
Citation: Ahern, M.; O’Sullivan,

D.T.J.; Bruton, K. Development of a

Framework to Aid the Transition

from Reactive to Proactive

Maintenance Approaches to Enable

Energy Reduction. Appl. Sci. 2022, 12,

6704. https://doi.org/10.3390/

app12136704

Academic Editor: Jason K. Levy

Received: 8 June 2022

Accepted: 27 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Development of a Framework to Aid the Transition from
Reactive to Proactive Maintenance Approaches to Enable
Energy Reduction
Michael Ahern 1,2, Dominic T. J. O’Sullivan 1,2 and Ken Bruton 1,2,*

1 Intelligent Efficiency Research Group (IERG), Department of Civil and Environmental Engineering,
University College Cork, T12 CY82 Cork, Ireland; 119227513@umail.ucc.ie (M.A.);
dominic.osullivan@ucc.ie (D.T.J.O.)

2 MaREI Centre, Environmental Research Institute, University College Cork, T12 CY82 Cork, Ireland
* Correspondence: ken.bruton@ucc.ie

Abstract: The disparity between public datasets and real industrial datasets is limiting the practical
application of advanced data analysis. Therefore, industry is stuck in a reactive mode regarding
their maintenance strategy and cannot transition to cost-effective and energy-efficient proactive
maintenance approaches. In this paper, an integration-type adaptation of the CRISP-DM data mining
process model is proposed to combine domain expertise with data science techniques to address
the pervasive data issues in industrial datasets. The development of the Industrial Data Analysis
Improvement Cycle (IDAIC) framework led to the novel repurposing of knowledge-based fault
detection and diagnosis (FDD) techniques for data quality assessment. Through interdisciplinary
collaboration, the proposed framework facilitates a transition from reactive to proactive problem
solving by firstly resolving known faults and data issues using domain expertise, and secondly
exploring unknown or novel faults using data analysis.

Keywords: data analytics; data mining; fault detection and diagnostics; industrial AI; data quality;
building AFDD

1. Introduction

The industrial sector must reduce its energy demand as it is responsible for almost
40% of global final energy consumption [1], yet considerable increases are anticipated. The
US Energy Information Administration (EIA) project that the industrial sector’s energy
use will grow nearly twice as fast as any other end-use sector between 2021 and 2050 [2].
The industrial sector therefore faces a significant challenge to attain ambitious sustainabil-
ity targets, such as doubling the global rate of energy efficiency improvement [3]. In a
competitive global market, ensuring sustainability targets are met, while simultaneously
driving growth, is a key significant challenge. In Europe, the European Union (EU) outlined
the need to protect, conserve and enhance the EU’s natural capital, transition to climate
neutrality, while also reducing waste in the European Green Deal [4]. The EU recognized
the severity of the sustainability challenges and the need for a strategic change, hence the
“Twin Transition” was proposed [5]. To ensure Europe achieves sustainability goals to
become greener, but also increase competitive advantage, the EU proposed digitalization
as a key enabler for both goals. Information and Communications Technology can enable
a 20% reduction of global CO2 emissions by 2030, which could provide the necessary
environmental protection while avoiding a trade-off with economic prosperity [6]. The In-
ternational Renewable Energy Agency (IRENA) estimates that if manufacturing companies
adopted the best available technologies, then the consumption globally would reduce by
about a quarter [7].
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The industrial sector is comprised of many different subsectors such as manufacturing,
pharmaceuticals, food, construction and oil and gas. While the constituent assets and
processes that account for the energy consumption in these subsectors will differ, indoor
facilities have a common, energy intensive requirement to provide ventilated working
environments. Heating, Ventilation and Air Conditioning (HVAC) systems, which provide
fresh air as well as heating and cooling needs, consume about 50% of building energy
consumption on average [8]. In an industrial facility, this figure reduces to about 40%
on average [9], while 34% of hi-tech facilities managers say HVAC is their site’s biggest
energy cost [10]. There is high potential for energy savings in HVAC systems as they
are self-correcting in nature, which facilitates the occurrence of unnoticed faults that may
account for up to 20% of the energy consumed by these systems [11]. Monetarily, Mills [12]
estimated that common faults such as duct leakage, dampers not working properly and
valve leakage cost 2.9, 0.5 and 0.1 $billion/year, respectively, in commercial buildings, based
on the findings by Roth et al. [11]. HVAC systems therefore need to be well maintained, but
maintenance costs, time for repair, and replacement of components that have not reached
the end of their useful life must be balanced with the potential energy savings. As noted by
O’Donovan et al. [13], “equipment maintenance can exceed 30% of total operating costs, or
between 60 and 75% of equipment lifecycle cost [14]”. Therefore, selecting an appropriate
maintenance strategy is critical to be cost effective. Traditional maintenance practices are
reactive in nature with a “fail and fix” philosophy [15]. These approaches are known as
reactive or corrective maintenance whereby the main strength is reduced maintenance
costs [16]. However, the increased time interval between maintenance activities could
lead to hidden costs such as suboptimal operation, while also increasing the likelihood
of costly downtime [16]. An alternative approach would be an evolution from reactive
maintenance to proactive “predict-and-prevent” maintenance [15]. Proactive maintenance
would encompass strategies such as condition-based maintenance, whereby measurements
are monitored to determine if an issue is about to occur or already has occurred [13], as op-
posed to predictive maintenance, whereby the optimal time for maintenance is determined
by estimating the remaining useful life of machine components [13]. These smarter ap-
proaches have the capability to not only increase the effectiveness of maintenance activities,
but also ensure the system remains operating in an energy efficient manner. An estimated
10–40% of HVAC energy use could be saved by an appropriate maintenance strategy [17],
although maintenance costs must also be incorporated. Therefore, proactive approaches
require information about the operation of the machines in the form of data to enable
more informed decision making regarding maintenance activities. Therefore, a successful
pervasive digital transition is a key to enabling highly scalable proactive maintenance that
will deliver the savings needed to achieve policy ambitions in terms of energy efficiency.

