
Citation: Saeed, N.A.; Omara, O.M.;

Sayed, M.; Awrejcewicz, J.;

Mohamed, M.S. Non-Linear

Interactions of Jeffcott-Rotor System

Controlled by a Radial PD-Control

Algorithm and Eight-Pole Magnetic

Bearings Actuator. Appl. Sci. 2022, 12,

6688. https://doi.org/10.3390/

app12136688

Academic Editor: Jean-Jacques Sinou

Received: 18 May 2022

Accepted: 29 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Non-Linear Interactions of Jeffcott-Rotor System Controlled by
a Radial PD-Control Algorithm and Eight-Pole Magnetic
Bearings Actuator
Nasser A. Saeed 1,* , Osama M. Omara 1, M. Sayed 1 , Jan Awrejcewicz 2,* and Mohamed S. Mohamed 3

1 Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University,
Menouf 32952, Egypt; osama.mohammed17@el-eng.menofia.edu.eg (O.M.O.);
mohamed.abdelkader@el-eng.menofia.edu.eg (M.S.)

2 Department of Automation, Biomechanics, and Mechatronics, Faculty of Mechanical Engineering,
Lodz University of Technology, 90924 Lodz, Poland

3 Department of Mathematics and Statistics, College of Science, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia; m.saaad@tu.edu.sa

* Correspondence: nasser.a.saeed@el-eng.menofia.edu.eg (N.A.S.); jan.awrejcewicz@p.lodz.pl (J.A.)

Abstract: Within this work, the radial Proportional Derivative (PD-) controller along with the eight-
poles electro-magnetic actuator are introduced as a novel control strategy to suppress the lateral
oscillations of a non-linear Jeffcott-rotor system. The proposed control strategy has been designed
such that each pole of the magnetic actuator generates an attractive magnetic force proportional
to the radial displacement and radial velocity of the rotating shaft in the direction of that pole.
According to the proposed control mechanism, the mathematical model that governs the non-linear
interactions between the Jeffcott system and the magnetic actuator has been established. Then, an
analytical solution for the obtained non-linear dynamic model has been derived using perturbation
analysis. Based on the extracted analytical solution, the motion bifurcation of the Jeffcott system has
been investigated before and after control via plotting the different response curves. The obtained
results illustrate that the uncontrolled Jeffcott-rotor behaves like a hard-spring duffing oscillator and
responds with bi-stable periodic oscillation when the rotor angular speed is higher than the system’s
natural frequency. It is alsomfound that the system, before control, can exhibit stable symmetric
motion with high vibration amplitudes in both the horizontal and vertical directions, regardless of
the eccentricity magnitude. In addition, the acquired results demonstrate that the introduced control
technique can eliminate catastrophic bifurcation behaviors and undesired vibration of the system
when the control parameters are designed properly. However, it is reported that the improper design
of the controller gains may destabilize the Jeffcott system and force it to perform either chaotic or
quasi-periodic motions depending on the magnitudes of both the shaft eccentricity and the control
parameters. Finally, to validate the accuracy of the obtained results, numerical simulations for all
response curves have been introduced which have been in excellent agreement with the analytical
investigations.

Keywords: Jeffcott-rotor; radial controller; electro-magnetic actuator; non-linear vibrations; quasi-periodic
motion; chaotic motions; Poincare-map; frequency spectrum

