the principles of structural risk minimization and
limited sample assumptions and can overcome some of the weaknesses of conventional
machine learning, such as those of neural networks. For example, SVMs can overcome
convergence problems and other high-level disaster problems. Therefore, SVMs are good at
learning and are more likely to be generalized. SVMs are one of the youngest branches of
statistical learning theory and can be expressed in a form similar to that of a neural network.
Statistical learning was evaluated as the best theory for predictive research and statistical
estimation with a small sample size. We view learning as a general process of estimating
functions based on empirical data. An SVM follows the principles of structural risk mini-
mization and provides a new cognitive perspective for machine learning. Traditional neural
networks first modify the trust risk and then minimize the heuristic risk. An SVM adopts
the opposite method to correct the empirical risk, minimize the risk of confidence, and then
map the input space to a high-dimensional dot space; thus, the risk is independent of the
number of samples entered, thereby avoiding the input dimension and hence, the “curse
of dimensionality.” By solving the linear constrained quadratic programming problem,
an SVM can obtain a global optimal solution without the local minima problem, and the fast
algorithm guarantees the speed of convergence. Through the above process, the structural
parameters are automatically determined from the sample; thus, an SVM can overcome the

Appl. Sci. 2022, 12, 6737 5 of 16

shortcomings of a conventional neural network and be used as a general-purpose learning
machine. The early warning of a financial crisis is a process of pattern recognition. SVMs
are well-suited for pattern recognition, making them applicable to warnings regarding a
financial crisis [19].

A linear discriminant analysis (LDA) is a supervised ML technique used for extricating
the significant highlights from a dataset. To limit the computational cost, an LDA is used to
avoid overfitting the information. This is accomplished by anticipating a feature space onto
a slightly lower-dimensional space with optimal class detachability. With an LDA, more
accentuation is given to those axes that are responsible for maximizing the segment among
various classes [20].

K-nearest neighbors (k-NN) is a robust and flexible classifier that belongs to the
supervised ML family of algorithms. Because it has no explicit assumptions regarding the
distribution of the dataset, a k-NN is a nonparametric algorithm. The algorithm stores
every accessible case and classifies new cases based on a similarity measure. A case is
classified by the dominant part of the vote of its neighbors, with the case being appointed
to the more generally regular class among its k-nearest neighbors estimated based on a
distance function [21,22].

Recent research efforts to improve the reliability and accuracy of image classification
have led to the introduction of the Support Vector Classification (SVC) scheme. SVC is a
new generation of supervised learning methods based on the principle of statistical learning
theory, which is designed to decrease uncertainty in the model structure and the fitness of
data [23].

The bootstrap forest is an RF approach that uses an ensemble of classification trees by
averaging many decision trees, each of which is fit to a bootstrap sample of the training
data. Each split in each tree considers a random subset of the predictors. In other words,
given a training set S of n examples, a new training set S0 is constructed by drawing m
examples uniformly (with replacement) [24].

The boosted tree (gradient boosting) approach maintains a set of weights over the
original training set S and adjusts these weights after each classifier is learned by the
base learning algorithm. The weights of examples that are misclassified are increased by
the base learning algorithm, and the weight of examples that are correctly classified are
decreased [25].

The naïve Bayes (NB) classifier is a machine-learning algorithm that greatly simpli-
fies learning by assuming that features are independent given class, that is, P(X|C) =

∏ ∑n
i=1 P(Xi|C), where X = (X1, · · · , Xn) is the vector of features, and C is the class. Naïve

Bayes classifiers assign the most likely class to a given subject depending on its feature
vector. Although it includes unrealistic assumptions, NB is considered remarkably success-
ful in practice compared to other more sophisticated algorithms. Its applications include
medical diagnosis [26] and food quality classification [27].

As shown in Table 1, we will explain the advantages and disadvantages of algorithms
used in machine learning training.

Table 1. Advantages and disadvantages of machine-learning algorithms used.