2. Background and Related Research

According to a survey of hi-tech manufacturers in the UK, 40% are stuck in reactive
mode for their HVAC maintenance strategy [10]. It appears this is caused by a lack of
information on the operation of these systems, as 62% of facility managers in this survey
admit they are deficient in relation to the collection and analysis of their HVAC data [10].
However, in the literature, a myriad of data-driven approaches have been developed and
there is an increasing trend [18]. The disparity between academia and practical applications
appears to be caused by a difference in the data. According to Zhao et al. [18], most
studies in the literature utilize experimental or simulated data from laboratory tests such
as ASHRAE RP-1312 [19] or those made available by the Lawrence Berkeley National
Laboratory [20]. While these datasets address a severe lack of publicly available benchmark
datasets, they are not representative of real-world datasets. In 2022, Huang et al. [21] found
that the performance of FDD strategies developed on simulated data and directly applied
to real building data is less that satisfactory. In practical applications, the granularity of the
data is less sufficient, the metadata is not well described, and there is a lack of well-labelled
faults with multiple severity ratings. Therefore, many of the studies in the literature do
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not address the challenges that are faced in practical applications of data-driven analysis.
To summarize the data issues identified in the literature, Table 1 categorizes the main
data-related challenges outlined by systematic reviews of data-driven applications in both
generic industrial and HVAC-specific studies. The table is by no means exhaustive but
does provide an indication that many challenges are pervasive in both fields.

Table 1. Classification and comparison of the issues identified in systematic reviews in the area of
advanced data analysis in the industrial domain.

Classification Challenge

General Industrial HVAC-Specific

Dogan and
Birant [22]

Bertolini
et al. [23]

Wuest
et al. [24]

Dalzochio
et al. [25]

Mirnaghi and
Haghighat

[26]
Zhao et al.

[18]

Broken Data Availability X X X X X

Bad Quality Noisy Data X X

Background

Algorithm Selection X X X X
Evaluation of Results X X X X

Distinguishing between
sensor and component faults X

To classify the challenges outlined in Table 1, the data issue classification proposed
in the Industrial AI paradigm is adopted [27]. Professor Jay Lee [27] coined the term
“Industrial AI” to describe the application of artificial intelligence in the industrial domain.
Data issues are classified as broken, bad quality and background, and are collectively known
as the “3B” [27]. Firstly, data may be considered broken if it does not fulfil the requirements
of the analysis. Professor Lee [27] outlines that “data can’t just be numerous—it must be
comprehensive”. As in Table 1, data availability is a common issue in the literature, whereby
the data is described as missing, incomplete or insufficient. Data may be unavailable for
reasons such as lack of sensors, faults in communication protocols or damaged sensor
networks. In the case where the necessary information is available, it must accurately
represent the physical phenomena it measures. Bad quality data does not reach the standard
required to apply data-driven techniques and is often considered as noisy. Noisy data is
composed of issues such as incorrect data, improper data, duplicated data and inconsistent
data, which is often caused by sensor faults. The different fault types are visualized in
Figure 1 and are commonly classified as drift fault (a), bias fault (b), precision degradation
fault (c), spike fault (d) and stuck fault (e) [28]. The presence of a sensor fault may lead
a data-driven algorithm to incorrectly classify the anomaly as a component fault, which
would lead to a lack of trust in these methods by industrial practitioners. Distinguishing
between sensor faults and component faults is a key challenge in HVAC applications [18],
which requires an understanding of the operation of the equipment to overcome. This
is a key component of the background issue that relates to the need for understanding
the context of the data. In practical applications, the data is often inadequately labelled,
which means the interpretation of domain experts is needed to clarify the meaning of each
measurement [22]. Uncertainty with regards to the meaning behind the data leads to the
prevalent challenges of selecting an appropriate algorithm and evaluating its results. If
the meaning behind the data is not well understood, the value of data-driven analysis
diminishes as the results cannot be adequately interpreted.
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tive maintenance systems; therefore, managing the 3B’s is a requirement for successful 
digital transition. In summary, we are of the opinion that energy reduction-related deci-
sion making in the HVAC domain would be aided if knowledge-based and data-driven 
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zation of the benefits of an integrated approach. Firstly, the industry is stuck in reactive 
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transition to proactive methods. Secondly, the pervasive nature of real-world data issues 
composes a significant barrier to practical application of data-driven approaches and there 
is a lack of a means to manage the “3B” data issues in the HVAC domain. The evolution 
of data-driven analysis is reviewed in the following section, with particular attention 
given to the value data-driven analysis provides in the industrial setting and the gaps that 
need to be filled to ensure this value is realized. 

Figure 1. Illustrations of (a) drift, (b) bias, (c) precision degradation, (d) spike, and (e) stuck faults.
Reprinted from Jan et al. [28], with permission from Elsevier, 2020.

The “3B” data issue taxonomy provides a classification for the plethora of data-related
challenges in the industrial setting that extend beyond the challenges outlined in Table 1.
We interpret the nature of the data issues as in Figure 2, such that data challenges may
be classified in a number of regions in the Venn diagram. For example, the challenge of
distinguishing sensor faults from component faults is a key challenge in HVAC applica-
tions [18], which may be caused by faulty sensors (Bad quality) or the physical failure of
mechanical components (Background). Therefore, rather than prescriptively resolving a
myriad of specific data challenges, a means of managing the challenges that lie within the
Venn diagram is a potentially more sustainable solution. The inadequacy of real-world
industrial data appears to be a main barrier to the implementation of data-driven predictive
maintenance systems; therefore, managing the 3B’s is a requirement for successful digital
transition. In summary, we are of the opinion that energy reduction-related decision mak-
ing in the HVAC domain would be aided if knowledge-based and data-driven methods
were integrated. There are two main research gaps that are impeding the realization of
the benefits of an integrated approach. Firstly, the industry is stuck in reactive mode
regarding its maintenance strategy and there is a lack of direction in terms of the transition
to proactive methods. Secondly, the pervasive nature of real-world data issues composes a
significant barrier to practical application of data-driven approaches and there is a lack of a
means to manage the “3B” data issues in the HVAC domain. The evolution of data-driven
analysis is reviewed in the following section, with particular attention given to the value
data-driven analysis provides in the industrial setting and the gaps that need to be filled to
ensure this value is realized.
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3. Literature Review
3.1. State of the Art Review of Data Mining