1. Introduction

Non-linear vibration is a common phenomenon in different types of rotating ma-
chinery which arises due to various reasons such as the rotating shafts’ imbalance, the
misalignment between two coupled shafts, the crack propagation along the rotating shaft,
the looseness of the bearings, the asymmetry of the rotating shafts, and the wear between
the bearing balls, etc. Accordingly, many scientific research papers have been published
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annually to explore the main causes of these non-linear vibrations as well as to find top-
timal ways to suppress or control these undesired oscillations. Yamamoto et al. [1–3]
investigated the influence of the bearing’s clearance on the non-linear oscillations of the
rotating machinery at both the primary and subharmonic resonance conditions, and the
authors reported that the rotor system may exhibit an unstable periodic response at the
primary resonance condition. Chávez et al. [4] studied theoretically and experimentally
the non-linear dynamics of an asymmetric Jeffcott rotor system with radial clearance when
subjected to rub-impact force with a snubber ring. They concluded that the occurrence of
impact force between the rotor and the snubber ring is one of the undesired phenomena
that may encounter industrial applications of the rotating machines. On the other hand, the
dynamica characteristics of the Jeffcott system with non-linear stiffness coefficients have
been investigated extensively [5–13]. Yamamoto and Ishida [5] investigated the bifurcation
characteristics of a Jeffcott rotor system at 1/3-order subharmonic resonance conditions.
Ishida et al. [6,7] explored the oscillatory motion of the same model that has been stud-
ied in [5], but in the 1/2-order subharmonic resonance case. Adiletta et al. [8] and Kim
and Noah [9] demonstrated numerically and experimentally that the rotor system with
non-linear restoring force can exhibit either quasi-periodic or chaotic oscillations besides pe-
riodic motion. Ishida and Inoue [10] explored the bifurcation characteristics of a non-linear
Jeffcott system in the vicinity of critical speed, and when the angular speed is twice and
three times the critical speed at 1:1 internal resonance. The authors reported that the system
may exhibit a more complex response curve than that of the single resonance condition.
Cveticanin [11] studied the free vibrations of a Jeffcott system having non-linear spring
properties. Yabuno et al. [12] and Saeed et al. [13] investigated the nonlinear oscillations of
a horizontally suspended Jeffcott system having non-linear spring characteristics. They
demonstrated that the rotor system can perform either forward or backward whirling
oscillation depending on the shaft angular speed. In addition, the rotating shafts asymme-
try [14], the crack’s propagation [15,16], and the small shaft imbalance [17–25] may cause
large lateral vibration amplitudes, which ultimately results in rub and/or impact forces
between rotor and stator.

Lateral vibration of the rotating shafts is an unwanted phenomenon that affects the ef-
ficiency and performance of the rotating machines. Therefore, many control methodologies
have been introduced to eliminate or at least mitigate this undesired phenomenon [26–38].
Ishida and Inoue [26] introduced a linear dynamic absorber utilizing four electro-magnetic
poles to control the lateral vibrations of a non-linear Jeffcott system. Saeed et al. [27,28]
applied a proportional-derivative controller via a four-pole electro-magnetic actuator to
reduce the lateral oscillation of two different types of rotating shafts. Ji [29] and Xiu-yan
and Wei-hua [30] used a four-pole electro-magnetic actuator with PD-controller to suppress
the non-linear vibrations of the Jeffcott system. They illustrated that the existence of time
delays in the control loop may destabilize the stable motions of the rotor system. Detailed
investigations of the non-linear dynamics of the active bearing system with different config-
urations can be found in [31–35]. However, Heindel et al. [36–38] introduced a novel active
control strategy to resolve the drawbacks of the available control techniques, either passive
methods like balancing or active techniques such as the active magnetic bearing’s actuator.
They introduced a new adaptive controller that uses the bearing forces as inputs to control
the active actuator displacements. Based on the introduced extensive investigations, the
authors concluded theoretically and experimentally that the proposed control technique
can eliminate the bearing forces and the rotor resonance. In addition, they proved that
the controller is always stable. It is worth mentioning that the applied control algorithm
in [36–38] is one of the newest techniques in the field of rotor vibration control, which may
get special attention from us in the near future.

Within this article, the radial PD-control algorithm along with the eight-pole active
magnetic bearings actuator has been introduced as a novel control strategy to suppress the
resonant vibrations of the Jeffcott rotor system. The introduced PD-control algorithm is
designed such that the instantaneous horizontal and vertical vibrations of the rotor system
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(i.e., x(τ) and y(τ)) be measured using appropriate position sensors. The measured signals
(i.e., x(τ) and y(τ)) are fed into a digital controller, which manipulates them to obtain
the corresponding cartesian velocities (i.e., calculates

.
x(τ) and

.
y(τ)). Then, the radial

position and radial velocities of the rotor system in the direction of each pole are calculated
according to the geometry of the eight-pole actuator using a predefined mathematical law
implemented on the digital controller. Based on the calculated radial positions and radial
velocities, the proposed control algorithm generates the control signals in the form of eight
control currents that are applied to the eight-poles of the magnetic actuator. Finally, the
magnetic actuator applies a controllable attractive force on the rotating shaft to eliminate
the rotor’s unwanted lateral vibrations x(τ) and y(τ). According to the proposed control
strategy, the nonlinear equations of motion that govern the dynamic interactions between
the Jeffcott system and the eight-pole actuator have been derived and then analyzed
utilizing asymptotic analysis. The effects of the different control parameters on both the
system dynamics and bifurcation behaviors have been explored. Based on the introduced
investigations, it is demonstrated that the optimal design of the control gains can eliminate
the non-linear bifurcation behaviors and force the Jeffcott-system to behave like linear
dynamical systems regardless of the eccentricity magnitude. However, it is found that the
controlled Jeffcott system may lose its stability and perform a chaotic or quasi-periodic
motion if the control parameters have not been designed properly.

