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Abstract: Bridges, especially cable-stayed bridges, play an important role in modern transporta-
tion systems. The safety status of bridge cables, as an important component of cable-stayed bridg-
es, determines the health status of the entire bridge. As a non-destructive real-time detection tech-
nology, acoustic emission has the advantages of high detection efficiency and low cost. This paper 
focuses on the issue that a large amount of data are generated during the process of health moni-
toring of bridge cables. A novel acoustic emission signal segmentation algorithm is proposed with 
the aim to facilitate the extraction of acoustic emission signal characteristics. The proposed algo-
rithm can save data storage space efficiently. Moreover, it can be adapted to different working 
conditions according to the adjustment of parameters in order to accurately screen out the target 
acoustic emission signal. Through the acoustic emission signal acquisition experiments of three 
bridges, the characteristics of the noise signal in the acquisition process are extracted. A compre-
hensive analysis of the signal in the time domain, frequency domain and time-frequency domain 
is carried out. The noise signal filtering parameter thresholds are proposed according to the analy-
sis results. 
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1. Introduction 
Bridges are an integral and important part of the road system and are of strategic 

importance in the transportation industry [1], so ensuring the safe condition of bridges 
is of great concern. As the main load-bearing component in cable-stayed bridges, bridge 
cables are prone to fracture or even may cause major accidents due to prolonged loading 
and natural erosion [2,3]. Thus, it is especially important to conduct health monitoring 
of bridge cables. Nondestructive testing technology (NDT) plays an irreplaceable role in 
bridge health monitoring nowadays [4]. Acoustic emission (AE) testing is an emerging 
NDT technique for a variety of materials, including rocks, metals, and composites [5]. 
AE also enables long-term and highly sensitive online health monitoring of bridge ca-
bles through the analysis and post-evaluation of acoustic emission signals. 

In 2010, Li [6] obtained the whole process of bridge cable damage through fatigue 
experiments, and successfully realized the damage identification of bridge cables by us-
ing the amplitude-node localization method. The author pointed out in the paper that 
the sampling process would be influenced by noise, and the noise was eliminated by 
simulating the noise signal and using the wavelet decomposition method without spe-
cific in-depth characterization of the noise. Hu [7] used the methods of waveform analy-
sis and principal component analysis to achieve the identification of bridge cable break 
signals in different modes. The article pointed out that the noise has an impact on signal 
identification. However, the noise used in the paper was white noise signal by a simple 
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simulation, which might not have research significance under the actual working condi-
tions. In 2015, Yapar O et al. [8] studied the analytical identification of acoustic emission 
signals under repeated cyclic loading with three types of representative steel, reinforced 
concrete and prestressed concrete bridge specimens in the laboratory. The authors used 
wavelet transform filtering techniques to filter simple background noise in the process. 
In 2020, Xin [9] used the method of principal element analysis to achieve the identifica-
tion of wire broken signals in bridge cables. The method is based on a data-driven, es-
tablishing data model to realize the distinction between the broken wire signal and non-
broken wire signal. The author proposed that the AE signal monitoring process is firstly 
to detect AE, and the AE signal higher than the ambient noise needs to be cut out before 
the signal identification analysis. However, the experiments were conducted in the ideal 
environment in the laboratory, ignoring the actual noise under actual bridge environ-
ments. In 2021, Ren [10] constructed a convolutional neural network for the classification 
and identification of wire broken signals by collecting AE signals from bridge cable pull-
ing experiments in the laboratory and converting the AE signals into time-frequency im-
age signals by wavelet transform. In 2022, Carrion [11] evaluated the classification of 
bridge cable damage by introducing the severity index of the AE signals. 

From analyzing the application of AE technology on bridge cables worldwide in re-
cent years, it can be found that researchers mostly conduct bridge cable pull-off experi-
ments in a laboratory environment to determine the state of bridge cables through the 
characteristic parameters of AE signals. When they consider the existence of noise in the 
process of detecting AE signals, they mostly add noise signal by simulation, or just as-
sume the simple white noise signal. In this paper, to address the above situation, we 
propose an AE signal segmentation algorithm for the characteristics of AE signals. The 
proposed algorithm can accurately segment individual AE signals in the collected con-
tinuous signal stream. In this paper, noise signals were collected from three bridges un-
der actual working conditions rather than simulation or simple assumption. The noise 
signals of the three bridges were analyzed in the time domain, frequency domain and 
wavelet to derive the distribution of the characteristic parameters and the filtering 
thresholds. The content of this paper belongs to the pre-processing work before the iden-
tification of AE signals of broken wires in bridge cables. It is of great significance for the 
practical application of AE technology in the health monitoring of bridge cables. 