Algorithm Advantages Disadvantages

SVM/SVR High performance, high accuracy, good handling of high dimensional
data [17,28,29]

Lack of transparency in high dimensional data,
extensive memory requirements [17,28,29]

linear discriminant analysis Low computational cost Easy to implement Discriminate different groups
Visual representation makes clear understanding [27,30]

Requires normal distribution Linear decision
boundaries Limited to two classes [27,30]

K-Nearest Neighbors Intuitive and simple, easy to implement for multiclass problems [31,32] Computationally expensive in large datasets,
performance depends on dimensionality [31,32]

Artificial Neural Networks
Good at handling large datasets, detect all possible interactions between

prediction variables, implicit detection of complex non-linear relationships
between dependent and independent variables [33,34]

High hardware dependencies (GPU),
Unexplained behavior of the network,

the duration of the network is unknown [33,34]

Appl. Sci. 2022, 12, 6737 6 of 16

3. Cloud Docker Application Architecture Based on Machine Learning
3.1. System Architecture

We developed a lightweight virtualization technology based on Docker containers
that can be run in any cloud environment. We propose a cloud docker architecture, shown
in Figure 3. This makes the deployment and testing of machine-learning applications
convenient and flexible, and by linking them with a highly portable management tool,
monitoring and container management become convenient.

Figure 3. Docker Container-based machine-learning pass/fail inspection system on a cloud server
and a docker-based monitoring system architecture.

Our study separates a large-scale system in a cloud server environment into application
container units, making it easy to build, deploy, and test as an independent service unit
and builds an extremely effective environment for standardizing the application operation,
increasing the code and resource usage. In addition, a prototype of a Docker container-
based machine-learning fault determination system is built on a cloud server, and an
architecture is proposed that can detect anomalies in real-time and prevent failures through
container-monitoring tools and visualizations. Docker Container, which is the most widely
used among small- and medium-sized container platforms, can run the same container
anywhere, including desktops, virtual machines, physical servers, data centers, and clouds
and provides specific supplies such as AWS, Azure, GCP, and Oracle Cloud, which are
major public clouds. It is provided in a platform-as-a-service form, which is not dependent
on the vendor.

3.2. Docker Container

As shown in Figure 4, applications create, control, and manage containers through
Docker Daemon (network, data volume, image, and container) of the Docker Engine.
Although Docker Daemon operates on the host machine, the operator does not directly
touch the Daemon, and the Docker Client interacts with the Daemon through the Docker
CLI. A Docker File is a text file configured to build a Docker Image. Using commands, image
files are added and copied, commands are executed, and ports are exposed. The Docker

Appl. Sci. 2022, 12, 6737 7 of 16

file is configured from the base image declaration to start the process command. Several
command types are provided [35].

Figure 4. Docker Container key features.

After completing the Docker file setting, the Docker Client can create an image through
the Docker build command. An application packaged as an image is Docker’s Union File
System, which is a set of “layers” and consists of file and directory. The data volumes are
the data part of the container and are initialized when the container is created. The volume
can maintain and share container data, and even if the container is destroyed, updated,
or rebuilt, it remains as is. If it needs to be modified, it must be done so directly [35,36].

The Docker Registry is an open-source-based Apache repository that stores and dis-
tributes images. It is highly scalable, provides image storage location control and a dis-
tributed pipeline, and can be integrated with local development workflows. Users can set
up their own registry or a hosted one such as Docker Hub [37], Amazon ECR [38], Oracle
Container Registry [39], or Azure Container Registry [40].

A Docker Container can be considered an image execution instance that contains all
elements, such as the OS, development source code, runtime, system lib, and system binary,
required to run an application packaged as an image. Open-source-based solutions are
installed and linked to build a cloud development environment (DevOps implementa-
tion) [41].

3.3. Container Infrastructure

A monolithic software design does not allow for scalability of the architecture and
cannot manage different levels of load at runtime. For this reason, all components that
constitute the architecture have been integrated as microservices inside the container
infrastructure to enable scalability, high availability, and both vertical and horizontal
migration. Container virtualization technology has received significant attention in the
past few years owing to such features as a fast container-building process, high density
of services per container, and high isolation between instances [42]. Unlike traditional
hypervisors, a lightweight virtualization technology implements process virtualization
through the containers in an operating system. This allows the deployment of high-density
containers by reducing the hardware overhead and the virtualization of virtual appliances
on traditional hypervisors [5].

The next Docker component is a machine-learning container-based defect inspection
system and open-source-based DevOps tools [41] for container monitoring implementation.

