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Abstract: Online handwriting recognition has been the subject of research for many years. Despite
that, a limited number of practical applications are currently available. The widespread use of
devices such as smartphones, smartwatches, and tablets has not been enough to convince the user
to use pen-based interfaces. This implies that more research on the pen interface and recognition
methods is still necessary. This paper proposes a handwritten character recognition system based
on 3D accelerometer signal processing using Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM). First, a user wearing an MYO armband on the forearm writes a multi-
stroke freestyle character on a touchpad by using the finger or a pen. Next, the 3D accelerometer
signals generated during the writing process are fed into a CNN, LSTM, or CNN-LSTM network
for recognition. The convolutional backbone obtains spatial features in order to feed an LSTM that
extracts short-term temporal information. The system was evaluated on a proprietary dataset of
3D accelerometer data collected from multiple users with an armband device, corresponding to
handwritten English lowercase letters (a–z) and digits (0–9) in a freestyle. The results show that the
proposed system overcomes other systems from the state of the art by 0.53%.

Keywords: 3D accelerometer data; handwritten character recognition; Convolutional Neural Net-
works (CNN); Long Short-Term Memory (LSTM); 3D signal processing

1. Introduction

Online handwriting recognition has been the subject of research for a long time, and
part of the technology has found commercial application. However, the limited number of
success stories from the market suggests that more research on the pen interface and the
recognition methods is still necessary [1].

Currently, it is common to find wearable devices with a wide range of embedded
sensors, which can be used in human activity and behavior studies. Such devices have
contributed to the development of new smart applications to use that kind of data. The
number of wearables with 3D accelerometer sensors available in the market, and their
low cost makes it possible to develop new friendly and non-invasive human–computer
interfaces. Such technology allows users to write customarily and freely on smartphones,
smartwatches, smart TVs, computers, etc. In order to attract the user’s attention to the pen
interface, fast and accurate handwriting recognition interfaces are highly required.

Some systems using 3D accelerometer data for human activity, handwriting and sign
language recognition have been developed [2–8]. Online handwriting recognition is still
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challenging due to the variability of stroke order, shape and style of handwriting [1]. Some
approaches recover the trajectory of the handwritten character to convert it to image. In this
case, to cope with variability, robust feature extraction methods can be employed [9,10].
Another option is to perform feature extraction directly in the time domain using a Convo-
lutional Neural Network [11].

This paper proposes a novel deep learning approach to online handwriting character
recognition. The method is focused on efficient feature extraction, classification, and evalu-
ation modules using 3D accelerometer data. The recognition system is based on combining
the CNN and LSTM architectures. CNN architecture was used for feature extraction, which
allows transforming 3D raw accelerometer data into a feature vector sequence. Finally,
an LSTM architecture is trained to recognize the patterns delivered by the CNN. In this
way, the classical ad hoc techniques in feature extraction and classification are avoided,
permitting artificial intelligence (AI) to make these tasks.

The main contributions reported in this paper comprise:

1. A proprietary dataset of 3D accelerometer data corresponding to multi-stroke freestyle
handwritten lowercase letters and digits. Unlike previous approaches, we do not
impose restrictions on handwriting style and number and order of the strokes.

2. Three neural network architectures (CNN, LSTM, and CNN-LSTM) were proposed.
In the last architecture, a CNN was used for feature extraction to encode the global
characteristics of raw 3D accelerometer data together with an LSTM for sequence
processing and classification.

The remainder of this paper is organized as follows. Section 2 provides a summary
of representative works on online handwritten character recognition. Section 3 includes
a detailed description of the proposed method. Section 4 presents the designed experiments
and numerical results. Finally, Section 5 announces the conclusions derived from this study.

2. Related Work

Motion sensor data, such as accelerometer and gyroscope data, have been used recently
for different tasks such as sign language recognition [2], and online handwritten character
recognition [12]. To successfully carry out handwriting recognition, it is necessary to
synchronize two main steps, the data acquisition, and identification processes. In the
former, some works perform data acquisition by using a specially designed device [12–15].
Nevertheless, nowadays, many wearable devices such as smartphones or smartwatches
are equipped with accelerometers, gyroscopes, magnetometers, and other wearables such
as the shimmer3 IMU or the MYO armband. In the latter, handwriting recognition takes
charge of processing collected data from the motion sensors to recognize handwritten
characters correctly.

One clue problem found in online handwriting recognition is related to the length of
the sequences for characters of the same class, even those produced by the same person.
These variations are related to the writing speed of a character, which simultaneously
changes the acceleration of the hand movement. On these grounds, to expect sequences
with the same length for the same character class is difficult.

However, to eliminate unnecessary data in the sequences for each letter, it is convenient
to extract or segment only the part of the signal during which the handwriting process is
carried out. A segmentation approach was proposed in [15] and tested in [4,16]. In this
process, only the samples belonging to the handwriting should be considered; otherwise,
samples not belonging to the written character will be included.

Another approach to only collect the signal during the handwriting process is to con-
sider the information of pen-up and pen-down movements. In some approaches, this task
has been addressed using a camera to track hand movements. Afterward, the segmentation
is conducted by hand or a specialized writing device (e.g., glove, pen, marker). In this
regard, Roy et al. [17] presented a solution to handwriting recognition by developing a
user interface to compute numeral recognition in air writing by using a Convolutional
Neural Network (CNN). First, they used a fixed-color marker to write in front of a camera,
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which was followed by a color-based segmentation to identify and track the trajectory of
the pen-marker. Next, the classification was carried out by a trained CNN.