In [12], the failure behavior of rooms and columns with different configurations 
under uniaxial loading was studied using PFC2D. It pointed out that the damage pro-
cess was mainly influenced by the connection angle and the number of connections. Sar-
farazi [13] used PFC2D to study the effects of horizontal position, vertical position, 
thickness, number, and confining pressure of geogrid on foundation settlement and ten-
sile force propagation along the geogrid. Paper [14] used PFC3D to study the effect of in-
teraction between the aqueduct and the tunnel on ground settlement. Paper [12–14] used 
discrete units to study and analyze the relevant content in the field of geotechnical and 
hydraulic engineering, which is consistent with the purpose of this paper to use AE 
technology for health monitoring of bridge cables elements. However, this paper focuses 
on signal pre-analysis processing. The proposed AE signal segmentation algorithm and 
the studied noise characteristic parameters can improve the efficiency and accuracy of 
the use of AE technology in the field of health monitoring in bridge cables. 

Paper [15] determined the relationship between the corroded and uncorroded ties 
by performing tensile experiments to determine the stress and strain forces by artificially 
corroding the cables and found a large change in the performance of the corroded ties by 
AE parameters. Paper [16] studied and analyzed the concealment of cables-anchorage, 
by loading defective and non-defective ties with artificial pre-stress. A comprehensive 
analysis of AE events in multilayer cables can show the difference between healthy and 
damaged cables. In [17], the propagation characteristics of the AE signal waveform with-
in the tool were determined by the boundary element method to better understand the 
effect of the tool geometry on the propagated AE signal. In [18], multi-sensor monitoring 
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of tool wear status was performed by simultaneously detecting acceleration and spindle 
drive current sensor signals, and the current signals were proved to be more easily pro-
cessed. All the above research contents are artificial prestress loading of bridge cables or 
tools before studying AE signal characteristics. However, this study was conducted un-
der actual bridge conditions without prestress control units. Moreover, this study focus-
es on the signal pre-processing analysis before processing AE signals due to broken 
wires, which has a different focus from the above literature. 

The rest of this paper is organized as follows. In the second section, AE signal ac-
quisition experiments are presented. We propose a novel segmentation algorithm in this 
section and noise analysis methods are illustrated. In the third section, signal character-
istic parameter calculation, signal segmentation algorithm effect and noise synthesis 
analysis effect are analyzed respectively. Finally, we draw a conclusion in the fourth sec-
tion. 

2. Materials and Methods 
2.1. Basic Theory of Acoustic Emission Technology 
2.1.1. Generation and Propagation of Acoustic Emission Signals 

The nature of the acoustic emission phenomenon lies in the reason that the material 
is subjected to internal or external forces. In the first stage of deformation, the elastic de-
formation energy has been stored in the local location of the material. As the material 
continues to be stressed, the material cracks or even fractures when the deformation 
reaches a certain level. This is due to the fact that the local stress concentration of the 
material leads to a rapid concentration of local energy. When the energy reaches the 
threshold, AE may be generated and release elastic waves. This phenomenon is also 
known as stress wave micro-vibration [19]. The technique of detecting, recording and 
analyzing the collected AE signals with special instruments and determining the source 
of acoustic emission is called the acoustic emission technique [20]. 

As a physical mechanical wave, the AE waveform has all the properties of sound. 
Its propagation, reception and radiation properties of the wave are in accordance with 
the laws of acoustic waves. The acoustic emission signal propagates in solid metal com-
ponents in transverse, longitudinal, surface and plate waves, etc. The AE wave is a 
mixed state of the above-mentioned modes of waves [21]. 

2.1.2. Waveform and Parameters of Acoustic Emission Signal 
The AE signal is a non-smooth signal, which can be divided into burst type and 

continuous type [22]. Not only due to the complexity of the AE waveform signal collect-
ed in the actual bridge environment, but also considering the existence of reflection, re-
fraction, and mode transformation during transmission, the received signal differs from 
the actual signal. In addition, it is difficult to describe the original AE signal accurately. 
Currently, the common method to describe the AE signal includes using the characteris-
tic parameters of AE in the simplified waveform to describe the AE signal [23]. A simpli-
fied diagram of the AE signal is shown in Figure 1. 