• Portainer: this is a Docker-paper used to manage the Docker clusters and Docker
resources (e.g., containers, images, volumes, and networks). Portainer is an adminis-
trative web UI with a community edition that makes it easy to manage Docker clusters
without writing multiple lines of script code [5].

• Jenkins: this is a popular Java-based server tool for automation with the help of
plugins. Jenkins is considered a powerful application that helps automate software
development processes through continuous integration and the delivery of papers,

Appl. Sci. 2022, 12, 6737 8 of 16

regardless of the platform being worked on [43]. It is automated to build and deploy
machine-learning-based defect inspection applications and push them to the Docker
Hub for container image management.

• Docker Hub: this is the largest group of container images available in the world.
Images on Docker Hub are organized into repositories, which can be divided into
official and community repositories. For each image in a Docker Hub repository,
in addition to the image itself, meta-information is also available to the users, such as
the repository description and history, in a Dockerfile [37].

• Jupyter Notebook: this is mainly used for service development for interactive com-
puting across open-source software, open standards, and multiple programming lan-
guages. Jupyter Notebook supports the Julia, Python, and R programming languages.
Jupyter Notebooks can potentially revolutionise the documentation and sharing of
research software towards an unprecedented level of transparency for relatively low
effort [44].

• DataDog: this is a monitoring service that collects metrics, such as the CPU utilization,
memory, and I/O, for all containers. An agent-based system that only transmits data
to the DataDog cloud makes monitoring operations completely dependent on this
cloud [45].

• Docker Swarm Visualizer: this is an open-source paper that provides a user-friendly
web UI for visualizing nodes belonging to a Docker cluster and containers deployed
on such nodes [5].

4. Implementation and Results
4.1. System Configuration

The implementation environment was configured for experimentation, as shown
in Figure 5. The AWS cloud environment used for testing was implemented using both
hardware and software, as shown in Table 2. The main purpose of this experiment was
to measure and compare the CPU overhead, execution time of the machine learning,
and memory usage. The analysis results with and without the Docker Container are shown.

Table 2. Cloud server computing environments.

Item Resource

Cloud Amazon Web Service

Region ap-northeast-2

Service EC2

OS Amazon Linux

Kernel Linux

Instants type T2.medium

Key Pairs RSA

CPU 2

Storage SSD(gp2) 25G

MEM 4G

Appl. Sci. 2022, 12, 6737 9 of 16

Figure 5. Docker Container-based machine-learning pass/fail inspection system on AWS cloud server
environment and a docker-based monitoring system, and image registry interconnection.

Jupyter Notebook: as shown in Figure 6, the convenience of the CLI is enhanced by
registering the Jupyter Notebook with Jupyter.service for running automatically when
Amazon EC2 boots.

Figure 6. Jupyter Notebook Interactive.

As shown in Figure 7, Jenkins is a tool that automates a build distribution, and the
user can check the execution time of the batch jobs. Jenkins is automated to run the Docker
Build/Run—a machine-learning defect determination application shown in Figure 8—and
push it to the Docker Hub server, which is an image registry [37].

Appl. Sci. 2022, 12, 6737 10 of 16

Figure 7. Automation job list and the time duration of number of builds.

Figure 8. Docker build/run and Docker Hub push.

As shown in Figure 9, the Docker Hub—a Docker image registry—is a repository that
hosts, indexes, and manages images.

Figure 9. Docker Hub registry for Docker image management.

4.2. Dataset and Machine-Learning Model

The target data used in the machine-learning modeling shown in Figure 10 are the
time-series data for the state of a two-channel bearing. This problem must be classified
into a total of four modes (one normal and three defective), and 30 feature values were

Appl. Sci. 2022, 12, 6737 11 of 16

extracted through feature extraction (data source: PHMAP 2021 Asia Data Challenge).
Four machine-learning models were trained on the above data. The machine learning
used lightweight models such as a support vector classifier (SVC) [23], linear discriminant
analysis (LDA) [20], neural network (NN) [30], and K-nearest neighbor (KNN) [21,22].

Figure 10. Machine-learning modeling.