An accelerometer-based digital pen for handwritten digits and gesture trajectory
recognition applications was proposed by Wang and Chuang [14]. This pen is based
on a triaxial accelerometer to collect the acceleration motion data of the hand; time and
frequency domain features are extracted from the obtained acceleration signals. Next, most
discriminant features were selected using a hybrid method; kernel-based class separability
was applied to select significant features, and Linear Discriminant Analysis (LDA) was used
to reduce the dimensionality. Both algorithms were dedicated to training a probabilistic
neural network for recognition.

Amma et al. [15] proposed a wearable input system for handwriting recognition using
an accelerometer and a gyroscope to capture the handwriting gestures. Later, these data
were processed using Support Vector Machines (SVM) to identify which data segments
contain handwriting. Subsequently, Hidden Markov Models (HMMs) were used for
recognition.

Kim et al. [4] classified 26 lowercase letters of the English alphabet using 3D gyroscope
data instead of 3D accelerometer data, and the Dynamic Time-Warping (DTW) algorithm
was used for recognition.

Agrawal et al. [18] proposed a PhonePoint Pen system that uses the built-in accelerom-
eters found in mobile phones to recognize handwritten English characters.

Additionally, Li et al. [19] presented a hand gesture recognition based on mobile
devices using the accelerometer and gyroscope sensors. Here, the authors applied a filtering
process as preprocessing. They also proposed two deep models: a Bidirectional Long-Short
Term Memory (BiLSTM) and a Bidirectional Gated Recurrent Unit (BiGRU) using the Fisher
criterion, termed F-BiLSTM and F-BiGRU, respectively.

Ardüser et al. [20] transformed the accelerometer and gyroscope signals of a smart-
watch into a particular coordinate system on a whiteboard and used the DTW algorithm
for recognition.

In the same context, Kwon et al. [21] classified ten hand gestures using a CNN model
with six convolutional layers. Lin et al. [22] proposed the system SHOW (Smart Handwrit-
ing on Watches), where the users write on horizontal surfaces. Unfortunately, the users
need to use the elbow as a support point; due to such inconvenient, this process is not
recognized as freestyle handwriting.

Additionally, to show the possibility of motion sensor based eavesdropping on hand-
writing, Xia et al. [23] introduced a MotionHacker system using a smartwatch application
to record the evolution in hand movement. The system requires a preprocessing stage
to proceed with the feature extraction, which allows recognizing each letter by training
a random forest classifier.

Concerning technologies, some authors have preferred to use the MYO armband [2,7,24].
Meanwhile, others use the shimmer device [25–27]. Our study used an MYO armband to
capture the acceleration motion of real dynamic handwriting. Table 1 presents a summary
of representative state-of-the-art works related to the proposed framework.

LSTM networks have been applied successfully to sequence classification in other
domains. For instance, Ojagh et al. [28] proposed a method for air quality prediction using
data from air quality sensors distributed in Calgary, Canada. An edge-based component
exploiting both temporal and spatial information was used to clean raw data and fill in
missing sensor values. Then, an LSTM network was used for prediction. In another work,
Sa-nguannarm et al. [29] proposed a human activity detector based on accelerometer data
and an LSTM network. Livieris et al. [30] proposed a CNN-LSTM model for gold price
time-series forecasting. Elmaz et al. [31] proposed a method for the prediction of indoor
temperature by using a CNN-LSTM architecture.
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Table 1. Summary of related approaches.

Algorithm Methodology Limitations

Digital Pen [12] 3D accelerometer signals are converted to image which is
recognized by a neural network

Ten digits written in a special single
stroke font

WIMU-Based Hand Motion
Analysis [13]

Movement and attitude features are extracted from
motion sensor and magnetometer signals and recognition
is completed by DTW

English lowercase letters and digits
written in a special single stroke font

Accelerometer-Based Digital
Pen [14] 3D accelerometer signals are recognized by a PNN Ten digits written in a special single

stroke font

Air writing [15] 3D accelerometer and gyroscope signals are recognized
by HMMs English uppercase letters and words

Gyroscope-equipped
smartphone [4]

3D gyroscope signals are recognized by stepwise
lower-bounded dynamic time warping

English lowercase letters written
with a smartphone grabbed as a pen

Marker-based Air
writing [17]

Handwriting is captured from motion of a marker in a
video and recognition is completed by a CNN Ten digits written in a single stroke

PhonePoint Pen [18]
Basic strokes are detected from 3D accelerometer signals
by correlation with templates and handwritten characters
are recognized by juxtaposition of basic strokes

English letters and digits written
using basic strokes, smartphone
grabbed as a pen

Deep Fisher Discriminant
Learning [19]

3D accelerometer and gyroscope signals are recognized as
hand gestures by an F-BiGRU

Six uppercase English letters and
six digits written in a predefined
stroke ordering

Motion data from
smartwatch [20]

Features are extracted from accelerometer and gyroscope
signals and letter recognition is done by DTW

English uppercase letters written on
a whiteboard

SHOW [22]
Features are extracted from accelerometer and gyroscope
signals and recognition was tested with seven machine
learning algorithms

English letters and digits written on
a horizontal surface with the elbow
as support point

MotionHacker [23]
After preprocessing and segmentation, features are
extracted from accelerometer and gyroscope signals and
letter recognition is performed by random forest classifier

Demonstration of motion
sensors-based eavesdropping on
handwriting

AirScript [7]