Compared with the previously published works concerning rotor vibration control us-
ing magnetic bearing actuators, the non-linear vibration control of the Jeffcott rotor system
has been tackled extensively before utilizing the four-pole magnetic actuator with different
control algorithms [24–30]. Saeed et al. [24,25] applied the cartesian PD-controller along
with the four-pole magnetic actuator to eliminate the non-linear vibrations of the different
rotor models. The authors have included the rub-impact force between the rotor and the
pole-housing in the studied models. Based on the introduced analysis, they approved the
efficiency of the introduced control technique in mitigating the system’s resonant vibrations.
In addition, they showed that the system may lose its periodic vibrations to respond with
quasi-periodic or chaotic motion only when the rub and/or impact occurs between the rotor
and the pole housing. Ishida and Inoue [26] utilized an active absorber consisting of four
electromagnetic poles to reduce the undesired resonant vibrations of a vertically supported
Jeffcott rotor system. They introduced a control strategy relying on the push-pull control
mechanism. Based on the acquired results, they concluded theoretically and experimentally
that the introduced active vibration absorber can reduce the system’s unwanted vibrations
when its parameters are designed according to the non-linear model of the Jeffcott system.
Saeed et al. [27,28] introduced the PD-controller with four-pole magnetic actuator to sup-
press the non-linear oscillations of both the horizontally supported Jeffcott rotor [27], and
the asymmetric Jeffcott system [28]. In addition, Ji [29], Xiu-yan, and Wei-hua [30] studied
the effect of the loop delays on dynamical behaviors of the four-pole actuator integrated
with the PD-controller to suppress the non-linear vibrations of the Jeffcott system. They
illustrated that the existence of time delays in the control loop may destabilize the stable
motion of the rotor system. Relying on Refs [24–30], one can report that the eight-poles
magnetic actuator, as well as the radial PD-control algorithm, have not been applied before
to suppress the resonant vibrations of the non-linear Jeffcott system. So,the main purpose of
the current article is to investigate the performance of radial PD-control strategy along with
the eight-pole magnetic actuator as a novel control methodology to suppress the resonant
vibrations of the non-linear rotating machines. In addition, this work is intended to explore
the dynamic interactions between the non-linear Jeffcott system, the eight-pole actuator,
and the radial PD-controller for the first time.
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2. Equations of Motion

The non-linear differential equations that govern the lateral vibrations of the consid-
ered Jeffcott system shown in Figure 1, can be written as follows [26,39]:

m
..
x(τ) + c

.
x(τ) + FRX = meω2 cos(ωτ) (1)

m
..
y(τ) + c

.
y(τ) + FRY = meω2 sin(ωτ) (2)

where m represents the rotor mass in kg, c denotes the linear damping in N.s/m, FRX
and FRY are the shaft non-linear restoring forces in N, e is the eccentricity of the rotor in
m, ω is the shaft angular speed in s−1, and τ denotes the time in s (see Figure 1). It is
considered that the shaft restoring force FR is a cubic non-linear function of the shaft radial
displacement R = OG away from the geometric center O as shown in Figure 1. Accordingly,
the restoring force FR can be expressed as follows [12,13,26]:

FR = kl R + knR3, R =
√

x(τ) + y(τ) (3)

where kl is the linear stiffness coefficient in N/m, and kn denotes the non-linear stiffness
coefficient in N/m3. According to Equation (3), the components of FR in both X and Y
directions (i.e., FRX and FRY) can be expressed as follows:

FRX =
[
kl R + knR3

]
cos(θ) =

[
kl + knR2

]
R cos(θ) = kl x(τ) + kn

[
x3(τ) + x(τ)y2(τ)

]
(4)

FRY =
[
kl R + knR3

]
sin(θ) =

[
kl + knR2

]
R sin(θ) = kly(τ) + kn

[
y3(τ) + x2(τ)y(τ)

]
(5)
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Figure 1. Uncontrolled Jeffcott rotor system.