4.3. Docker Container-Based Defect Inspection System

As shown in Figure 11, the implementation goals and scenarios are divided into three
phases. First, the machine-learning model is packaged as a Docker image and is then built
and run as a Docker container. Monitoring is conducted using a Datadog.

Figure 11. Machine-learning model is packaged as a Docker image, and run as a Docker container.

The main function of the Docker Container, i.e., Rest-Api, is implemented. First,
the model training is conducted at the same time Docker is executed, and when the user
inputs three commands, i.e., line, prediction, and Evaluation (score), to the web server,
the corresponding result is output. When outputting the data, Prediction outputs the
prediction results of the four models described above, whereas Evaluation (score) outputs
the overall accuracy of the test set for the currently trained model.

• csv_to_json.py: the DataSet field consists of Line, defect, and feature1 30, and then
converts the .csv file into a .json format.

• Api.py: learning is applied using four types of machine-learning models. In this study,
four ML algorithms were applied to classify the test datasets. The SVC, LDA, NN,
and KNN models were selected to solve the quaternary classification problem rather
than binary classification. They were then combined.

Figure 12 shows the documentation of the machine-learning-based Rest-API.

Appl. Sci. 2022, 12, 6737 12 of 16

Figure 12. Documentation for REST-API.

As shown in Figure 13, we built a monitoring system by linking DataDog to the
monitoring part, which is a weakness of the Docker Container-based platform. DataDog
has been proven to be a comprehensive cloud monitoring service for the Docker Container
life cycle and server resource management used in a cloud environment.

Figure 13. Cloud Docker based monitoring system.

4.4. Results

The system performance was tested using a machine-learning application. The system
performance was checked under various loads with and without the use of Docker.Machine-
learning applications, and containers were measured by expanding the number of con-
tainers from a minimum of one to a maximum of four. These measurements included the
application container memory usage, application execution time, memory usage during
execution, and network I/O block in the scenarios shown in Figures 14–16. The ratio of
heads per container with and without the use of Docker is displayed and verified.

As shown in Figure 14, when Docker Container is not used, the CPU overhead in-
creases from a minimum of 150% to a maximum of 191%, and when Docker Container is
used, the optimal performance increases from a minimum of 1% to a maximum of 7%. This
shows that Docker Container can handle a load while reducing the CPU usage, allowing
the device to operate optimally without loss.

Appl. Sci. 2022, 12, 6737 13 of 16

Figure 14. The graph representations of CPU overhead and CPU utilization with and without Docker.

As shown in Figure 15, when Docker Container is not used, the execution time is
increased from 33 s in the case of one container to 124 s in the case of four, whereas when
Docker Container is used, the execution time is 30 s for one container, which does not differ
much from the case when Docker Container was not used. However, when expanding the
number of containers to four, outstanding results were measured with a marked difference
from when Docker Container was not used. It was proven that running applications in
a lightweight Docker Container-based virtualization environment is effective in terms of
both time and cost.

Figure 15. The Graph representations of execution times for builds and deployments with and
without Docker.

Figure 16 confirms that there is no significant difference in terms of memory usage.
However, it was verified that the memory usage rate in the cumulative execution part—
similar to the execution time—shows a gradually stable usage rate when Docker Container
is used. The container has a much lighter operation than the existing virtualization technol-
ogy, shares the OS kernel, and uses significantly less memory. This is thought to be due to
the IT operation team operating a large number of systems, which has many advantages
because it uses resources in a unit with much less memory usage.

We built a prototype of a Docker Container-based machine-learning pass/fail inspec-
tion system on a cloud server and a data-docker-based monitoring system for Docker
containers. All of our papers are open-source and can be easily implemented; therefore, it
is expected that the barriers to entry for manufacturing companies undergoing a digital
transformation will be lowered. In addition, it will be possible to provide customized ap-
plications according to the specific circumstances of each company through microservices
rather than the existing monolithic structure for the necessary functions. Monitoring results
also confirm the high-level resource management performance of Docker containers.

Appl. Sci. 2022, 12, 6737 14 of 16

Figure 16. The Graph representations usage of memory with and without Docker.