Recognition is completed by a fusion of a CNN, and two
GRU networks using as input an image derived from
2-DifViz features, post-processed 2-DifViz features and
standardized raw data, respectively

Ten digits written in the air

Finger Writing with
Smartwatch [25]

Energy, posture, motion shape and motion variation
features are extracted from accelerometer and gyroscope
signals, and three classifiers are tested for recognition
(Naive Bayes, linear regression and decision trees)

English lowercase letters written on
a surface

Trajectory-Based Air
Writing [32]

Trajectory of handwriting with fingertip using a video
camera and recognition was completed by a CNN and an
LSTM

Ten digits written with a predefined
stroke ordering

Air Writing with
Interpolation [33]

Motion sensor data are interpolated and then recognized
by a 2D-CNN Uses datasets of others

3. CNN and LSTM for Sequence Recognition

In the following, we elaborate on the justification for using CNN and LSTM networks
for sequence recognition. First, one of the advantages of Convolutional Neural Networks
(CNN) is that they can perform feature extraction directly from raw data. They perform
adaptive feature extraction because they learn to extract the features that are more suitable
for the task at hand. Another advantage is that they are able to tolerate a moderate amount
of distortion and noise. Another advantage is that they present a good generalization ability
because of the use of shared weights, which allows them to incorporate prior knowledge
of the problem to be solved [34]. Long Short-Term Memory (LSTM) networks are one of
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the best architectures for sequence processing. This is because LSTM networks have the
ability to extract long-range dependencies. In fact, these networks were proposed to solve
the vanishing gradient problem faced by Recurrent Neural Networks (RNN) [35].

The combination of spatial and temporal feature learning is crucial to reliably per-
forming motion sequence recognition. A hybrid CNN-LSTM network is used in this work
to extract and exploit these two types of features. The convolutional part obtains spatial
features, while the LSTM modules extract short-term temporal information.

In this section, the CNN and LSTM architectures are presented and described in detail.

3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special kind of neural network whose
structure was inspired by the biological visual perception system [36]. These neural net-
works are specialized for feature extraction in 2D systems (e.g., matrix systems); however,
their use also has been extended to 1D systems (e.g., sequences). Unlike traditional pattern
recognition methods, it is unnecessary to implement or design a feature extractor to gather
discriminant information, discarding irrelevant features, and categorize the selected feature
vectors into classes for training a supervised classifier. In this scheme, a CNN could be
trained with almost raw data; that is, a CNN is a set of layers that transforms the input data
into the output class or prediction.

However, the CNN input data in a 2D or 1D system must be nearly normalized in
magnitude and centered. CNNs are characterized by the use of several layers, such that
a model with depth d can be defined as:

C = Lnd
nd−1 ◦ Lnd−1

nd−2 ◦ · · · ◦ Ln2
n1 ◦ Ln1

n0 , (1)

where each L represents a convolutional, a pooling or a fully connected layer. The lower
and upper indices represent the input and output size of the layer, respectively. Typically,
the output of the convolution operators is passed through an activation function f to form
the feature map for the next layer.

3.1.1. Convolutional Layer

Convolutional layers are the core of CNN architectures; the convolution is an operation
between two functions, which is mathematically denoted by

c(t) = (x ∗ y)(t) =
∫ ∞

−∞
x(τ)y(t− τ)dτ, (2)

where ∗ represents the convolution operator. The first argument x(t) is the measured
input data and the second y(t) is the kernel or the convolutional filter. The output c(t)
is the feature maps. Equation (2) represents the convolution defined in continuous-time
terms; however, the data obtained from all sensors must be discretized to be processed on
a computer.

In practice, the convolution operator in discrete-time is defined as

c(n) = (x ∗ y)(n) =
∞

∑
k=−∞

x(k)y(n− k). (3)

The inputs are the multidimensional data, and the kernel contains the multidimen-
sional parameters. Such parameters are adapted according to the processed data. In this
paper, the data sequences are taken as a bidimensional data array.

3.1.2. Activation Function

A convolutional layer is commonly followed by a nonlinear activation function to
increase the capacity of the neural network. Such an activation function helps the neuron
to react or not through a nonlinear transformation acting over the input signal. Many
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activation functions are defined in neural networks, but the most commonly used are the
Gaussian, Sigmoid, Maxout, Hyperbolic Tangent, Leaky ReLU, and ReLU.

The ReLU function f (x) = max(0, x) is probably the most recurrent in the literature.
It is computationally efficient because all neurons are not activated at the same time,
converting the negative inputs to zero. Consequently, the neurons are not all activated,
allowing the network to converge faster than for other activation functions.

3.1.3. Pooling Layer

This layer can reduce the dimensionality of the input data and usually comes after
a convolutional layer. The dimensionality reduction can be of two forms, the average
(average pooling) and the maximum within a rectangular neighborhood (Max Pooling).
In both cases, the pooling layer helps to have an almost invariant representation of the
input data after a small coordinate translation, which is very helpful if it is wanted to
know whether some feature is prevailing or not. Pooling is implemented by an algorithm
that compresses or generalizes the information, and generally, this layer can reduce the
overfitting in the training stage.

3.1.4. Fully Connected Layer (Dense)

After the feature extraction performed by convolutional and pooling layers, it is
necessary to recognize such features, which takes place at the last operative block of the
CNN architecture using one or more fully connected layers. In 1D systems, the output of
the previous layers coming to a fully connected layer is flattened into a vector that will be
used to classify the input data into predefined classes. A Soft-Max layer at the top of the
network computes the probabilities of each class.