Substituting Equations (4) and (5) into Equations (1) and (2), we have

m
..
x(τ) + c

.
x(τ) + kl x(τ) + kn

(
x3(τ) + x(τ)y2(τ)

)
= meω2 cos(ωτ) (6)

m
..
y(τ) + c

.
y(τ) + kly(τ) + kn

(
y3(τ) + x2(τ)y(τ)

)
= meω2 sin(ωτ) (7)
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To mitigate the instantaneous displacements x(τ) and y(τ) of the considered rotor
system, it is suggested to apply the control forces FCX and FCY on the rotor system in X
and Y directions, respectively, via an eight-pole magnetic bearings actuator as shown in
Figure 2. Accordingly, Equations (6) and (7) should be modified to:

m
..
x + c

.
x + kl x + kn(x3 + xy2) = meω2 cos(ωτ) + FCX (8)

m
..
y + c

.
y + kly + kn(y3 + x2y) = meω2 sin(ωτ) + FCY (9)
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Figure 2. (a) Jeffcott-rotor system and magnetic bearings actuator at the nominal position. (b) Jeffcott-
rotor system and magnetic bearings actuator at small displacements x(τ) and y(τ) away from the
nominal position.

Based on the geometry of the 8-pole system shown in Figure 2b, one can express the
net control forces FCX and FCy such that:

FCX = F1 − F5 + (F2 + F8 − F4 − F6) cos(β) (10)

FCY = F3 − F7 + (F2 + F4 − F6 − F8) cos(β) (11)

According to the electro-magnetic theory, the attractive force Fj (j = 1, 2, . . . , 8) can be
expressed as follows [40]:

Fj =
1
4

µ0N2 A cos(δ)
I2
j

h2
j

, j = 1, 2, · · · 8 (12)

where µ0 is the air magnetic permeability, N is the winding number of the jth electrical
coil, A cos(δ) is the actual cross-sectional area of each pole, Ij is the jth pole electrical
current, and hj is the air-gap size between the rotor and the jth pole as shown in Figure 2.
Accordingly, for the small displacements x(τ) and y(τ) of the considered Jeffcott rotor
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system away from its geometric center G, one can express the instantaneous air-gap size
hj as a function of s0, x(τ), and y(τ) as follows:

h1(x, y) = s0 − x, h2(x, y) = s0 − x cos(β)− y cos(β),
h3(x, y) = s0 − y, h4(x, y) = s0 + x cos(β)− y cos(β),
h5(x, y) = s0 + x, h6(x, y) = s0 + x cos(β) + y cos(β),
h7(x, y) = s0 + y, h8(x, y) = s0 − x cos(β) + y cos(β).

 (13)

where α = 45
◦

is the angle between every two adjacent poles. The electrical current in each
pole Ij is proposed such that:

Ij = I0 + ij, j = 1, 2, . . . , 8 (14)

where I0 is a constant current known as a pre-magnetizing current that is designed to be the
same in every magnetic pole and ij is the control current in the jth pole that is responsible
for generating a magnetic control force in order to mitigate the non-linear oscillations of
the considered Jeffcott-rotor system. Within this article, the control current ij is designed
based on the push-pull control strategy to be proportional to both the radial displacement
and radial velocity of the rotating shaft (i.e., radial proportional-derivative controller).
According to the horizontal and vertical instantaneous oscillations x(τ) and y(τ), one can
express the control current in each electro-magnetic pole as follows:

i1(x,
.
x) = −i5(x,

.
x) = −

(
k1x + k2

.
x
)
,

i2(x,
.
x, y,

.
y) = −i6(x,

.
x, y,

.
y) = −

(
k1x + k2

.
x + k1y + k2

.
y
)

cos(α)
i3(y,

.
y) = −i7(y,

.
y) = −

(
k1y + k2

.
y
)

i4(x,
.
x, y,

.
y) = −i8(x,

.
x, y,

.
y) =

(
k1x + k2

.
x− k1y− k2

.
y
)

cos(α)

 (15)

where k1 and k2 are two constants denoting the proportional and derivative control gains,
respectively. Figure 3 shows in detail a schematic diagram of the proposed control strategy,
where two position sensors are used to measure the instantaneous lateral vibrations x(τ)
and y(τ) of the Jeffcott-rotor system. The measured signals (i.e., x(τ) and y(τ)) are then
fed into a digital controller to be manipulated (i.e., differentiate x(τ) and y(τ)) to get
.
x(τ) and