In 1996, the Cross-Industry Standard Process for Data Mining (CRISP-DM) was con-
ceived, providing a “blueprint for conducting a data mining project” [29]. Data mining
may be described as “the analysis of (often large) observational data sets to find unsus-
pected relationships and to summarize the data in novel ways that are both understandable
and useful to the data owner” [30]. CRISP-DM provides a structured six phase approach
with highly flexible transitions between the phases, denoted by the multiple arrows and
cyclical nature outlined in Figure 3a. CRISP-DM adequately satisfied the needs of data
analysts and became established as the de facto standard for industry [29]. In 2000, Shearer
envisaged that extensions and improvements were to be expected [29], and this evolution
was analyzed in 2019 by Martínez-Plumed et al. [31].
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The evolutions satisfy specific needs while retaining the principles and ideas of CRISP-
DM or Knowledge Discovery in Databases (KDD). In 1996, Fayyad et al. [32] were of the
opinion that “KDD refers to the overall process of discovering useful knowledge from data,
and data mining refers to a particular step in this process”. However, in more recent times,
data mining is often used as a synonym for KDD [31], and we select data mining as the
preferred term in this paper. Figure 4 outlines some of the most influential methodologies in
the development of CRISP-DM, along with some adaptations that it has inspired. Figure 4
is an adaptation of the evolution illustrated by Mariscal et al. [33] which was released in
2010. Mariscal et al. [33] name KDD and CRISP-DM as the two main approaches that are
referred to as the “canonical” methodologies by Martínez-Plumed et al. [31], depicted in
grey in Figure 4. The most recent adaptations appear to be CRISP-DM related, addressing a
variety of specific needs, such as the project management need in IBM (ASUM-DM [34]), the
need for collaboration between geographically diverse groups (RAMSYS [35]) and the need
for context change (CASP-DM [36]). More recently in 2020, Plotnikova et al. [37] performed
a systematic literature review of data mining adaptations, categorizing the derivative work
as modification, extension and integration-type adaptations. Modifications aim at solving
a particular problem in a given case study, while extensions are aimed at altering data
mining methodologies to account for specialized environments and incorporate context-
awareness [37]. In contrast, integration-type adaptations are aimed at combining data
mining methods with other domain frameworks, methodologies and concepts [37]. Prior
to 2008, most data mining methods (CRISP-DM) were applied “as is”, whereas the use of
adapted data mining methodologies slowly began to take precedence in recent years [37].
Therefore, a key finding of the literature review is that data mining methodologies now
need to be framed as part of “a broader ecosystem of methodologies”, rather than the
traditional, isolated implementation [37].
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A change in the data mining landscape is also observed by Martínez-Plumed et al. [31],
noting that the term “data science” is preferred to the use of data mining. Martínez-Plumed
et al. [31] make the argument that “the key difference (we perceive) between Data Mining
twenty years ago and data science today is that the former is goal-oriented and concentrates
on the process, while the latter is data-oriented and exploratory”. The term exploratory
data analysis (EDA), a closely related term to data mining, was first introduced in 1977 by
John Tuckey [38] to describe the detective-like analysis of data—that is to say, to not take
the data at face value or as absolute truth. Therefore, it is important to understand the data
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and the problem that needs to be solved to determine if the analysis is goal-oriented or
data-oriented.

3.2. Data Mining and Data Science for HVAC Maintenance

In the context of data-driven maintenance, both approaches are useful. For known
faults in mechanical equipment, whereby the failure modes are known, a goal-oriented
CRISP-DM approach is necessary. By contrast, for unknown faults, those that are beyond
the current knowledge of domain experts, a data-oriented and exploratory approach is
necessary. This is a key concept in the Industrial AI paradigm [27].

The majority of manufacturing problems can be classified as either visible problems or
invisible problems [39], as in Figure 5. Invisible problems encompass “machine degradation,
lack of lubrication, loss of accuracy, wear and tear of parts, and resource waste” [39],
while visible problems are often the result of invisible factors such as “component failure,
equipment downtime, machine break-downs, decrease in product quality” [39]. These
problems need to be both solved and avoided, requiring different approaches. The visible
problems are familiar to domain experts and goal-oriented CRISP-DM solutions are suitable,
especially in the Visible and Avoid quadrant [39]. The invisible problem quadrants will
require an exploratory approach as the problem is less defined. Based upon these differing
trajectories, Martínez-Plumed et al. [31] introduced the Data Science Trajectories (DST)
map. The outer circle, in Figure 3b, contains the exploratory activities and the inner circle
contains CRISP-DM or goal-oriented activities. For industry to transition from reactive
to proactive approaches, goal-oriented CRISP-DM visible problem solving and avoidance
will need to evolve to data-oriented exploratory invisible problem solving and avoidance.
That is to say, the visible problems must be adequately managed before the value of data-
driven analysis may be realized through invisible problem solving. While originating from
the two distinct disciplines of engineering and computer science, an integrated approach
would fill a knowledge gap, enabling a seamless transition from reactive maintenance
to proactive maintenance practices in the era of digitalization. Many integration-type
adaptation studies have shown that CRISP-DM may be successfully combined with domain
methodologies [37]; however, evolving from visible problem solving to invisible problem
solving requires further study. As outlined in Table 1, the 3B’s are halting this progression.
Therefore, a means of identifying and resolving these issues is a fundamental component of
enabling data-driven proactive maintenance. In the following section, the state of the art in
visible and invisible problem solving in generic industrial and HVAC-specific applications
is discussed to ascertain the gaps that data issues create to enable the development of an
integration-type solution.
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3.3. Visible and Invisible Problem Solving