3.2. Long Short-Term Memory Neural Networks

Long Short-Term Memory Neural Networks (LSTM) are a special kind of recurrent
neural network (RNN), specialized in processing sequential data. LSTMs have recurrent
connections, allowing the learning of long-term dependencies and, consequently, remem-
bering information for long periods of time. The LSTM network core is based on a special
unit known as the memory block [35], which is controlled by three structures (or gates): the
forget gate ft, input gate it, and output gate Ot.

Figure 1 shows a basic memory block.

v

v

v

𝜎 𝜎 tanh

tanh

𝜎

𝐶𝑡Cell state𝐶𝑡−1

Forget
gate

Input 
gate

Output
gateℎ𝑡−1 ℎ𝑡

𝑥𝑡

Figure 1. The memory cell and the gates of an LSTM memory block.

Each memory block has two sources of information at each unit time t, the current
sample xt, and the previous memory block state ht−1. This information is processed by the
forget gate (a sigmoid layer) to decide what information is ignored from the previous cell
state Ct−1. The next step is deciding which new information will be stored in the current
cell state. This process is performed at the input gate using the previous state and new data.

Subsequently, the information passes through two functions: the sigmoid activation

function it and the tanh function
∼
Ct. These two partial results are next multiplied. Currently,
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the previous state Ct−1 is updated to a new state or cell state Ct. Finally, the output of the
LSTM network ht is composed of the product of the output gate Ot and the cell state Ct
that passes through the tanh activation function. The overall process in a memory block is
summarized as follows:

it = σ(Wxixt + Whiht−1 + WciCt−1 + bi),

ft = σ(Wx f xt + Wh f ht−1 + Wc f Ct−1 + b f ),

Ct = ftCt−1 + it
∼
Ct, (4)

Ot = σ(WxOxt + WhOht−1 + WcOCt−1 + bO),

ht = Ot tanh(Ct),

where
∼
Ct = tanh(WxCxt + WhCht−1 + bC), W{}, and b{} denote the weight matrices and

bias terms, respectively.

3.3. Implemented Architecture

In this study, to perform handwriting recognition using accelerometer data, three
different architectures were implemented and evaluated: a CNN, an LSTM, and an hybrid
CNN-LSTM.

The CNN architecture (Figure 2) basically consists of three convolutional layers fol-
lowed by ReLU activation functions. Indeed, in the first and second layers, 16 convolutional
filters are used to extract the same number of features from data, where the size of the filters
is 1× 3, and the stride is set to one. After the first two convolutional layers, max-pooling is
applied to reduce the dimensionality by half. Additionally, a third convolutional layer was
implemented using 32 convolutional filters with the same size and stride as in previous
layers, applying the ReLU activation function. A dropout technique with a dropout rate of
0.1 was used in each convolutional layer to prevent overfitting. Finally, a fully connected
(Dense) layer is used with a Soft-Max activation function to compute the probability dis-
tribution over 36 classes. The proposed LSTM architecture employs 250 memory blocks
(Figure 1). This is followed by a fully connected layer with a Soft-Max activation function
to compute the probability distribution over all classes. In the hybrid CNN-LSTM model
(Figure 3), the output of the last convolutional layer of the CNN is connected to the LSTM
for recognition and classification.

Dropout Dropout
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Dropout Output
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i
c
a
t
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n

Conv
Layer

Conv
Layer

Conv
Layer

Flatten Dense

3D accelerometer data

𝑋

𝑌

𝑍

Input
Data

Figure 2. A CNN architecture with three convolutional layers, max pooling, and a fully connected
layer. Each convolutional layer and dense layer is followed by an activation function.
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Figure 3. CNN-LSTM architecture.

The input data for the networks consist of the 3D accelerometer data represented in (x,
y, z) Cartesian coordinates.

The evaluated architectures were trained using the Adam optimization algorithm to
find the minimum of the proposed stochastic objective function, and the network parame-
ters were updated using the backpropagation algorithm.

Tables 2–4 show the parameters of the three architectures.

Table 2. Number of parameters of the CNN architecture.

Layer (Type) Output Shape Parameters

Input (None, 116, 3) 0
Conv1D (None, 114, 16) 160
Dropout (None, 114, 16) 0
Conv1D (None, 112, 16) 784
Dropout (None, 112, 16) 0
MaxPooling (None, 56, 16) 0
Conv1D (None, 54, 32) 1568
Dropout (None, 54, 32) 0
Flatten (None, 1728) 0
Dense (None, 36) 62,244

Total 64,756

Table 3. Number of parameters of the LSTM architecture.

Layer (Type) Output Shape Parameters

Input (None, 116, 3) 0
LSTM (None, 116, 250) 254,000
Flatten (None, 1728) 0
Dense (None, 36) 1,044,036

Total 1,298,036

Table 4. Number of parameters of the CNN-LSTM architecture.

Layer (Type) Output Shape Parameters

Input (None, 116, 3) 0
Conv1D (None, 114, 16) 160
Dropout (None, 114, 16) 0
Conv1D (None, 112, 16) 784
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Table 4. Cont.