.
y(τ)). Then, the manipulated signals (x(τ), y(τ),

.
x(τ), and

.
y(τ)) are utilized

to compute the control currents ij (j = 1, 2, . . . , 8) according to a pre-defined control law
(i.e., Equation (15)). Finally, the derived control currents ij (j = 1, 2, . . . , 8) are fed back into
a magnetic bearings actuator that is integrated with a power amplifier network to apply
the full current Ij = I0 + ij (j = 1, 2, . . . , 8) on the eight magnetic poles. Now, to derive the
full mathematical model of the controlled Jeffcott-rotor system, let us substitute Equations
(12) to (15) into Equations (10) and (11), so we have

FCX = 1
4 µ0n2 A cos(θ)

[
8 cos2(β)I2

0
s3

0
x− 8 cos(β)I0k1

s2
0

x− 4I0k1
s2

0
x +

4I2
0

s3
0

x− 4I0k2
s2

0

.
x

− 8 cos(β)I0k2
s2

0

.
x +

4k2
1

s3
0

x3 +
8I2

0
s5

0
x3 +

16 cos4(β)I2
0

s5
0

x3 +
8 cos2(β)k2

1
s3

0
x3

− 24 cos3(β)I0k1
s4

0
x3 − 12I0k1

s4
0

x3 +
24 cos2(β)k2

1
s3

0
xy2 − 72 cos3(β)I0k1

s4
0

xy2

+
48 cos4(β)I2

0
s5

0
xy2 − 24 cos3(β)I0k2

s4
0

x2 .
x + 16 cos2(β)k1k2

s3
0

x2 .
x− 12I0k2

s4
0

x2 .
x

+ 8k1k2
s3

0
x2 .

x +
4k2

2
s3

0
x

.
x2

+
8 cos2(β)k2

2
s3

0
x

.
x2

+ 32 cos2(β)k1k2
s3

0
xy

.
y− 48 cos3(β)I0k2

s4
0

xy
.
y

+
8 cos2(β)k2

2
s3

0
x

.
y2

+
16 cos2(β)k2

2
s3

0

.
xy

.
y + 16 cos2(β)k1k2

s3
0

.
xy2− 24 cos3(β)I0k2

s4
0

.
xy2
]

(16)



Appl. Sci. 2022, 12, 6688 7 of 31

FCY = 1
4 µ0n2 A cos(θ)

[
8 cos2(β)I2

0
s3

0
y− 8 cos(β)I0k1

s2
0

y− 4I0k1
s2

0
y +

4I2
0

s3
0

y− 4I0k2
s2

0

.
y

− 8 cos(β)I0k2
s2

0

.
y +

4k2
1

s3
0

y3 +
8I2

0
s5

0
y3 +

16 cos4(β)I2
0

s5
0

y3 +
8 cos2(β)k2

1
s3

0
y3

− 24 cos3(β)I0k1
s4

0
y3 − 12I0k1

s4
0

y3 +
24 cos2(β)k2

1
s3

0
yx2 − 72 cos3(β)I0k1

s4
0

yx2

+
48 cos4(β)I2

0
s5

0
yx2 − 24 cos3(β)I0k2

s4
0

y2 .
y + 16 cos2(β)k1k2

s3
0

y2 .
y− 12I0k2

s4
0

y2 .
y

+ 8k1k2
s3

0
y2 .

y +
4k2

2
s3

0
y

.
y2

+
8 cos2(β)k2

2
s3

0
y

.
y2

+ 32 cos2(β)k1k2
s3

0
yx

.
x− 48 cos3(β)I0k2

s4
0

yx
.
x

+
8 cos2(β)k2

2
s3

0
y

.
x2

+
16 cos2(β)k2

2
s3

0

.
yx

.
x + 16 cos2(β)k1k2

s3
0

.
yx2− 24 cos3(β)I0k2

s4
0

.
yx2
]

(17)

Inserting Equations (16) and (17) into Equations (8) and (9), we can obtain the whole
dynamical model that governs the non-linear interaction between the rotor and the eight-
pole actuator as follows:

m
..
x + c

.
x + kl x + kn(x3 + xy2) = meω2 cos(ωτ) + 1

4 µ0n2 A cos(θ)
[

8 cos2(β)I2
0

s3
0

x

− 8 cos(β)I0k1
s2

0
x− 4I0k1

s2
0

x +
4I2

0
s3

0
x− 4I0k2

s2
0

.
x− 8 cos(β)I0k2

s2
0

.
x

+
4k2

1
s3

0
x3 +

8I2
0

s5
0

x3 +
16 cos4(β)I2

0
s5

0
x3 +

8 cos2(β)k2
1

s3
0

x3

− 24 cos3(β)I0k1
s4

0
x3 − 12I0k1

s4
0

x3 +
24 cos2(β)k2

1
s3

0
xy2

− 72 cos3(β)I0k1
s4

0
xy2 +

48 cos4(β)I2
0

s5
0

xy2 − 24 cos3(β)I0k2
s4

0
x2 .