5. Conclusions

We propose a Docker Container detect inspection system optimized for training
and running machine-learning models in a cloud environment. By building automated
environments with open-source software, users can easily customize the machine learning,
build and deploy Docker containers, and quickly obtain the results. The monitoring part—
which is a weakness of container technology—can also use DataDog to monitor the health
of the container and cloud server resources in real-time. Through our research, it is expected
that the cloud container machine-learning-based defect inspection system will accelerate
the digital transformation of small and medium-sized manufacturers and contribute to
the improvement of service quality by building container applications. In addition, it will
be of great help in predicting equipment abnormalities and managing container life cycle
through open-source-based container monitoring tools and visualizations. A real-time
data receiver can be implemented in a real factory if future architectural developments are
implemented.

In addition, it seems that the architecture can be further improved by linking the
Grafana dashboard to strengthen the monitoring, improve the container service quality
through a Docker orchestration, and increase the development and operational efficiency
through GitHub integration.

Author Contributions: Conceptualization, B.S.K. and J.J.; methodology, Y.R.L.; software, S.H.L. and
Y.H.P.; validation, Y.H.P. and S.H.L.; formal analysis, Y.R.L. and Y.H.P.; validation, S.H.L. and J.J.;
investigation, B.S.K.; resources, J.J.; data curation, Y.R.L.; writing—original draft preparation, B.S.K.;
writing—review and editing, J.J.; visualization, S.H.L. and Y.R.L.; supervision, J.J.; paper adminis-
tration, J.J.; funding acquisition, J.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2022-2018-0-01417) super-
vised by the IITP(Institute for Information & Communications Technology Planning & Evaluation).
Also, this work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. 2021R1F1A1060054).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the MSIT(Ministry of Science and ICT), Korea,
under the ICT Creative Consilience Program(IITP-2022-2020-0-01821) and the ITRC(Information Tech-
nology Research Center) support program(IITP-2022-2018-0-01417) supervised by the IITP(Institute
for Information & communications Technology Planning & Evaluation).

Appl. Sci. 2022, 12, 6737 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jolak, R.; Rosenstatter, T.; Mohamad, M.; Strandberg, K.; Sangchoolie, B.; Nowdehi, N.; Scandariato, R. CONSERVE: A framework

for the selection of techniques for monitoring containers security. J. Syst. Softw. 2022, 186, 111158. [CrossRef]
2. Ahmad, I.; AlFailakawi, M.G.; AlMutawa, A.; Alsalman, L. Container scheduling techniques: A Survey and assessment. J. King

Saud Univ.-Comput. Inf. Sci. 2022, 34, 3934–3947. [CrossRef]
3. Li, Y.; Xia, Y. Auto-scaling web applications in hybrid cloud based on docker. In Proceedings of the 2016 5th International

Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, 10–11 December 2016; pp. 75–79.
4. Swarm Mode Overview. Available online: https://docs.docker.com/engine/swarm/ (accessed on 20 May 2022).
5. Martin, C.; Garrido, D.; Llopis, L.; Rubio, B.; Diaz, M. Facilitating the monitoring and management of structural health in civil

infrastructures with an Edge/Fog/Cloud architecture. Comput. Stand. Interfaces 2022, 81, 103600. [CrossRef]
6. Kubernetes vs. Docker: What Does It Really Mean. Available online: https://www.dynatrace.com/news/blog/kubernetes-vs-

docker/ (accessed on 8 May 2022).
7. Kubernetes vs. Mesos vs. Swarm. Available online: https://www.sumologickorea.com/insight/kubernetes-vs-mesos-vs-swarm/

(accessed on 10 March 2022).
8. Anderson, C. Docker [software engineering]. IEEE Softw. 2015, 32, 102–105. [CrossRef]
9. 8 Surprising Facts about Real Docker Adoption. Available online: https://www.datadoghq.com/docker-adoption/ (accessed on

9 May 2022).
10. Open Source Container Management GUI for Kubernetes, Docker, Swarm. Available online: https://www.portainer.io/ (accessed

on 9 May 2022).
11. Brouwers, M. Security Considerations in Docker Swarm Networking. Master’s Thesis, University of Amsterdam, Amsterdam,

The Netherlands, 28 July 2017.
12. Liu, X.; Shen, W.; Liu, B.; Li, Q.; Deng, R.; Ding, X. Research on Large Screen Visualization Based on Docker. J. Phys. Conf. Ser.