Layer (Type) Output Shape Parameters

Dropout (None, 112, 16) 0
MaxPooling (None, 56, 16) 0
Conv1D (None, 54, 32) 1568
Dropout (None, 54, 32) 0
LSTM (None, 250) 283,000
Dense (None, 36) 9036

Total 294,548

4. Experiments and Numerical Evaluation
4.1. Hardware and Data Collection

Handwriting movement was collected using a touchscreen laptop to write the charac-
ters and the specialized MYO armband to obtain the dynamic data. The online handwriting
database comprises 3D accelerometer data corresponding to twenty-six lowercase (a–z)
letters from the English alphabet and ten Arabic numerals (0–9).

Figure 4 shows an example of calligraphic strokes for each character from the database;
these points were captured from the touchscreen during a writing task. Each handwritten
character class has 399 samples captured at different speeds and sizes; besides, they were
collected from independent users. Therefore, the created dataset contains a total number of
14,364 samples.

0 1 2 3 4 5

6 7 8 9 a b

c d e f g h

i j k l m n

o p q r s t

u v w x y z

Figure 4. Example of the representative characters written on the touchscreen.

Each handwritten character was written by using a finger or pen on a touchscreen
to simulate a proper writing system. The user was free to write using his/her preferred
writing style with one or more strokes. The accelerometer sensor in the MYO armband
works at a sample rate of 50 Hz. Therefore, the accelerometer data are collected only when
the person writes on the touchscreen to segment the accelerometer signals [4,15,16].



Appl. Sci. 2022, 12, 6707 10 of 16

4.2. Evaluation and Results

The three proposed neural network architectures were evaluated and extensively com-
pared. For this purpose, the dense layer and the Adam optimization algorithm remained
operating without modifications in the stochastic objective functions during the training.
The database was divided into ten disjoint subsets using a different number of samples
per class. Furthermore, each subset Ci was built with 40, 80, 120, 160, 200, 240, 280, 320,
360, and 399 samples per class. The performance evaluation was conducted using a k-fold
cross-validation technique with k = 10. Each subset was subdivided to complete the
evaluation; 90% of data was used for training, and the remainder, 10%, was used for testing.

Training and test stages were processed on a PC using an Intel® Core™ i7-7700@4.20 GHz,
16 GB RAM, and a GPU NVIDIA GTX 1080 with 8 GB of DDR5 memory, and 2560 CUDA cores.

Figure 5 shows the distribution of classes after applying a dimensionality reduction
using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm [37].

-30 -20 -10 10 20 30

-25

0

25

Data projection using t-SNE

-25

0

25

   Acceleration in Z

-25

0

25

Acceleration in Y

Acceleration in X

0

Acceleration in X Acce
leration in Y

Ac
ce

le
ra

tio
n 

in
 Z

Figure 5. Distribution of the features’ space. (Above) For X, Y, and Z axes. (Below) For the three axes.

In order to have a clear idea of how the classes are distributed in the original feature
space, the t-SNE method was applied. That method explicitly shows the intrinsic difficulty
of classifying each class. The t-SNE method only was used to visualize the data distribution
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after reducing the dimension of the original feature space. The feature space dimension was
reduced from R116 to R2, and each color represents each of the 36 classes used to classify in
Figure 5.

Additionally, the distributions of the feature space obtained from the 3D accelerometer
data for all classes in the X, Y, and Z axes are shown in Figure 5. In this paper, the three axes
were used in the recognition process. According to Figure 5, clearly separated clusters can
be observed for the X axis, whereas for the Y and Z axes, clusters look mostly overlapped.
The numerical results are shown in Figure 6. As it can be observed, the three implemented
architectures have a comparable performance for more than 120 samples per class.
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Figure 6. Accuracy of three proposed architectures (CNN, LSTM, and CNN-LSTM) for different
numbers of samples per class.

For example, in Figure 6, it was observed that the LSTM architecture presented
the best performance using only a few samples. However, when 120 samples are used,
the three architectures exhibit almost the same performance. It is important to notice that
the three architectures present nearly the same performance for the complete database
(i.e., 399 samples per class).

The loss function and the Area Under the Curve (AUC) combined with the Receiver
Operating Characteristic (ROC), forming the AUC-ROC parameter, were used to evaluate
the performance of the three models in detail. The loss function was used to calculate the
model errors during the optimization process, and the ROC curve expresses the ability
of a model to classify. The numerical results for the loss function and ROC curve for the
proposed CNN, LSTM, and CNN-LSTM architectures are shown in Figure 7, respectively.
The numerical results of the AUC-ROC for the three last proposed architectures are 0.99464,
0.99679, and 0.9950.

The loss function used in each proposed architecture was the Cross-Entropy or Log
loss. This function measures the performance of a model in classification tasks, where the
output is a probability value between 0 and 1. The Cross-Entropy loss function is widely
used in Deep Neural Networks [38,39].
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Figure 7. Loss-function and ROC curve for the CNN, LSTM, and CNN-LSTM architectures, the corre-
sponding AUC-ROC metric performances are 0.99464, 0.99679, and 0.99500. (a) Loss function for the
CNN architecture. (b) Loss function for the LSTM architecture. (c) Loss function for the CNN-LSTM
architecture. (d) ROC curve for the CNN architecture. (e) ROC curve for the LSTM architecture.
(f) ROC curve for the CNN-LSTM architecture. In (d–f), the colors indicate different classes and the
diagonal dotted line represents the behavior of a random classifier.

4.3. Comparison with the State-of-the-Art

The results of the proposed architectures were compared with the state-of-the-art
outcomes. Such comparative results are summarized in Table 5.
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Table 5. Comparison with the state-of-the-art related methods.