Visible problems are well understood by domain experts as they both solve and avoid
these problems on a daily basis. While data may inform the domain experts decision
making, auxiliary information such as past experience and comfort complaints provide
the basis for many of the decisions made in practical applications. Data analysts do not
possess this valuable information, and given the complex nature of manufacturing [22], a
knowledge gap forms that creates the background issue. In HVAC applications, visible
problem solving using fault detection and diagnosis (FDD) is a mature area of research.
While differences exist in the literature on the classification of HVAC FDD methods, the
categorization proposed by Mirnaghi and Haghighat [26] is appropriate for this study,
such that methods may be knowledge-based, model-based or data-driven. A model-
based method aims at estimating parameters and signals by applying a dynamic process,
while a data-driven method “does not require any intervention of human knowledge
or physical models, and it only needs real system operational data” [26]. Knowledge-
based methods, on the other hand, are defined as the qualitative part of model-based and
data-driven methods. In 2008, Fan et al. [40] noted that most knowledge-based methods
are rule-based expert systems, which have been developed to elicit the tacit knowledge
of experts [41]. Known (visible) problems are detected and diagnosed using a series of
“IF-THEN” rules. For air handling units (AHUs), a fundamental component of HVAC
systems, House et al. [42] developed the AHU Performance Assessment Ruleset (APAR)
that utilized the understanding of the conservation of energy and mass laws. It appears
that for HVAC applications, knowledge-based methods may adequately solve the visible
problems. However, these methods are limited to the experience of the domain expert.
Therefore, they are not capable of detecting faults that are not flagged in historical data
or those faults which are beyond the engineer’s experience [26]. To improve the problem-
solving performance, data-driven techniques are required to detect these unknown faults.
However, industry cannot make this transition as current practice (knowledge-based
approaches) does not require a comprehensive dataset, which facilitates the propagation
of digital transition ceasing data issues. Therefore, the gap that appears to emerge is that
current visible problem-solving techniques do not sufficiently improve the quality of the
dataset to enable data-driven techniques for invisible problem solving.

Invisible problems often lead to the visible problems [39]; therefore, early identification
of these problems enable proactive decision making to avoid inefficient operation. By their
nature, invisible problems are not easily identified and advanced techniques, beyond hu-
man comprehension, are required to reveal them [27]. One of the key enabling technologies
driving the transition to more sustainable practices [43], as identified in the 2021–2027
Horizon Europe funding programme, is artificial intelligence (AI).

AI is a branch of computer science that aims at mimicking the brain’s ability to learn
from experiences. A subset of AI is machine learning (ML) where the main definition, from
1959, but which is still valid today [24], is allowing computers to solve problems without
being specifically programmed to do so [44]. AI and ML give machines the ability to learn
and decipher the solution to various problems that would normally rely on human intelli-
gence. The benefit of AI techniques is that it can be far easier to train a system to identify
abnormal behavior by presenting it with examples of desired input-output behavior, rather
than manually model or program for every possible input [45]. ML has been successfully
applied to perform tasks such as computer vision, speech recognition, natural language
processing and robot control [45] in sectors such as marketing, finance, telecommunications
and network analysis [46]. This technology could enable manufacturers to get greater
insight into the performance of their assets by clearly identifying trends and characteristics
to solve invisible problems that have not yet been fully recognized [27]. The insight and
evidence contained in the data also enables predictive analysis, which is a key benefit
of AI [27]. Through exploration of complex relationships in the data, new knowledge is
generated that may be iteratively improved in a sustainable and continuous manner to
increase the efficiency of industrial systems [27].
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There are three basic paradigms in ML as in Figure 6: supervised, unsupervised
and reinforcement learning [45]. Supervised learning, the most widely used method [45],
learns a function that maps an input to an output based on labelled training data. The most
common supervised learning algorithms include neural networks, support vector machines,
decision trees, logistic regression and naïve bayes classifiers [23]. The output variables may
be either categorical or continuous and are known as classification tasks and regression
tasks, respectively. Examples in the industrial context outlined by Bertolini et al. [23]
include process failure detection (classification) and physical property prediction such
as thickness or surface roughness from parts processed by a numerical control machine
(regression). Unsupervised learning, on the other hand, does not receive any output
information. Its goal is to build representations of the input that can be used for decision
making, predicting future inputs, efficiently communicating the inputs to another machine,
etc. [47]. Ghahramani. [47] suggests that unsupervised learning can be thought of as
finding patterns in data that would otherwise be considered as unstructured noise. Classic
examples include clustering and dimensionality reduction. Lastly, reinforcement learning
differs by interacting with its environment and producing actions. These actions change
the state of the environment that causes the algorithm to receive rewards or punishments.
According to Ghahramani. [47], the goal of the algorithm is to maximize the rewards and
minimize the punishments it receives over its lifetime. It is closely related to control theory
in engineering.
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While ML is one of the key enablers to evolve a traditional manufacturing system up
to the Industry 4.0 level [48], ML is not applicable to every industrial problem. Lee et al. [15]
recommends that systems with differing complexity and uncertainty levels should have
different maintenance strategies, and by extension, are not in need of ML solutions. In the
case of HVAC systems on industrial sites, there is low availability of facilities personnel
to tend to these assets, often outnumbered by 20 AHUs to one technician [41]. Therefore,
costly external consultancy is required to ascertain the cause of complex issues [49] and
prioritize the list of issues that need to be resolved. For this reason, the ideal solution
is a proactive, data-driven maintenance strategy. Data-driven methods perform well in
large-scale and complex systems, but they require high quality and sufficient training
data [26], which has not been a priority in the past.

Transitioning to data-driven, proactive and energy efficient practices faces many
challenges. In practical applications, these challenges are not being adequately addressed
as many hi-tech facility managers admit to being insufficient in terms of their collection
and analysis of HVAC data [10]. Visible problem solving is the key focus in industry, but
the frequency of their occurrence may be reduced through invisible problem solving. The
collaboration of traditionally different disciplines (engineering and computer science) “is
necessary to drive progress” [24], proven by the increasing number of studies analyzing the
integration of domain specific frameworks, methodologies, and concepts with data mining
methodologies [37]. This is a difficult task, however, as the historical lack of emphasis on
data analytics has created “a skills gap when it comes to a data centered-mindset amongst
the manufacturing workers” [50]. For this reason, we propose that a novel framework is
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developed based on an integration-type adaptation of CRISP-DM. The lack of direction
in terms of the transition to proactive maintenance would be addressed by solving and
avoiding visible problems using knowledge-based approaches and solving and avoiding
invisible problems using data-driven approaches. Secondly, further investigation of the
data issues is required to manage the “3B” data issues. We propose that CRISP-DM is
extended to put more emphasis on the assessment of the data to aid the detection of data
issues, such as those in Figure 2. In the following section, the necessary components of
CRISP-DM are supplemented with the activities to enable invisible problem solving in
Table 2, to develop a unified framework to transition to proactive maintenance practices.