x

+ 16 cos2(β)k1k2
s3

0
x2 .

x− 12I0k2
s4

0
x2 .

x + 8k1k2
s3

0
x2 .

x +
4k2

2
s3

0
x

.
x2

+
8 cos2(β)k2

2
s3

0
x

.
x2

+ 32 cos2(β)k1k2
s3

0
xy

.
y− 48 cos3(β)I0k2

s4
0

xy
.
y

+
8 cos2(β)k2

2
s3

0
x

.
y2

+
16 cos2(β)k2

2
s3

0

.
xy

.
y + 16 cos2(β)k1k2

s3
0

.
xy2

− 24 cos3(β)I0k2
s4

0

.
xy2
]

(18)

m
..
y + c

.
y + kly + kn(y3 + yx2) = meω2 sin(ωτ) + 1

4 µ0n2 A cos(θ)
[

8 cos2(β)I2
0

s3
0

y

− 8 cos(β)I0k1
s2

0
y− 4I0k1

s2
0

y +
4I2

0
s3

0
y− 4I0k2

s2
0

.
y− 8 cos(β)I0k2

s2
0

.
y

+
4k2

1
s3

0
y3 +

8I2
0

s5
0

y3 +
16 cos4(β)I2

0
s5

0
y3 +

8 cos2(β)k2
1

s3
0

y3

− 24 cos3(β)I0k1
s4

0
y3 − 12I0k1

s4
0

y3 +
24 cos2(β)k2

1
s3

0
yx2

− 72 cos3(β)I0k1
s4

0
yx2 +

48 cos4(β)I2
0

s5
0

yx2 − 24 cos3(β)I0k2
s4

0
y2 .

y

+ 16 cos2(β)k1k2
s3

0
y2 .

y− 12I0k2
s4

0
y2 .

y + 8k1k2
s3

0
y2 .

y +
4k2

2
s3

0
y

.
y2

+
8 cos2(β)k2

2
s3

0
y

.
y2

+ 32 cos2(β)k1k2
s3

0
yx

.
x− 48 cos3(β)I0k2

s4
0

yx
.
x

+
8 cos2(β)k2

2
s3

0
y

.
x2

+
16 cos2(β)k2

2
s3

0

.
yx

.
x + 16 cos2(β)k1k2

s3
0

.
yx2

− 24 cos3(β)I0k2
s4

0

.
yx2
]

(19)

To simplify the obtained mathematical model given by Equations (18) and (19), let
us introduce the following dimensionless variables and parameters u = x

s0
, v = y

s0
,

t = ωnτ, δ1 = s0
I0

k1, δ2 = s0ωn
I0

k2, µ = c√
mkl

, λ = kn
mω2

n
, E = e

s0
, Ω = ω

ωn
, and

ωn =
√

kl
m =

√
µI2

0 n2 A cos(θ)
4ms3

0
, into Equations (18) and (19), we have
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..
u + µ

.
u + u + λu3 + λv2u = EΩ2 cos(Ωt) + β1u + β2

.
u + β3u3 + β4uv2 + β5u2 .

u + β6u
.
u2

+β7uv
.
v + β8u

.
v2

+ β9
.
uv

.
v + β10

.
uv2

(20)

..
v + µ

.
v + v + λv3 + λu2v = EΩ2 sin(Ωt) + β1v + β2

.
v + β3v3 + β4vu2 + β5v2 .

v + β6v
.
v2

+β7vu
.
u + β8v

.
u2

+ β9
.
vu

.
u + β10

.
vu2

(21)

Equations (20) and (21) are the generalized dimensionless equations of motion of the
considered control system, where the coefficients β1, β2, . . . , β10 are given in Appendix A.

Based on the introduced dimensionless parameters given below Equation (19), it
should be noted that δ1 = s0

I0
k1 and δ2 = s0ωn

I0
k2 denote the normalized proportional and

derivative gains of the proposed radial PD-controller, where β j (j = 1, 2, . . . , 10) depends
only on δ1 and δ2.
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Figure 3. Schematic diagram to show the interconnection between the Jeffcott-rotor system, mag-
netic bearings actuator, and control algorithm. 
Figure 3. Schematic diagram to show the interconnection between the Jeffcott-rotor system, magnetic
bearings actuator, and control algorithm.