Method Accuracy [%] Precision F1-Measure

DTW, Kim et al. [4] 95.00 − −
LR, Xu et al. [25] 94.60 − −
DTW, Wang and Chuang [14] 98.00 − −
F-BiLSTM, Li et al. [19] 98.04 − −
F-BiGRU, Wu et al. [40] 99.15 − −
FDSVN, Patil et al. [13] 95.21 − −

CNN ? 99.45 0.97 0.97
LSTM ? 99.68 0.99 0.99
CNN-LSTM ? 99.55 0.98 0.98

(?) Proposed method. (−) Nonavailable.

It is worthwhile to notice that our results were obtained using a proprietary database fo-
cused on the handwriting recognition task. Furthermore, the results reported in [4,14,19,25,40]
used 26, 26, 10, 12, and 12 different classes, respectively, in contrast to Patil et al. [13] and
the results of this study, where 36 different classes were used. In this context, it was noticed
that 36 classes were used by Patil et al. [13]. However, they reported only the results for
two sets processed separately, obtaining an accuracy of 98.69% and 99.5% for letters (a–z)
and digits (0–9), respectively. Table 5 shows the mean of these results as 99.09%.

In this paper, the letters (a–z) and digits (0–9) were processed and classified as a single
dataset representing 36 classes. Therefore, the proposed handwriting recognition method-
ology can recognize a letter or digit from the registered alphanumeric trajectories. The
recognition accuracies using CNN, LSTM, and CNN-LSTM architectures were 99.45%,
99.68%, and 99.55%, respectively. The DTW algorithm was also used by Patil et al. [13] and
Kim et al. [4], but these last approaches used different methodologies and devices to obtain
their corresponding databases. It was observed that the recognition of letters (a–z) in [13] is
better than in [4], i.e., 98.69% and 95%, respectively.

4.4. Computational Time Analysis

The total elapsed time during the training and testing was computed for each architec-
ture using a GPU. Table 6 shows a comparison of the time statistics related to training and
testing for different state-of-the-art methods and the proposed neural network architecture.

Table 6. Elapsed time expended in training (in min) and testing (in s).

Architecture Training [min] Testing [s]

DTW, Kim et al. [4] − 0.9
LR, Xu et al. [25] − −
DTW, Wang and Chuang [14] 16.156 −
F-BiLSTM, Li et al. [19] − −
F-BiGRU, Wu et al. [40] − −
FDSVN, Patil et al. [13] − −

CNN ? 5.66 0.0009
LSTM ? 155.58 0.0263
CNN-LSTM ? 78.48 0.0123

(?) Proposed method. (−) Non-available.

Kim et al. [4] were the only authors to report the result in testing. However, the results
are not comparable, because each work used different datasets and computing resources.
The CNN architecture was faster during the training stage from the three tested archi-
tectures. The CNN needed only 5.68 min to train the architecture using the complete
database, while the LSTM required 155.58 min, almost double the time necessary to train
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the CNN-LSTM architecture. This discrepancy is because the time needed to recognize
a character is very short, requiring a fraction of a second to process the signal representing
the character. In this sense, the CNN is the fastest architecture, exhibiting a comparable
performance to the proposed LSTM and CNN-LSTM architectures, but the CNN requires
more samples to obtain such a performance.

5. Conclusions and Future Works

In this paper, three neural networks were proposed (CNN, LSTM, and the hybrid
CNN-LSTM) to solve the online handwritten character recognition problem efficiently.

Our proposals were evaluated using a proprietary dataset constituted of accelerometer
data corresponding to multiple-stroke freestyle handwritten characters: 36 classes (26 low-
ercase letters from the English alphabet and ten Arabic digits). In addition, the dataset was
built using a MYO armband to capture the 3D acceleration data of real-time handwriting.
The LSTM architecture achieved the best mean accuracy (99.68%). Although the three
proposed methodologies have obtained equivalent results, their processing speed is very
dissimilar, being CNN the fastest method.

Our dataset is constituted of 399 samples per class obtained by individual users under
uncontrolled conditions only supported by the touchscreen laptop to visualize acquired
data. The system was only tested on isolated letters and digits. Thus, it is planned to export
it to words or phrases to obtain a fluent handwriting recognition system. One limitation of
the proposed system is that it depends on a tablet or touchpad for capturing handwritten
characters. Another limitation is that it uses the Myo armband, which is not as common as
Android devices. Therefore, future work will address other ways of capturing handwritten
strokes. In addition, an extension to allow users to write freely in the air would be desirable.

Author Contributions: Conceptualization, P.L.-R.; data curation, J.L.C.-H. and R.C.; formal analysis,
J.L.C.-H. and J.G.A.-C.; funding acquisition, J.G.A.-C.; investigation, P.L.-R., J.R.-P., R.C. and J.G.A.-C.;
methodology, J.R.-P. and J.G.A.-C.; software, P.L.-R., J.L.C.-H. and J.G.A.-C.; validation, J.R.-P. and
J.G.A.-C.; writing—original draft, P.L.-R.; writing—review and editing, J.R.-P., R.C. and J.G.A.-C. All
authors read and agreed to the published version of the manuscript.

Funding: This project was was funded by the Mexican National Council of Science and Technology
CONACyT, under Grant 495754/703539, and the University of Guanajuato, under Grant 171/2022.

Institutional Review Board Statement: Ethical review and approval are waived for this kind
of study.

Informed Consent Statement: No formal written consent was required for this study.

Data Availability Statement: Data available under a formal demand.

Acknowledgments: We gratefully thank the Mexican Council of Science and Technology (CONA-
CyT), and the University of Guanajuato for their support.