Table 2. Data issue threat to visible and invisible problem solving.

Issue Visible Invisible Path from Visible to Invisible

Broken Low High
• Determine the sufficiency of the current dataset
• Determine the value more data provides

Bad Quality Medium High
• Determine the sufficiency of the data quality
• Determine the value better data quality provides

Background High Medium
• Determine the operating status of the system
• Determine the sufficiency of the current problem understanding
• Determine the value exploratory-based analysis may provide

4. IDAIC Framework

A process to develop a framework that maintains the necessary phases of CRISP-DM
while also making the necessary adaptations to integrate domain knowledge and improve
the AI/ML training dataset is needed. The process followed by Corrales et al. [51] and
Almutiry et al. [52] is adopted as data quality frameworks were successfully developed
from this approach. The tasks to develop the framework are gathering, filtering and
mapping, and clustering. In the gathering section, the necessary activities to be included
in the framework are collected. In the following task, filtering and mapping, the activities
gathered are grouped where necessary to distil these activities into phases. In the last
section, the phases are further clustered to achieve the high-level goals of the framework.

The threat that each data issue has to visible and invisible problem solving is summa-
rized in Table 2. Broken datasets are considered a low threat to visible problem solving
as the data requirements are low and partial application of knowledge-based techniques
are possible. However, broken datasets are a high threat to invisible problem solving as
data-driven approaches require comprehensive datasets. In the case of bad quality data, the
threat to visible problem solving is considered as medium as error thresholds may account
for bias or precision degradation faults. However, the presence of drift, spike and stuck
faults may severely reduce the visible problem-solving performance. The need for high
quality data in data-driven approaches results in a high threat level for invisible problem
solving. Lastly, the need for domain understanding to solve visible problems is high and
therefore the background issue is a significant threat. For invisible problem solving, an
understanding of the domain is necessary but not as in-depth as visible problem solving as
anomalies in the data are used to detect faults rather than expert interpretation of the data.

To enable a transition to proactive analysis, the issues in need of the most attention are
broken data and bad quality data, as the background issue may be adequately addressed
through the integration of comprehensive visible problem solving. The low data require-
ments of visible problem solving means that the breadth of the data analyzed in this phase
is lower than the invisible problem solving stage. For this reason, the data analysis in the
visible problem phase will need to be extended beyond the key features needed to detect
faults, to analyze other features that may be useful for the invisible problem stage. That
is to say, to address the broken data issue, features that are not currently analyzed in the
visible problem space will need to be analyzed using domain knowledge. Similarly, the
data quality requirements are not as high in the visible problem space as in the invisible
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problem space, but more rigorous analysis of data quality is needed to ensure that the data
meets the invisible problem-solving requirements.

The principles and phases of CRISP-DM appear to be universally accepted as necessary
components of data analysis. However, data in the industrial domain poses some extra dif-
ficulties, as mapped in Figure 2, which require more guidance for practical implementation.
The trend that emerges is that while data science methodologies as such CRISP-DM provide
sufficient structure to perform data analysis, they do not provide sufficient domain under-
standing to tackle visible problems in the industrial setting. The main reason CRISP-DM
needs to be adapted is to address this lack of domain understanding, by integrating domain
specific methodologies, such as those developed in the area of FDD. Secondly, the lack of
necessary data and insufficient data quality is limiting the value of data-driven analysis
in the real-world industrial setting. Hence, the training data for ML application is not
sufficient in terms of quantity or quality to realize the benefits of data-driven approaches
such as predictive analysis. Therefore, more emphasis on these issues is required to obtain
an AI/ML ready dataset than “as is” CRISP-DM implementation provides.

In Figure 7, the CRISP-DM phases in Figure 3a and the activities to transition from
visible to invisible problem solving in Table 2 are gathered. Based on the comparative
study of popular data mining processes (KDD, SEMMA and CRISP-DM) by Azevedo and
Santos [53], a description of each CRISP-DM phase is also included in the gathering section.
The data understanding phase is therefore repeated to describe the activity of acquiring
the relevant data (2) and the activity of searching for unanticipated trends and anomalies
(3). In the following section, similar activities are grouped. For example, the activities of
determining data quality (C), determining the value of additional data (B) and determining
the value of better quality data (D) may all be achieved in a data assessment phase. While
the data understanding phase of CRISP-DM contains a “verify data quality” task [54], it
does not provide sufficient detail to achieve tasks B, C and D. The data understanding
phase (2+3) is therefore broken into two phases: data contextualization (2+A) and data
assessment (3+B+C+D). Data contextualization integrates the activity of acquiring the data
(2) and determining if the dataset is sufficient (A). Lastly, in alignment with the DST map
proposed by Martinez-Plumed et al. [31], the phases are clustered to achieve the goals of
visible (goal-oriented) and invisible (data-oriented) problem solving.
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The framework is illustrated in Figure 8, retaining a similar structure to that of CRISP-
DM and the DST map. The framework is named the Industrial Data Analysis Improvement
Cycle (IDAIC), as the purpose of the framework is to improve the analysis of industrial
data so that industry may transition from reactive to proactive decision making. The main
contributions made to CRISP-DM is summarized as follows:

• Extension of Data Understanding phase to Data Contextualization and Data Assess-
ment. These phases aim to provide greater guidance on interpreting the meaning and
sufficiency of the dataset and measuring the value of the data, respectively.

• Addition of an Operation Assessment phase to integrate domain knowledge for the
identification of known faults that would assess the health status of the asset.

• Addition of a Domain Exploration phase to elicit the tacit knowledge of experts for
the guided exploration of areas of improvement through invisible problem solving.

• Addition of a Data Exploration phase to determine if the invisible problem-solving
aspirations may be realized with the available dataset.