According to the simplified waveform of the AE signal, the main characteristic pa-
rameters include amplitude, duration, energy, rise time, ringing count, average signal 
level, event and threshold. The energy of AE signal is the area under the energy enve-
lope, with the unit of ms*mV [23]. 
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Figure 1. Acoustic emission simplified waveform characteristic parameter model. 

2.1.3. Acoustic Emission Signal Analysis Methods 
The AE analysis methods applied in this paper include characteristic parameter cor-

relation analysis, spectral analysis and wavelet analysis, respectively. 
The purpose of the characteristic parameter correlation analysis method is to corre-

late two or more characteristic parameters to find out the influence of the correlation be-
tween the parameters [24]. Then, it further determines the nature of the AE signal 
through the influence relationship. 

The AE signal is transient and random, and belongs to the category of non-smooth 
random signal. It consists of a series of frequency and mode rich signals. However, the 
signal characteristics in the time domain are rather one-sided for describing AE signal, 
since the transient signal is also accompanied by frequency and phase information. This 
requires further analysis of the signal in the frequency domain, i.e., spectral analysis. 
The spectral analysis method is to transfer the AE signal from the time domain to the 
frequency domain, and obtain the AE signal characteristics, as well as the state of the AE 
source through the time domain expression [25]. The most commonly used spectral 
analysis method for AE signals is the fast Fourier transform (FFT) spectral analysis 
method. The FFT method is a fast algorithm of discrete Fourier transform (DFT), which 
makes up for the shortcomings of the Fourier transform method in terms of operational 
efficiency. It has an important role in AE signal processing. 

Wavelet transform (WT) is an effective mathematical tool [26]. The wavelet refers to 
its attenuation and fluctuation characteristics, respectively. It can show good local char-
acteristics, since wavelets can have high resolution in time and frequency domains. The 
wavelet transform is also called a “mathematical microscope” by researchers because of 
its high resolution and the ability to focus on arbitrary details of the signal through the 
telescoping transform. The wavelet transform has been widely used in many fields, and 
has made outstanding contributions to the further characterization of AE signals. 

The expressions of wavelet transform are shown in Equations (1) and (2). 
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In the above equation, a  is the scale factor, b  is the translation parameter and ( )tϕ  
is the wavelet. According to the mathematical expression of the wavelet transform, it 
transforms the time function to the time-scale plane and focuses on the details of the 
time-domain function by the scale factor and the translation parameter. This makes it 
possible to extract certain features of the mutated signal. 

The choice of wavelet basis is also an important issue of the wavelet transform. The 
wavelet basis functions include Harr wavelets, symlets, Daubechies wavelets, Meyer 
wavelets, and Coifman wavelets, etc. The selection of wavelet basis functions is related 
to the correctness and validity of the analysis results. The Daubecheies (db) wavelet is a 
finite tightly-branched orthogonal wavelet with a long enough support width, and the 
vanishing moment and regularity are also superior. According to the wavelet analysis of 
the AE signal, the number of decomposition layers should not exceed five layers [27]. 

2.2. Acoustic Emission Signal Segmentation Algorithm 
The common AE signal is a burst signal. However, when we carry out signal acqui-

sition, the signals collected by the acquisition card are continuous. How to find the burst 
signal from the continuous signal, and how to determine the start point and end point of 
the burst signal are the problems that need to be solved. Inaccurate judgment of the start 
and end points of the AE signal may lead to inaccuracy of the characteristic parameters. 
The calculation of parameters such as energy, ringing count and duration of the AE sig-
nal is related to the length of the AE signal. Moreover, using the proposed algorithm to 
segment the signal may save effort and be more time efficient compared with manual 
segmentation. The acquisition card used in the experiments of this paper is a general-
purpose acquisition card for AE signals. This kind of acquisition card can only acquire 
AE signals continuously, but does not have the function of segmenting the AE signals 
and calculating the subsequent characteristic parameters. Therefore, it is indispensable 
for the subsequent analysis of the AE signal to accurately segment an AE signal from the 
acquired continuous waveform stream. In this paper, we propose an AE signal segmen-
tation algorithm using the characteristics of AE signal. This proposed pre-processing al-
gorithm has great significance for the future AE signal identification in the health moni-
toring system for bridge cables. 