Conflicts of Interest: The authors declare that they have no conflict of interest. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript, or in the decision to publish the results.

References
1. Kim, J.; Sin, B.K. Online handwriting recognition. In Handbook of Document Image Processing and Recognition; Springer: London,

UK, 2014; pp. 887–915. https://doi.org/10.1007/978-0-85729-859-1_29.
2. Zhang, Q.; Wang, D.; Zhao, R.; Yu, Y. MyoSign. In Proceedings of the 24th International Conference on Intelligent User

Interfaces—IUI ’19, Marina del Ray, CA, USA, 17–20 March 2019; ACM Press: New York, NY, USA, 2019; pp. 650–660.
https://doi.org/10.1145/3301275.3302296.

3. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft
Comput. J. 2018, 62, 915–922. https://doi.org/10.1016/j.asoc.2017.09.027.

4. Kim, D.W.; Lee, J.; Lim, H.; Seo, J.; Kang, B.Y. Efficient dynamic time warping for 3D handwriting recognition using gyroscope
equipped smartphones. Expert Syst. Appl. 2014, 41, 5180–5189. https://doi.org/10.1016/j.eswa.2014.03.011.



Appl. Sci. 2022, 12, 6707 15 of 16

5. Mannini, A.; Intille, S. Classifier Personalization for Activity Recognition using Wrist Accelerometers. IEEE J. Biomed. Health Inf.
2018, 23, 1585–1594 . https://doi.org/10.1109/JBHI.2018.2869779.

6. Garcia-Ceja, E.; Uddin, M.Z.; Torresen, J. Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural
Network for Activity Recognition. Procedia Comput. Sci. 2018, 130, 157–163. https://doi.org/10.1016/j.procs.2018.04.025.

7. Dash, A.; Sahu, A.; Shringi, R.; Gamboa, J.; Afzal, M.Z.; Malik, M.I.; Dengel, A.; Ahmed, S. AirScript—Creating Documents in Air.
In Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan,
9–15 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 908–913. https://doi.org/10.1109/ICDAR.2017.153.

8. Saha, S.; Saha, N. A Lightning fast approach to classify Bangla Handwritten Characters and Numerals using newly structured
Deep Neural Network. Procedia Comput. Sci. 2018, 132, 1760–1770. https://doi.org/10.1016/j.procs.2018.05.151.

9. Abdulhussain, S.H.; Mahmmod, B.M.; Naser, M.A.; Alsabah, M.Q.; Ali, R.; Al-Haddad, S.A.R. A Robust Handwritten Numeral
Recognition Using Hybrid Orthogonal Polynomials and Moments. Sensors 2021, 21, 1999. https://doi.org/10.3390/s21061999.

10. Rani, L.; Sahoo, A.K.; Sarangi, P.K.; Yadav, C.S.; Rath, B.P. Feature Extraction and Dimensionality Reduction Models for Printed
Numerals Recognition. In Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Develop-
ment (INDIACom), New Delhi, India, 23–25 March 2022; pp. 798–801. https://doi.org/10.23919/INDIACom54597.2022.9763290.

11. Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural
network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. https://doi.org/10.1088/1741-2552/aace8c.

12. Ghosh, D.; Goyal, S.; Kumar, R. Digital pen to convert handwritten trajectory to image for digit recognition. In Advances in
Communication, Devices and Networking; Bera, R., Sarkar, S.K., Chakraborty, S., Eds.; Springer: Singapore, 2018; pp. 923–932.
https://doi.org/10.1007/978-981-10-7901-6_99.

13. Patil, S.; Kim, D.; Park, S.; Chai, Y. Handwriting Recognition in Free Space Using WIMU-Based Hand Motion Analysis. J. Sens.
2016, 2016, 3692876. https://doi.org/10.1155/2016/3692876.

14. Wang, J.S.; Chuang, F.C. An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit
and Gesture Recognition. IEEE Trans. Ind. Electron. 2012, 59, 2998–3007. https://doi.org/10.1109/TIE.2011.2167895.

15. Amma, C.; Georgi, M.; Schultz, T. Airwriting: A wearable handwriting recognition system. Pers. Ubiquitous Comput. 2014,
18, 191–203. https://doi.org/10.1007/s00779-013-0637-3.

16. Wijewickrama, R.; Maiti, A.; Jadliwala, M. deWristified. In Proceedings of the 12th Conference on Security and Privacy in
Wireless and Mobile Networks—WiSec ’19, Miami, FL, USA, 15–17 May 2019; ACM Press: New York, NY, USA, 2019; pp. 49–59.
https://doi.org/10.1145/3317549.3319722.

17. Roy, P.; Ghosh, S.; Pal, U. A CNN Based Framework for Unistroke Numeral Recognition in Air-Writing. In Proceedings of the
2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 404–409. https://doi.org/10.1109/ICFHR-2018.2018.00077.

18. Agrawal, S.; Constandache, I.; Gaonkar, S.; Roy Choudhury, R.; Caves, K.; DeRuyter, F. Using mobile phones to write in air. In
Proceedings of the MobiSys ’11, the 9th International Conference on Mobile Systems, Applications, and Services, Washington,
DC, USA, 28 June–1 July 2011, pp. 15–28. https://doi.org/10.1145/1999995.1999998.

19. Li, C.; Xie, C.; Zhang, B.; Chen, C.; Han, J. Deep Fisher discriminant learning for mobile hand gesture recognition. Pattern
Recognit. 2018, 77, 276–288. https://doi.org/10.1016/j.patcog.2017.12.023.