• Addition of a commissioning phase to bridge the gap between domain knowledge-
reliant goal-based visible problem solving and data-reliant exploratory-based invisible
problem solving. The commissioning phase also incorporates the task of implementing
the analysis for value creation that has previously been satisfied by the Deployment
phase in CRISP-DM.
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The Business Understanding, Modelling and Evaluation phases are renamed to Do-
main Understanding, Algorithm Selection and Result Exploration. Novel contributions to
these phases are not proposed in this paper. The following sections describe the phases in
the IDAIC framework, along with possible methodologies to satisfy specific phases.
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4.1. IDAIC Phases
4.1.1. Domain Understanding

The first phase in the IDAIC framework aims at collecting the necessary information
to obtain a comprehensive understanding of the asset or system under study. In accordance
with the Industrial AI paradigm [27], we categorize the required inputs as people, systems
and things. The key people, or the roles that must be fulfilled, are those of a domain
expert and a data expert. The understanding of the domain and the understanding of
data analytics are two key skills needed for successful analysis of industrial data. These
people must then integrate with the systems (such as data from heterogeneous sources),
and things (such as documentation and equipment specifications). This phase is similar to
Business Understanding in CRISP-DM; however, given the engineering context, Domain
Understanding is considered to be more aptly named.

4.1.2. Data Contextualization

The problem understanding that is elicited from the integration of the relevant people,
systems and things is then used to contextualize the problem. The relevant data is not only
acquired, but also evaluated at a high level to ascertain if the data is sufficient. Tasks that
would be beneficial to determine the comprehensiveness of the data may include measuring
the granularity of the data, identifying labels in the data, evaluating the architecture of the
data and determining the real time capabilities of the data. Each of these tasks would aid in
the evaluation of the data to determine if the dataset is fit for purpose, or in another word,
a data gap analysis. This phase is similar to data understanding in CRISP-DM; however,
more emphasis is given to determining the problems that the dataset can and cannot help
to solve. This is achieved through an integration of highly interpretable expert rules that
enables the quantification of the problems or faults that may be solved with the available
data. Therefore, the output of this phase is an understanding of the dataset with emphasis
on the identification of the visible problems that may be solved.

4.1.3. Data Assessment

Once the high-level capabilities of the dataset are understood, the data may be assessed
in further detail to evaluate the quality of the data. The data assessment phase is focused
on managing the bad quality issue but may also provide insight into the completeness
of the data (broken) and the operation of the asset (background). The area of measuring
data uncertainty, or data quality assessment, is not a mature area of research in industrial
applications. In 2015, Cai and Zhu [55] proclaimed that a unified and approved data
quality standard had not been agreed for big data and that research in the area had just
begun. However, many data quality assessment methodologies have been developed in
other domains, which have been systematically reviewed by Batini et al. [56] in 2009. The
authors found accuracy (Acc), completeness (Comp), and consistency (Cons) to be the
dimensions of highest consistency in the literature [56]. Therefore, in the data assessment
phase we propose that the assessment of these dimensions is the main focus, and the
associated metrics to assess these dimensions are heavily influenced by domain knowledge.
In Figure 9, a decision tree is proposed to manage the 3B’s based on the outcome of the data
assessment. If the required data is missing, then a digitalization plan is required to obtain
the data, such as the approach proposed by Clancy et al. [57]. If the data is inaccurate, then
the sensors need to be manually checked and may require recalibration or replacement.
Finally, if the consistency of the data is low, or the data is not in accordance with the
domain expert’s experience, sensors may also be in need or recalibration or replacement.
The difference from the accuracy dimension is that inconsistent data may be caused by a
component or control fault; therefore, an operation assessment is needed to determine the
source of the anomaly. However, the data must firstly be appropriately prepared.
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4.1.4. Data Preparation

Data preparation is commonly implied as the most time-consuming task in a data
analytics project. The data preparation phase in the IDAIC framework is inspired by
the CRISP-DM data preparation phase. However, tasks such as data cleaning are more
informed from the domain-integrated data assessment phase, facilitating faster preparation
of the data given the known issues with the dataset. The data contextualization phase is also
helpful to provide clarity in this phase for tasks such as changing the naming convention
or aligning heterogeneous data sources based on the granularity of time-based data.

4.1.5. Operation Assessment

Assessing the operation, or solving visible faults, is aligned to the area of FDD. The
visible problems must be solved before the value of data-driven analytics may be real-
ized. The strengths and weaknesses of each FDD classification outlined by Mirnaghi and
Haghighat [26] is shown in Table 3. Model-based methods are not appropriate for this
phase as significant effort is required to develop models that are highly susceptible to
error. Data-driven methods are the most promising techniques for highly scalable solu-
tions, but in the visible problem-solving space, the quantity and quality of the data is not
suitable. Therefore, knowledge-based approaches appear to be the best due to their low
data requirements. While knowledge-based approaches are limited to the domain expertise
available, these methods sufficiently address visible problems in a highly interpretable
manner. Knowledge-based methods integrate domain expertise into the data analysis
pipeline and ensure the system is operating as expected so that invisible problem solving
is enabled. The operation phase will also aid in the detection of the most problematic
components in the system, which may be used to inform the domain exploration phase in
the invisible problem space.
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Table 3. Comparison of strengths and weaknesses of HVAC FDD methods. Reprinted from Mirnaghi
and Haghighat [26], with permission from Elsevier, 2020.