In general, the AE signal is segmented from the acquired continuous waveform, 
mainly to find the start and end points of the AE signal. The algorithm segments the sig-
nal based on the following parameter values and the specific meaning of each parameter 
is shown below: 
• Threshold (Thr) 

When we analyze the continuous waveform acquired from the acquisition card, the 
part of the signal without AE signals needs to be filtered out. We may set a value as the 
threshold. If the amplitude of the collected signal in the data stream has not exceeded 
the set threshold, it may be filtered out. When the amplitude of an existing signal crosses 
the threshold, it is considered the arrival of an impact signal. The time when the point 
exceeds Thr is the start time of the AE signal. 
• Hit Definition Time (HDT) 

After starting to segment the AE signal, finding the end point of the AE signal is the 
next step to be carried out. When the amplitude of the acquired AE signal changes from 
higher than Thr to lower than this value, the HDT timer is triggered. If the amplitude of 
AE signal remains lower than Thr within HDT, the last point that crosses the threshold is 
considered to be the end point of the AE frame. Then, the process of segmenting the sig-
nal is also finished after the judgment. The next section of signal reading and judgment 
is carried out. 
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• Hit Lockout Time (HLT): 
For some AE signals, a subsequent rebound wave may exist. In order to avoid mis-

judging the rebound wave of the AE signal for the next AE signal waveform, the param-
eter of hit lockout time (HLT) is introduced. After obtaining a frame of AE signal, re-
gardless of whether there is a signal that exceeds the threshold or not, the signal from 
the acquisition card within the period of HLT will be ignored. It will not trigger the HDT 
judgment mechanism either. 
• Maximum Duration (MD): 

At some special moments, AE signals may be too dense to be distinguished sepa-
rately. If the amplitude of the signal remains higher than Thr, the parameters mentioned 
above may not effectively segment the AE signal. To resolve this problem, we introduce 
the parameter maximum duration (MD). When the signal length exceeds MD, the ac-
quired signal is mandatorily segmented. From the start time to the time when the signal 
exceeds MD, its frame is treated as a complete AE signal. 

By setting the above basic parameters, the flow of the algorithm is designed as 
shown in Figure 2. 

 
Figure 2. Flow chart of acoustic emission signal segmentation algorithm. 
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2.3. Noise Signal Acquisition Experiment 
In the application of health monitoring of bridge cables, we attach AE sensors on 

the bridge cables to acquire signals. Under the real environments on bridges, the noise 
may have a great impact on the AE signal acquisition. Previous research might study the 
noise characteristics by simulation [6,7], or treat the noise as simple white noise model 
[8]. Some researchers conducted AE experiments in the laboratory and ignored the exist-
ing noise under real environments [9,10]. In order to study the noise characteristics un-
der real environments, signal acquisition experiments were conducted on three bridges, 
namely Yantai Yangma Island Bridge, Jinan Yellow River Bridge and Shenzhen Caihong 
Bridge. All three bridges are either boom or cable-stayed bridges. The experiments were 
conducted under normal bridge operation in order to obtain the noise signals when 
monitoring the bridge health using AE technology. In the experiments, we use Spec-
trum’s high-speed acquisition card, M2p.5922-x4. Its acquisition resolution is 16 bit and 
its acquisition rate is 3 MS/s. The sensors selected for this experiment are SR40M and 
SR150M, with acquisition frequency bandwidths of 15~70 kHz and 60~400 kHz. 

The experimental site plan for signal acquisition in the field test is shown in Figures 3–5. 

  
(a) (b) 

Figure 3. Experiment site: (a) panoramic view of Yangma Island Bridge; (b) device connection. 

  
(a) (b) 

Figure 4. Experiment site: (a) panoramic view of Jinan Yellow River Bridge; (b) device connection. 
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(a) (b) 

Figure 5. Experiment site: (a) panoramic view of Shen Zhen Caihong Bridge; (b) device connection. 

3. Results 
3.1. Segmentation Algorithm Results 

A continuously acquired signal was analyzed to verify the proposed AE signal 
segmentation algorithm. The AE segmentation parameters were set as follows: threshold 
Thr is 0.1 V, HDT is 0.002 s, HLT is 0.002 s, and MD is 1 s. The waveform data stream ac-
quired before segmentation is shown in Figure 6. 

 
Figure 6. Acquired continuous signal waveform. 