20. Ardüser, L.; Bissig, P.; Brandes, P.; Wattenhofer, R. Recognizing text using motion data from a smartwatch. In Proceedings of the
2016 IEEE International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops, Sydney,
Australia, 14–18 March 2016. https://doi.org/10.1109/PERCOMW.2016.7457172.

21. Kwon, M.C.; Park, G.; Choi, S. Smartwatch user interface implementation using CNN-based gesture pattern recognition. Sensors
2018, 18, 2997. https://doi.org/10.3390/s18092997.

22. Lin, X.; Chen, Y.; Chang, X.W.; Liu, X.; Wang, X. SHOW: Smart Handwriting on Watches. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2017, 151, 23. https://doi.org/10.1145/3161412.

23. Xia, Q.; Hong, F.; Feng, Y.; Guo, Z. MotionHacker: Motion sensor based eavesdropping on handwriting via smartwatch. In
Proceedings of the INFOCOM 2018—IEEE Conference on Computer Communications Workshops, Honolulu, HI, USA, 15–19
April 2018; pp. 468–473. https://doi.org/10.1109/INFCOMW.2018.8406879.

24. Rahagiyanto, A.; Basuki, A.; Sigit, R.; Anwar, A.; Zikky, M. Hand Gesture Classification for Sign Language Using Artificial
Neural Network. In Proceedings of the 2017 21st International Computer Science and Engineering Conference (ICSEC), Bangkok,
Thailand, 15–18 November 2017; Volume 6, pp. 205–209. https://doi.org/10.1109/ICSEC.2017.8443898.

25. Xu, C.; Pathak, P.H.; Mohapatra, P. Finger-writing with Smartwatch: A Case for Finger and Hand. In Proceedings of the
International Workshop on Mobile Computing Systems and Applications, Santa Fe, NM, USA, 12–13 February 2015; pp. 9–14.
https://doi.org/10.1145/2699343.2699350.

26. Varkey, J.P.; Pompili, D.; Walls, T.A. Erratum to: Human motion recognition using a wireless Sensor-Based wearable system. Pers.
Ubiquitous Comput. 2012, 16, 897–910. https://doi.org/10.1007/s00779-011-0455-4.

27. Jalloul, N.; Poree, F.; Viardot, G.; L Hostis, P.; Carrault, G. Activity Recognition Using Complex Network Analysis. IEEE J. Biomed.
Health Inf. 2018, 22, 989–1000. https://doi.org/10.1109/JBHI.2017.2762404.

28. Ojagh, S.; Cauteruccio, F.; Terracina, G.; Liang, S.H. Enhanced air quality prediction by edge-based spatiotemporal data
preprocessing. Comput. Electr. Eng. 2021, 96, 107572. https://doi.org/10.1016/j.compeleceng.2021.107572.



Appl. Sci. 2022, 12, 6707 16 of 16

29. Sa-nguannarm, P.; Elbasani, E.; Kim, B.; Kim, E.H.; Kim, J.D. Experimentation of human activity recognition by using accelerome-
ter data based on LSTM. In Advanced Multimedia and Ubiquitous Engineering; Park, J.J., Loia, V., Pan, Y., Sung, Y., Eds.; Springer:
Singapore, 2021; pp. 83–89.

30. Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020,
32, 17351–17360. https://doi.org/10.1007/s00521-020-04867-x.

31. Elmaz, F.; Eyckerman, R.; Casteels, W.; Latré, S.; Hellinckx, P. CNN-LSTM architecture for predictive indoor temperature
modeling. Build. Environ. 2021, 206, 108327. https://doi.org/10.1016/j.buildenv.2021.108327.

32. Alam, M.S.; Kwon, K.C.; Alam, M.A.; Abbass, M.Y.; Imtiaz, S.M.; Kim, N. Trajectory-Based Air-Writing Recognition Using Deep
Neural Network and Depth Sensor. Sensors 2020, 20, 376. https://doi.org/10.3390/s20020376.

33. Abir, F.A.; Siam, M.A.; Sayeed, A.; Hasan, M.A.M.; Shin, J. Deep Learning Based Air-Writing Recognition with the Choice of
Proper Interpolation Technique. Sensors 2021, 21, 8407. https://doi.org/10.3390/s21248407.

34. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995,
3361, 1995.

35. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
36. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,

2278–2324.
37. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605 .
38. Sukhbaatar, S.; Bruna, J.; Paluri, M.; Bourdev, L.; Fergus, R. Training Convolutional Networks with Noisy Labels. In Proceedings

of the ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–11.
39. Zhang, Z.; Sabuncu, M.R. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf.

Process. Syst. 2018, 31, 8778–8788.
40. Wu, J.; Pan, G.; Zhang, D.; Qi, G.; Li, S. Gesture recognition with a 3-D accelerometer. In Lecture Notes in Computer Science;

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2009; pp. 25–38.


	Introduction
	Related Work
	CNN and LSTM for Sequence Recognition
	Convolutional Neural Networks
	Convolutional Layer
	Activation Function
	Pooling Layer
	Fully Connected Layer (Dense)

	Long Short-Term Memory Neural Networks
	Implemented Architecture

	Experiments and Numerical Evaluation
	Hardware and Data Collection
	Evaluation and Results
	Comparison with the State-of-the-Art
	Computational Time Analysis

	Conclusions and Future Works
	References