Method Strength Weakness

Knowledge-based FDD

• The detailed mathematical model is not
needed available

• Suitable for the system with a small number of
inputs, outputs, and states

• It highly relies on domain expertise while a wide
range of faulty and failure cases are beyond
engineers’ experiences

• Not capable of detecting novel failures which are
not flagged in the historical data

• Cannot work well for complex and large-scale
HVAC systems

Model-based FDD
• Works properly when a good HVAC physical

model is available

• It is not proper for large-scale and complex HVAC
systems

• The performance would be limited because of
modeling and linearization error

Data-driven based FDD

• Less model development time and cost
• No dependency on the model
• Easy to retrain
• Efficient use of system data
• High accuracy
• Good performance in works with large-scale and

complex systems
• Minimizing cognitive errors which are beyond the

engineers’ knowledge

• Need to collect the high quality and sufficient
training data for supervised models

• High dependency on the quality and the quantity
of the collected data

4.1.6. Commissioning

The issues identified in the data assessment and operation assessment must then
be actioned upon. In HVAC applications, the manual activity of ensuring systems are
operating in accordance with design specifications is known as commissioning. In a review
of FDD methods for AHUs, Bruton et al. [49] outlined the benefits of FDD aided commis-
sioning in relation to the four ideal types of commissioning presented in the International
Energy Agency’s Annex 40 [58]. In the first iteration of the IDAIC framework, the phase
will either be retro-commissioning or re-commissioning, based upon the occurrence of an
initial commissioning phase. In subsequent iterations of the framework, the activity is
known as on-going or continuous commissioning as the occurrence of faults are quickly
identified and appropriate maintenance is carried out to maintain and improve the system
performance. The integration of the commissioning phase is a key adaptation to CRISP-DM
as it enables the transition from the visible to invisible problem solving, or reactive to
proactive maintenance activities.

4.2. Invisible Problem Space
4.2.1. Domain Exploration

Once the system is re-commissioned or retro-commissioned, the invisible problem-
solving activity is enabled. The outer ring in Figure 8 aims to explore the data to detect
early signs of degradation that would inform decision makers on the remaining useful life
of components to plan maintenance activities accordingly. The first phase is to determine if
the current problem understanding is sufficient. To do this, exploration of the domain is
undertaken to establish if the system is operating in a stable and efficient manner. While
the operation assessment aims at detecting and diagnosing visible problems, the domain
exploration aims at assessing the efficiency of the system and propositioning the areas
where data-driven analysis may provide value. For example, the operation assessment
may identify a passing valve that is then replaced in the commissioning phase. However,
this valve may have reached the end of its useful life prematurely, resulting in costly
replacement and insufficient knowledge as to the cause of the rapid degradation of this
valve. In this scenario, data-driven analysis may provide insight into the degradation
pattern of the new valve, creating valuable information for the facilities management team
that enables smarter, proactive decision making. In collaboration with the domain expert,
the features of interest may be targeted for analysis.
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4.2.2. Data Exploration

In the following phase, the proposed concepts, or areas for further exploration, are
assessed using the data. The viability of a data-driven approach is justified based on the
ability of the dataset to address the invisible problem. Common exploratory data analysis
and ML techniques are tested in this phase to uncover hidden relationships or unexpected
patterns or anomalies in the data that may substantiate the signs of an invisible problem.

4.2.3. Algorithm Selection

The most appropriate algorithm or technique is then selected in the penultimate phase.
At the high level, ML algorithms as may be classified as supervised, unsupervised or
reinforcement as in Figure 6. Based on the findings in the data exploration phase, an
appropriate algorithm is selected that accounts for domain specific auxiliary information
that may not be captured in the data.

4.2.4. Results Exploration

Lastly, the meaning of the results is explored. The output of the data-driven analysis
is critically appraised before an action item is raised for the commissioning phase. In this
manner, the visible and invisible problem-solving tasks are integrated in a single framework
for continuous problem-solving improvement.

4.3. Conclusions on the IDAIC Framework

The outer ring in Figure 8, or invisible problem solving, is exploratory in nature;
therefore, backward arrows are included to denote the back-and-forth nature of this activity.
While this is also the case for visible problem solving, the latter phases of the IDAIC frame-
work are less prescriptive and more transitions between phases are necessary. Furthermore,
not every possible transition is shown in Figure 8. Similarly to the DST map proposed by
Martinez-Plumed et al. [31], not every phase must be completed for successful industrial
data analysis. The IDAIC framework merely provides an integrated solution for early
adopters of digitalization to manage the 3B data issues throughout a data-driven industrial
analysis project. It is not designed to eradicate every data challenge faced in industrial data
analysis through rigid implementation. For example, in systems that are well maintained,
visible problems may not occur rendering the operation assessment phase redundant.

The contributions of the novel CRISP-DM integration-type adaptation proposed in
this paper are summarized in Table 4. The main barriers to data-driven analysis in the
industrial sector are the occurrence of broken and bad quality datasets, along with the lack
of understanding of the domain (background). The necessary activities to manage these
issues has been outlined in Table 2 and an example of specific tasks in the framework that
contribute to the fulfilment of the data analysis enabling activities is outlined in Table 4.
While we interpret the data challenges landscape as an overlapping Venn diagram as in
Figure 2, an example of managing each issue is outlined in Table 4. Firstly, the completeness
of the dataset is assessed by performing a data gap analysis in the data contextualization
phase. In collaboration with the domain expert, the possible faults and data required to
identify their occurrence are listed. A high-level quantitative measure of the completeness
of the dataset may then be obtained to understand the value of the current dataset and
the opportunity that exists if the system is further digitalized. Secondly, the quality of the
dataset is evaluated by measuring the deviation from expected values as defined through
domain integration. In the semantic accuracy analysis task, traditional expert rule sets
have been repurposed to measure the quality of the dataset rather than identify faults in
the system. Thirdly, knowledge-based FDD has been integrated into the data analysis to
combine the benefits of data-driven and knowledge-based FDD. The high interpretability
of these techniques facilitates better understanding of the operation of the system, reducing
the knowledge gap between engineering and data science type approaches.
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Table 4. Novel tasks in the IDAIC framework to address the research objectives.