The segmented signals are shown in Figure 7a–e. There are five AE signals above 
0.1 V in this continuous waveform. The signal occupies 2.01 GB of memory space before 
segmentation and 52.6 MB in total for the five segments after segmentation. This pro-
posed segmentation algorithm saves 97.5% of memory space while facilitating the ex-
traction of the signal feature parameters. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 7. Segmented acoustic emission signal. (a) Signal 1; (b) Signal 2; (c) Signal 3; (d) Signal 4; (e) 
Signal 5. 

3.2. Feature Parameter Extraction 
The calculation program for the characteristic parameters is written in MATLAB to 

realize the segmentation waveform and calculation of the characteristic parameters. The 
main parameters include rise time, duration, ringing count, amplitude, energy, average 
frequency, and average signal level characteristics. Due to the low amplitude of the 
noise signal, the calculation threshold of the AE parameters is chosen. 

Since this experiment has a 20 dB preamplifier, it is 45 dB after conversion accord-
ing to Equation (3). Considering that the noise is a continuous waveform with a longer 
duration compared to the burst AE signal waveform, the segmentation parameters set 
for the segmentation noise are HDT = 0.02 s, HLT = 0.2 s, and MD = 3 s. dB=20lg ܷ1 µV (3)

where 1 µV is 0 dB and U is the maximum voltage value. 
A total of 619 noise signals were acquired from Yangma Island Bridge, 3440 noise 

signals were collected from Yellow River Bridge, and 1552 noise signals were collected 
from Shenzhen Caihong Bridge. We randomly selected 100 among them to present their 
calculated characteristic parameters, as shown in Table 1. The subsequent analysis is 
performed according to the calculated noise signal characteristics. 
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Table 1. Noise signal characteristics parameters table. 

Serial 
Number 

Rise Time 
(µs) 

Duration 
(µs) 

Ringing 
Count 

Amplitude 
(dB) 

Energy 
(ms*mV) 

AF 
(kHz) 

ASL 
dB 

1 11,949 12,396 13 53 2.86 1.05 28 
2 199 42,193 375 61 76.53 9.68 24 
3 3977 46,368 449 62 90.60 10.87 25 
4 1442 50,859 553 58 59.76 8.58 22 
5 1425 46,252 397 59 58.15 8.02 23 
6 628 44,164 354 60 62.19 13.58 24 
7 151 38,947 529 62 91.63 12.43 26 
8 3514 48,656 605 62 91.85 14.43 26 
9 5220 44,630 644 60 100.40 12.75 26 

10 1228 48,475 618 61 76.53 15.64 26 
11 4376 13,906 42 54 11.91 3.02 19 

    ......    
90 967 17,304 222 53 23.01 13.59 39 
91 633 834 20 49 27.49 15.92 27 
92 4070 27,566 122 53 23.74 4.43 19 
93 12,087 38,825 436 56 53.22 11.23 23 
94 34 4632 33 52 4.97 7.12 21 
95 2051 16,362 321 58 30.35 19.62 25 
96 1537 12,592 171 58 22.20 13.58 25 
97 2147 9154 85 53 10.77 9.29 22 
98 4661 19,550 180 60 33.56 9.21 25 
99 4048 13,517 178 54 20.40 13.17 20 
100 3007 34,021 351 65 114.52 10.32 30 

3.3. Comprehensive Noise Analysis 
3.3.1. Time Domain Analysis 

The following analysis of the noise signal was carried out in the time domain: 
1. Impact-amplitude correlation analysis; 

Unlike the ringing count of a signal, when an AE signal waveform reaches its max-
imum value, an impact is formed at that value. Through the impact-amplitude correla-
tion analysis, the distribution interval of the collected noise amplitude can be derived. 

The impact-amplitude correlation plots of the noise signals of the three bridges are 
shown in Figures 8–10. 

The impact count amplitude of the noise signal collected from each bridge is nor-
mally correlated, with few high and low amplitude signals. The amplitudes of noise at 
each bridge mainly concentrate between 50 dB and 70 dB. We notice that the noise signal 
at 80 dB of Yangma Island Bridge did not cause impact and few impacts occurred with 
the noise between 80 dB and 90 dB at the other two bridges. Therefore, according to the 
distribution of the impact-amplitude correlation diagrams of the three bridges, the 
threshold for filtering noise can be set at 80 dB. Then, most of the noise can be filtered 
out by segmentation analysis after 80 dB. 
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Figure 8. Impact-amplitude correlation diagram of cable noise signal of Yangma Island Bridge. 

 
Figure 9. Impact-amplitude correlation diagram of cable noise signal of Yellow River Bridge. 
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Figure 10. Impact-amplitude correlation diagram of cable noise signal of Caihong Bridge. 