2018, 1169, 012052. [CrossRef]
13. Docker Swarm Visualizer. Available online: https://github.com/dockersamples/docker-swarm-visualizer/ (accessed on 11

May 2022).
14. 3 Pros and 3 Cons of Working with Docker Containers. Available online: https://sweetcode.io/3-pros-3-cons-working-docker-

containers/ (accessed on 12 May 2022).
15. Balatamoghna, B.; Jaganath, A.; Vaideeshwaran, S.; Subramanian, A.; Suganthi, K. Integrated balancing approach for hosting

services with optimal efficiency—Self Hosting with Docker. Mater. Today Proc. 2022, 62, 4612–4619. [CrossRef]
16. Gromann, M.; Klug, C. Monitoring Container Services at the Network Edge. In Proceedings of the 2017 29th International

Teletraffic Congress (ITC 29), Genoa, Italy, 4–8 September 2017; pp. 130–133.
17. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef]
18. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
19. Sijia, L.; Lan, T.; Yu, Z.; Xiuliang, Y. Comparison of the prediction effect between the Logistic Regressive model and SVM model.

In Proceedings of the 2010 2nd IEEE International Conference on Information and Financial Engineering, Chongqing, China,
17–19 September 2010; pp. 316–318

20. Song, F.; Mei, D.; Li, H. Feature selection based on linear discriminant analysis. In Proceedings of the 2010 International Conference
on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010; pp. 746–749

21. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
22. Talukder, A.; Ahammed, B. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh.

In Proceedings of the 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), Beni Suef, Egypt,
28–30 November 2015.

23. Oommen, T.; Misra, D.; Twarakavi, N.K.; Prakash, A.; Sahoo, B.; Bandopadhyay, S. An Objective Analysis of Support Vector
Machine Based Classification for Remote Sensing. Math. Geosci. 2008, 40, 409–424. [CrossRef]

24. Tan, J.; Balasubramanian, B.; Sukha, D.; Ramkissoon, S.; Umaharan, P. Sensing fermentation degree of cocoa (Theobroma cacao L.)
beans by machine learning classification models based electronic nose system. In Pattern Recognition and Neural Networks; Ripley,
B.D., Ed.; Cambridge University Press: Cambridge, UK, 1996.

25. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [CrossRef]
[PubMed]

26. Mitchell, T.M. Artificial neural networks. Mach. Learn. 1997, 45, 81–127.
27. Cen, H.; Lu, R.; Zhu, Q.; Mendoza, F. Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging

with feature selection and supervised classification. Postharvest Biol. Technol. 2016, 111, 352–361. [CrossRef]
28. Anguita, D.; Ghio, A.; Greco, N.; Oneto, L.; Ridella, S. Model selection for support vector machines: Advantages and disadvantages

of the machine learning theory. In Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, Spain,
18–23 July 2010; pp. 1–8

29. Auria, L.; Moro, R.A. Support Vector Machines (SVM) as a Technique for Solvency Analysis; Discussion Papers of DIW Berlin 811;
German Institute for Economic Research: Berlin, Germany, 2008.

http://doi.org/10.1016/j.jss.2021.111158
http://dx.doi.org/10.1016/j.jksuci.2021.03.002
https://docs.docker.com/engine/swarm/
http://dx.doi.org/10.1016/j.csi.2021.103600
https://www.dynatrace.com/news/blog/kubernetes-vs-docker/
https://www.dynatrace.com/news/blog/kubernetes-vs-docker/
https://www.sumologickorea.com/insight/kubernetes-vs-mesos-vs-swarm/
http://dx.doi.org/10.1109/MS.2015.62
https://www.datadoghq.com/docker-adoption/
https://www.portainer.io/
http://dx.doi.org/10.1088/1742-6596/1169/1/012052
https://github.com/dockersamples/docker-swarm-visualizer/
https://sweetcode.io/3-pros-3-cons-working-docker-containers/
https://sweetcode.io/3-pros-3-cons-working-docker-containers/
http://dx.doi.org/10.1016/j.matpr.2022.03.078
http://dx.doi.org/10.1038/nbt1206-1565
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1007/s11004-008-9156-6
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
http://dx.doi.org/10.1016/j.postharvbio.2015.09.027

Appl. Sci. 2022, 12, 6737 16 of 16

30. Lakshmi, M.R.; Prasad, T.; Prakash, D.V.C. Survey on EEG signal processing methods. Int. J. Adv. Res. Comput. Sci. Softw. Eng.
2014, 4, 84–91.

31. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [CrossRef]
32. Imandoust, S.B.; Bolandraftar, M. Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical

background. Int. J. Eng. Res. Appl. 2013, 3, 605–610.
33. Mijwil, M.M. Artificial Neural Networks Advantages and Disadvantages. Linkedin 2018; pp. 1–2. Available online: https:

//www.linkedin.com/pulse/artificial-neural-networks-advantages-disadvantages-maad-m-mijwel/ (accessed on 27 June 2022).
34. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical

outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]
35. Wu, Y.; Zhang, Y.; Wang, T.; Wang, H. Characterizing the Occurrence of Dockerfile Smells in Open-Source Software: An Empirical

Study. IEEE Access 2020, 8, 34127–34139. [CrossRef]
36. A Beginner-Friendly Introduction to Containers, VMs and Docker. Available online: https://www.freecodecamp.org/news/a-

beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/ (accessed on 2 February 2022).
37. Docker Hub Documents. Available online: https://www.docker.com/products/docker-hub/ (accessed on 5 April 2022).
38. Amazon ECR. Available online: https://aws.amazon.com/ecr/ (accessed on 22 June 2022).
39. Oracle Container Registry. Available online: https://www.oracle.com/cloud/cloud-native/container-registry/ (accessed on 22

June 2022).
40. Azure Container Registry. Available online: https://azure.microsoft.com/en-us/services/container-registry/ (accessed on 22

June 2022).
41. Ebert, C.; Gallardo, G.; Hernantes, J.; Serrano, N. DevOps. IEEE Softw. 2016, 33, 94–100. [CrossRef]
42. Morabito, R.; Petrolo, R.; Loscri, V.; Mitton, N. LEGIoT: A Lightweight Edge Gateway for the Internet of Things. Future Gener.

Comput. Syst. 2018, 81, 1–15. [CrossRef]
43. jenkins. Available online: https://wiki.jenkins-ci.org/display/JENKINS/Home/ (accessed on 21 February 2022).
44. Penuela, A.; Hutton, C.; Pianosi, F. An open-source package with interactive Jupyter Notebooks to enhance the accessibility of

reservoir operations simulation and optimisation. Environ. Model. Softw. 2021, 145, 105188. [CrossRef]
45. Noor, A.; Mitra, K.; Solaiman, E.; Souza, A.; Jha, D.N.; Demirbaga, U.; Jayaraman, P.P.; Cacho, N.; Ranjan, R. Cyber-physical

application monitoring across multiple clouds. Comput. Electr. Eng. 2019, 77, 314–324. [CrossRef]

http://dx.doi.org/10.1007/BF00153759
https://www.linkedin.com/pulse/artificial-neural-networks-advantages-disadvantages-maad-m-mijwel/
https://www.linkedin.com/pulse/artificial-neural-networks-advantages-disadvantages-maad-m-mijwel/
http://dx.doi.org/10.1016/S0895-4356(96)00002-9
http://dx.doi.org/10.1109/ACCESS.2020.2973750
https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/
https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/
https://www.docker.com/products/docker-hub/
https://aws.amazon.com/ecr/
https://www.oracle.com/cloud/cloud-native/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
http://dx.doi.org/10.1109/MS.2016.68
http://dx.doi.org/10.1016/j.future.2017.10.011
https://wiki.jenkins-ci.org/display/JENKINS/Home/
http://dx.doi.org/10.1016/j.envsoft.2021.105188
http://dx.doi.org/10.1016/j.compeleceng.2019.06.007

	Introduction
	Related Work
	Docker Container
	Docker Container Management Tool
	Machine Learning

	Cloud Docker Application Architecture Based on Machine Learning
	System Architecture
	Docker Container
	Container Infrastructure

	Implementation and Results
	System Configuration
	Dataset and Machine-Learning Model
	Docker Container-Based Defect Inspection System
	Results

	Conclusions
	References