IDAIC Phase Primary Data Issue Novel Task/Integration Proposed Methodology/Solution

Data Contextualization Broken Data gap analysis Number of problems that can/cannot be solved
with the data available using an expert rule set

Data Assessment Bad quality Semantic Accuracy Analysis Expert rule-based analysis of data quality

Operation Assessment Background Knowledge-based FDD Expert rule implementation

5. Discussion

A novel framework is proposed to integrate traditional engineering or knowledge-
based approaches for visible problem solving, with techniques that originate from the field
of data analysis for invisible problem solving, for the purpose of advancing industrial data
analysis and reducing energy consumption. The Industrial Data Analysis Improvement Cy-
cle (IDAIC), Figure 8 is a framework that simultaneously aims to provide short term value
by reactively analyzing data using knowledge-based approaches, while also facilitating the
transition to proactive analysis by accessing data quality and monitoring its improvement
over time. The conventional data analysis approach must be supplemented with strong
domain knowhow and therefore the CRISP-DM methodology is extended through the
novel integration of data assessment techniques, expert systems and exploratory data
analysis. The IDAIC framework begins with understanding-centric phases, whereby the
domain and the data are assessed to determine the value that the problem-solving activities
may realize. Data assessment is then performed to determine the quality of the dataset
or the fitness of the dataset for AI & ML application. Data points that are deemed to
be of concern are marked for further analysis in the operation assessment phase, with
appropriate pre-processing activities performed in advance. The operation of the asset is
assessed using knowledge-based FDD techniques, such as expert rules, to identify visible
problems in the system. While problems that are identified may be caused by those bad
quality data points marked from the data assessment phase, it may incentivize industrial
practitioners to recalibrate or replace faulty sensors when highly interpretable expert rules
cannot be applied. While the IDAIC framework aims to enable industry to perform ad-
vanced analysis, the overall goal is energy consumption reduction; therefore, the analysis
must inform the physical changes that are made to the system. Commissioning may be
defined as “a quality-oriented process for achieving, verifying and documenting whether
the performance of a building’s systems and assemblies meet defined objectives and cri-
teria” [58]. While sensor faults are resolved in commissioning activities, the data quality
demands of AI and ML solutions require vigorous data assessment and maintenance of
the sensor. Therefore, the commissioning phase in the IDAIC framework not only per-
forms the necessary maintenance activities to achieve energy efficient operation, but also
aims at performing the necessary maintenance activities to collect the highest quality of
data possible.

At this point in the IDAIC framework, domain knowledge has been sufficiently
integrated to solve visible problems and the asset or system is operating in a faultless,
energy efficient state with good quality data continuously being collected. Industry may
then switch from a reactive maintenance approach to a proactive maintenance approach
with data-driven techniques. However, while domain expertise informed the inner goal-
oriented circle, the outer circle is data-oriented and exploratory in nature. Similar to the
DST map in Figure 3b proposed by Martinez-Plumed et al. [31], the invisible problem
solving and avoidance begins with goal, or domain, exploration. Strong collaboration is
required between data analysts and domain experts in this phase to elicit potential areas
of interest to apply data-driven algorithms. For example, the cause of a recurring fault or
failure may be unknown and an unsupervised ML algorithm may provide insight through
pattern recognition or clustering techniques. Similarly, ML may be used to anticipate a
particular fault that is deemed critical by the domain expert, providing an estimate of the
remaining useful life in a predictive maintenance strategy. Once a goal has been selected,
the data exploration takes place to uncover if all relevant information is available and
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of sufficient quality to perform the analysis. If this is not the case, a return to the goal
exploration phase is needed to either update the goal based on the information available or
else return to the gathering phase to obtain this information. Data exploration is a necessary
intermediary phase to determine if the aspirations of the defined goal are attainable. If
the data-oriented goal is achievable, an appropriate algorithm must then be selected. The
challenge of algorithm selection and result evaluation is commonly stated in the literature
as shown in Table 1. Through solving the visible problems and determining if the data-
oriented goal is achievable in the domain exploration phase, we the authors envisage that
much of the uncertainty in data-driven analysis will be removed, enabling a clearer decision
to be made on algorithm selection. The algorithms results are then evaluated in the final
phase of the IDAIC framework, whereby the results are used to inform decision makers to
make energy reduction decisions.

To test the effectiveness of the proposed framework, we plan to apply the IDAIC
framework to an air handling unit (AHU) in a large medical devices manufacturing facility.
While full implementation will be documented once complete, a preliminary finding is
introduced in this paper to illustrate the benefit of practical application of the IDAIC
framework in the real world. During the COVID-19 pandemic, our industrial partners
made the decision to operate a recirculating air AHU as a full fresh air AHU to maximize
the fresh air supplied to the production floor. This resulted in a novel mode of operation for
a recirculating air AHU, which reduced the effectiveness of knowledge-based approaches.
Early implementation of the IDAIC framework resulted in the identification of spike faults
and bias faults in the data assessment phase which would also reduce the effectiveness of
data-driven approaches. Through collaboration with onsite facilities personnel, a novel
knowledge-based approach was developed to detect faults during this mode of operation
in the operation assessment phase. While further detail regarding the development of this
fault detection approach is left for future work, early indications suggest that the IDAIC
framework may facilitate a collaboration with onsite engineers to enable the improvement
of data analysis, despite the impediments presented in the real world.

6. Conclusions and Future Directions

A conceptual framework has been proposed in this paper to aid the transition from re-
active to proactive maintenance approaches to enable energy reduction. An integration-type
adaptation of CRISP-DM is developed to incorporate domain expertise into the analysis.
The novel integration of engineering knowledge and a data science process model has
led to a structured cycle whereby knowledge-based approaches solve and avoid visible
problems, and data-driven approaches solve and avoid invisible problems. The IDAIC
framework therefore addresses the lack of direction to transition from reactive to proactive
maintenance approaches. The second novel contribution of this paper is the extension
of CRISP-DM for the purpose of managing the “3B” data issues. The contributions of
greatest importance are firstly, the data contextualization phase whereby domain exper-
tise is incorporated to understand if the features available are capable of solving visible
problems. Secondly, the data assessment phase incorporates knowledge-based FDD for
the novel purpose of assessing data quality rather than problem identification. Thirdly,
knowledge-based FDD is applied to retrospectively analyze the asset or system to isolate
visible problems that must be solved before the value of data-driven analysis may be
realized on invisible problem solving.

While the proposed IDAIC framework has been discussed at a high level in this paper,
practical implementation must follow in future work. As noted by Wirth and Hipp [54],
“if the early adopters fail with their data mining projects, they will not blame their own
incompetence in using data mining properly but assert that data mining does not work”.
As discussed in Section 5, we plan to apply the IDAIC framework to an air handling unit in
a large medical devices manufacturing facility to test the applicability of the framework in
the real world.
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