2. Ringing count-duration correlation analysis; 
Although the amplitude is the main reference parameter for signal filtering, there 

may still exist cases where the signal amplitude is high but the ringing count or duration 
is short. Thus, other characteristic parameters are needed as the basis for filtering the 
noise signal. The ringing count reflects the number of pulses above the analysis thresh-
old (45 dB) of a noise signal, representing the intensity and frequency of the noise signal. 
A high ringing count within a short duration indicates that the signal energy release is 
concentrated. The correlation analysis of the two characteristic parameters can provide a 
reference to the noise filtering in the time domain, and the noise signal with high energy 
in a short time can be filtered out by setting the appropriate time parameters. Figures 
11–13 depict the noise signal duration and ringing count correlation analysis for the 
three bridges. 

 
Figure 11. Ring count-duration correlation diagram of cable noise signal of Yangma Island Bridge. 
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Figure 12. Ring count-duration correlation diagram of cable noise signal of Yellow River Bridge. 

 
Figure 13. Ring count-duration correlation diagram of cable noise signal of Caihong Bridge. 

From the ring count-duration correlation diagram of the noise signals of the three 
bridges, it can be observed that there is an obvious positive correlation between the 
magnitude of the ringing count and the duration, except for the fact that the noise signal 
is the least obvious at Yellow River Bridge. The duration and ringing counts of the noise 
signals collected at the three bridges are relatively small, and the noise signals generally 
complete the ringing counts within 0.15 s, i.e., the main energy of the signal can be re-
leased within that time. Therefore, the duration of 0.15 s and the 1000 ringing counts can 
be used as the threshold indicators for filtering noise signals. Signals smaller than this 
duration and ringing counts can be identified as noise. 
3. Amplitude-energy correlation analysis; 

Figures 14–16 depict the amplitude-energy correlation analysis of the noise signals 
of the three bridges. The intensity of the AE source is directly related to the magnitude 
of the AE signal. The correlation analysis of energy and magnitude is one of the methods 
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to reflect the information of the AE source. In order to avoid the noise signal with high 
amplitude being analyzed later or being mistaken for the cable break signal, the refer-
ence of the energy characteristic parameter is added. 

 
Figure 14. Amplitude-energy correlation diagram of cable noise signal of Yangmadao Bridge. 

 
Figure 15. Amplitude-energy correlation diagram of cable noise signal of Yellow River Bridge. 
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Figure 16. Amplitude-energy correlation diagram of cable noise signal of Caihong Bridge. 

The experimental results show there is a positive correlation between amplitude 
and energy, and the noise of Yangma Island Bridge is the most obvious. The noise sig-
nals collected at the three bridges are mostly low-energy signals within 1000 ms*mV. 
The signal amplitudes of Yangma Island Bridge and Rainbow Bridge are lower, within 
600 ms*mV and 700 ms*mV. The signal amplitudes within 1000 ms*mV of Yellow River 
Bridge also account for more than 99%. The signal amplitude of Yellow River Bridge 
within 1000 ms*mV also accounts for more than 99%. Thus, the energy parameter of 
1000 ms*mV can be used as a threshold indicator to identify noise. The noise signal of 
Yellow River Bridge is higher in energy with the same amplitude, which is related to the 
intensive traffic flow of Yellow River Bridge during the experimental process. 
4. Impact-vehicle count correlation analysis; 

Figures 17 and 18 show the noise signal impact-vehicle count correlation plots at lo-
cations 1 and 2 of Yellow River Bridge. During the AE signal acquisition experiments at 
Yellow River Bridge, vehicle counts were conducted. Every 0.5 h was the period. Six ve-
hicle counts with one-minute duration each were performed within that period. The av-
erage value of the six counts was used as the average vehicle count parameter value 
within that period. We can observe that there is an obvious linear relationship between 
vehicle counts and crash counts. The more vehicles pass by during that time period, the 
more noise signals with high amplitude will be generated and form more crash signals. 
It also indicates that the main source of noise signals is the vehicles driving by on the 
bridge. All other time periods are consistent with the linear relationship between the 
number of impacts and vehicle counts, except the time period starting from 7:06 at loca-
tion 2. The noise signal at location 2 was collected at 7:00~9:00 when the traffic jam oc-
curred in the morning traffic peak, and the number of vehicles driving through the col-
lection point was low per unit time period. Therefore, the noise caused by the cars stay-
ing at the sampling point was not enough to cause the impact signal. 
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Figure 17. Noise signal impact-vehicle counting correlation diagram at position 1 of Yellow River 
Bridge. 