3. Analytical Investigations

To investigate the control performance of the applied radial PD-controller in suppress-
ing the non-linear vibrations of the considered Jeffcott system, an analytical approximate
solution for the system equations of motion (20) and (21) is suggested as follows [41,42]:

u(t, ε) = u0(T0, T1) + εu1(T0, T1) + O(ε2) (22)

v(t, ε) = v0(T0, T1) + εv1(T0, T1) + O(ε2) (23)
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where T0 = t, T1 = εt, and ε is a small perturbation parameter used as book-keeping
only [42]. According to the chain rule of differentiation, the derivatives d

dt and d2

dt2 can be
written in terms of T0 and T1 such that:

d
dt

= D0 + εD1,
d2

dt2 = D2
0 + 2εD0D1, Dj =

∂

∂Tj
, j = 0, 1 (24)

In addition, to apply the multiple-time scales perturbation procedure, the system
parameters should be re-scaled such that:

µ = εµ̃, E = εẼ, β j = εβ̃ j, j = 1, 2, . . . , 10 . (25)

By inserting Equations (22) to (25) into Equations (20) and (21), and then comparing
the coefficients of the same power of ε, we have

O
(
ε0) :

(D2
0 + 1)u1 = 0 (26)

(D2
0 + 1)v1 = 0 (27)

O
(
ε1) :

(D2
0 + 1)u2 = −2D0D1u1 − µ̃D0u1 − λ̃u3

1 − λ̃v2
1u1 + β̃1u1 + β̃2D0u1 + β̃3u3

1 + β̃4u1v2
1

+β̃5u2
1(D0u1) + β̃6u1(D0u1)

2 + β̃7u1v1(D0v1) + β̃8u1(D0v1)
2

+β̃9(D0u1)v1(D0v1) + β̃10(D0u1)v2
1 + ẼΩ2 cos(Ωt)

(28)

(D2
0 + 1)v2 = −2D0D1v1 − µ̃D0v1 − λ̃v3

1 − λ̃u2
1v1 + β̃1v1 + β̃2D0v1 + β̃3v3

1 + β̃4v1u2
1

+β̃5v2
1(D0v1) + β̃6v1(D0v1)

2 + β̃7v1u1(D0u1) + β̃8v1(D0u1)
2

+β̃9(D0v1)u1(D0u1) + β̃10(D0v1)u2
1 + ẼΩ2 sin(Ωt)

(29)

The solutions to Equations (26) and (27) can be obtained as follows:

u1(T0, T1) = A1(T1)eiT0 + A1(T1)e−iT0 (30)

v1(T0, T1) = A2(T1)eiT0 + A2(T1)e−iT0 (31)

where Aj(T1) (j = 1, 2) are unknown functions up to this stage of analysis, and will
be determined in the next solution steps, and Aj(T1) (j = 1, 2) are the complex con-
jugate functions of Aj(T1), and i =

√
−1. Substituting Equations (30) and (31) into

Equations (28) and (29), we get

(D2
0 + 1)u2 = [−2iD1 A1 − iµ̂A1 − 3λ̃A2

1 A1 − 2λ̃A1 A2 A2 − λ̃A1 A2
2 + β̃1 A1 + iβ̃2 A1 + 3β̃3 A2

1 A1
+2β̃4 A1 A2 A2 + β̃4 A1 A2

2 + iβ̃5 A2
1 A1 + 3β̃6 A2

1 A1 + iβ̃7 A1 A2
2 + 2β̃8 A1 A2 A2 − β̃8 A1 A2

2
+β̃9 A1 A2

2 + 2iβ̃10 A1 A2 A2 − iβ̃10 A1 A2
2]e

iT0 + [−λ̃A3
1 − λ̃A1 A2

2 + β̃3 A3
1 + β̃4 A1 A2

2
+iβ̃5 A3

1 − β̃6 A3
1 + iβ̃7 A1 A2

2 − β̃8 A1 A2
2 − β̃9 A1 A2

2 + iβ̃10 A1 A2
2]e

3iT0 + 1
2 ẼΩ2eiΩT0 + cc

(32)