 
Figure 18. Noise signal impact-vehicle counting correlation diagram at position 2 of Yellow River 
Bridge. 
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3.3.2. Frequency Domain Analysis 
The following analysis of the noise signal is performed in the frequency domain: 

1. Signal spectrum analysis 
The FFT method is used to transform the noise signal from the time domain to the 

frequency domain to obtain the characteristic distribution of the noise signal in the fre-
quency domain. Nearly one hundred noise signals at each bridge cable were FFT trans-
formed, and the representative noise signals of each bridge were selected randomly. The 
time and frequency domain plots of the signal are shown in Figures 19–21. 

 
(a) 

(b) 

Figure 19. Time domain and frequency domain waveform diagram of noise signal of Yangma Is-
land Bridge. (a) Signal time domain diagram; (b) signal frequency domain diagram. 

 
(a) 

 
(b) 

Figure 20. Time domain and frequency domain waveform diagram of noise signal of Yellow River 
Bridge. (a) Signal time domain diagram; (b) signal frequency domain diagram. 
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(a) 

 
(b) 

Figure 21. Time domain and frequency domain waveform diagram of noise signal of Caihong 
Bridge. (a) Signal time domain diagram; (b) signal frequency domain diagram. 

From the above figures, we can learn that the spectral range of the noise signals of 
the three bridges are concentrated within 20 kHz. 
2. Energy-average frequency correlation analysis 

Average frequency (AF) indicates the number of times the AE signal exceeds the 
threshold value. Thus, AF is defined as the ringing count divided by the duration. Com-
pared with the AE signal of broken wires, the noise signal has a smaller ringing count 
and longer duration, i.e., smaller AF value. So, the AF value is an important discrimina-
tive parameter for the noise signal. 

Figures 22–24 illustrate the correlation analysis of the average frequency-energy of 
the noise signals of the three bridges. 

 
Figure 22. Average frequency-energy correlation diagram of noise signal of Yangma Island Bridge. 
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Figure 23. Average frequency-energy correlation diagram of noise signal of Yellow River Bridge. 

From the above three average frequency-energy correlation plots, we find that the 
correlation between average frequency and energy is not obvious. This indicates that the 
activity of the AE source is relatively independent of the type of AE signal. The average 
frequency of high-energy noise signals is mainly concentrated in the range of 20 kHz. 
There are noise signals in the range of 20 kHz to 30 kHz, but the energy is low. The aver-
age frequency of the noise signal of Yangma Island Bridge is less than 20 kHz and has a 
proportion of 96.1%. The average frequency of the noise signal of Yellow River Bridge is 
also less than 20 kHz and has a proportion of 90.6%. The average frequency of the noise 
of Caihong Bridge is also less than 20 kHz and has a proportion of 91.7%. Therefore, the 
average frequency threshold of 20 kHz can filter out most of the high-energy noise sig-
nals. 

 
Figure 24. Average frequency-energy correlation diagram of noise signal of Caihong Bridge. 
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3. ASL-centroid frequency correlation analysis 
The ASL of the signal represents the average signal amplitude in the time domain. 

The centroid frequency of the signal represents the location of the center of gravity of the 
signal frequency. The calculation is shown in Equation (4), where xf  is the centroid fre-

quency and im  is the amplitude at frequency if . 

i i
x

i

m f
f

m
= 


 (4)

ASL is the characteristic parameter in the time domain and the centroid frequency 
is the characteristic parameter in the frequency domain, respectively. Figures 25–27 
show their correlation analysis. 

 
Figure 25. ASL-centroid frequency correlation diagram of Yangma Island Bridge. 

 
Figure 26. ASL-centroid frequency correlation diagram of Yellow River Bridge. 
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Figure 27. ASL-centroid frequency correlation diagram of Caihong Bridge. 

From the above figures, we find that the ASL of each bridge noise signal has a nega-
tive linear relationship with its centroid frequency. The larger the ASL, the smaller the 
centroid frequency. This indicates that the higher the amplitude level of the noise signal, 
the smaller the spectral distribution in the region. Moreover, the signal with a low signal 
amplitude level has wider spectral distribution. 

3.3.3. Wavelet Time-Frequency Analysis 
The wavelet decomposition of the signals collected from the three bridges was per-

formed using the wavelet basis functions and the number of decomposition layers de-
termined above. Figures 28–30 illustrate the signal wavelet transform decomposition. 

 
Figure 28. Waveform decomposition diagram of noise S1. 
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Figure 29. Waveform decomposition diagram of noise S2. 

 
Figure 30. Waveform decomposition diagram of noise S3. 

The energy ratio of the decomposed layers is shown in Tables 2–4. 

Table 2. Energy spectrum coefficient table of noise signal S1 of Yangma Island Bridge. 

Wavelet Decomposition 
Parameters a5 d5 d4 d3 d2 d1 

Energy Spectrum Coefficient 98.17 0.20 0.19 0.48 0.38 0.59 
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Table 3. Energy spectrum coefficient table of noise signal S2 of Yellow River Bridge. 

Wavelet Decomposition 
Parameters a5 d5 d4 d3 d2 d1 

Energy Spectrum Coefficient 98.72 0.18 0.01 0.12 0.23 0.68 

Table 4. Energy spectrum coefficient table of noise signal S3 of Caihong Bridge. 

Wavelet Decomposition 
Parameters 

a5 d5 d4 d3 d2 d1 

Energy Spectrum Coefficient 97.89 0.28 0.15 0.22 0.41 1.05 

From the above waveform decomposition diagram, it can be observed that the am-
plitude of the signal is larger at low frequencies and smaller at high frequencies. 
Through the tables of energy spectrum coefficients of the decomposed signals of each 
layer, it can be observed that more than 97% of the energy of the noise signals of the 
three bridges are concentrated in the a5 layer, the low frequency part of the noise sig-
nals. The time-frequency analysis of the a5 part of each signal is conducted by short time 
Fourier transform (STFT), as shown in Figures 31–33. 

 
Figure 31. Time-frequency diagram of low frequency signal in S1 noise signal. 

 
Figure 32. Time-frequency diagram of low frequency signal in S2 noise signal. 
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Figure 33. Time-frequency diagram of low frequency signal in S3 noise signal. 

The above figures indicate that the signal energy of the noise signal with low fre-
quency has a portion of more than 97%. The signal energy is concentrated in the fre-
quency range up to 20 kHz by STFT. This frequency is also consistent with the signal 
frequency range analyzed above for the average frequency of the signal and the FFT 
transformations. The above rules and conclusions indicate that the frequency discrimi-
nation threshold for the noise signal in the health monitoring of bridge cables under real 
working conditions should be set to 20 kHz. The filter frequency is selected to be greater 
than 20 kHz, and the corresponding interference signal can be filtered out. 

4. Conclusions 
As a non-destructive testing method, AE technology has been widely used in many 

engineering fields. In this paper, an AE signal segmentation algorithm is proposed. The 
algorithm sets segmentation parameters to successfully segment a single AE signal in a 
continuous stream of acquired signals. The parameters include threshold, impact defini-
tion time, and impact blocking time. The proposed segmentation algorithm can not only 
facilitate the extraction of AE signal characteristics, but can also save 97.5% of storage 
space. This may greatly improve the application of AE technology in the health monitor-
ing of bridge cables. 

To solve the problem of the lack of study of the noise properties under real envi-
ronments, experiments have been conducted in three different bridges. The experimen-
tally acquired 5611 noise signals have been synthesized and analyzed in the time do-
main, frequency domain and wavelet time-frequency domain. The analysis reveals that 
the main characteristic parameter ranges of the noise signals of the three bridges are rel-
atively consistent. The main cause of noise generation is vehicles passing by. The ampli-
tude threshold of the experimentally obtained noise signal is 80 dB, the duration thresh-
old is 0.15 s, the energy threshold is 1000 ms*mV, and the ringing count threshold is 
1000 times, respectively. The average frequency of the noise signal is within 20 kHz, as 
determined by frequency domain analysis. In addition, 97% of the signal energy is main-
ly concentrated in 20 kHz, as determined by wavelet analysis and STFT analysis. Ac-
cording to the noise signal characteristic parameter derived from the above three real 
working condition experiments, the noise can be efficiently filtered and identified dur-
ing or after the signal acquisition. Future studies will be conducted to investigate the 
probabilistic distribution of AE energies based on the collected data. Some previous 
work has provided effective approaches to this aspect, such as [28,29]. The additional 
data analysis will allow for a deeper analysis of the mechanisms in the metals. 
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