(D2
0 + 1)v2 = [−2iD1 A2 − iµ̂A2 − 3λ̃A2

2 A2 − 2λ̃A2 A1 A1 − λ̃A2 A2
1 + β̃1 A2 + iβ̃2 A2 + 3β̃3 A2

2 A2

+2β̃4 A2 A1 A1 + β̃4 A2 A2
1 + iβ̃5 A2

2 A2 + 3β̃6 A2
2 A2 + iβ̃7 A2 A2

1 + 2β̃8 A2 A1 A1 − β̃8 A2 A2
1

+β̃9 A2 A2
1 + 2iβ̃10 A2 A1 A1 − iβ̃10 A2 A2

1]e
iT0 + [−λ̃A3

2 − λ̃A2 A2
1 + β̃3 A3

2 + β̃4 A2 A2
1

+iβ̃5 A3
2 − β̃6 A3

2 + iβ̃7 A2 A2
1 − β̃8 A2 A2

1 − β̃9 A2 A2
1 + iβ̃10 A2 A2

1]e
3iT0 − 1

2 iẼΩ2eiΩT0 + cc

(33)
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where cc denotes the complex conjugate terms. To derive a bounded solution of
Equations (31) and (32) at the primary resonance condition (i.e., when Ω = 1), the small
divisors and the secular terms must vanish. Accordingly, to find the solvability condition
of Equations (31) and (32), let the parameter σ represents the closeness of Jeffcott-rotor
angular speed Ω to its normalized natural frequency ω = 1 such that:

Ω = 1 + σ = 1 + εσ̃ (34)

Inserting Equation (34) into Equations (32) and (33), we can obtain the following
solvability conditions of Equations (32) and (33):

−2iD1 A1 − iµ̂A1 − 3λ̃A2
1 A1 − 2λ̃A1 A2 A2 − λ̃A1 A2

2 + β̃1 A1 + iβ̃2 A1 + 3β̃3 A2
1 A1 + 2β̃4 A1 A2 A2

+β̃4 A1 A2
2 + iβ̃5 A2

1 A1 + 3β̃6 A2
1 A1 + iβ̃7 A1 A2

2 + 2β̃8 A1 A2 A2 − β̃8 A1 A2
2 + β̃9 A1 A2

2 + 2iβ̃10 A1 A2 A2

−iβ̃10 A1 A2
2 +

1
2 Ẽ(1 + σ)2eiεσ̃T0 = 0

(35)

−2iD1 A2 − iµ̂A2 − 3λ̃A2
2 A2 − 2λ̃A2 A1 A1 − λ̃A2 A2

1 + β̃1 A2 + iβ̃2 A2 + 3β̃3 A2
2 A2 + 2β̃4 A2 A1 A1

+β̃4 A2 A2
1 + iβ̃5 A2

2 A2 + 3β̃6 A2
2 A2 + iβ̃7 A2 A2

1 + 2β̃8 A2 A1 A1 − β̃8 A2 A2
1 + β̃9 A2 A2

1 + 2iβ̃10 A2 A1 A1

−iβ̃10 A2 A2
1 −

1
2 iẼ(1 + σ)2eiεσ̃T0 = 0

(36)

To obtain the autonomous dynamical system that governs the oscillation amplitudes
and the corresponding phase angles of Equations (20) and (21), let us express the unknown
functions A1(T1) and A2(T1) as follows [41,42]:

A1(T1) =
1
2 a1(T1)eiθ1(T1), A1(T1) =

1
2 a1(T1)e−iθ1(T1)

A2(T1) =
1
2 a2(T1)eiθ2(T1), A2(T1) =

1
2 a2(T1)e−iθ2(T1)

}
(37)

Inserting Equation (37) into Equations (35) and (36), restoring the system parameters

to their original form (i.e., µ̃ = µ
ε , Ẽ = E

ε , β̃ j =
β j
ε , (j = 1, 2, . . . , 10)), one can obtain the

following autonomous dynamical system [42]:

.
a1 = f1(a1, a2, ϕ1, ϕ2) = − 1

2 µa1 +
1
2 β2a1 +

1
8 β5a3

1 +
1
4 β10a1a2

2
+ 1

8 (β7 − β10)a1a2
2 cos(2ϕ1 − 2ϕ2) +

1
8 (−λ + β4 − β8 + β9)a1a2

2 sin(2ϕ1 − 2ϕ2)

+ 1
2 E(1 + σ)2 sin(ϕ1)

(38)

.
a2 = f2(a1, a2 ϕ1, ϕ2) = − 1

2 µa2 +
1
2 β2a2 +

1
8 β5a3

2 +
1
4 β10a2a2

1
+ 1

8 (β7 − β10)a2a2
1 cos(2ϕ2 − 2ϕ1) +

1
8 (−λ + β4 − β8 + β9)a2a2

1 sin(2ϕ2 − 2ϕ1)

− 1
2 E(1 + σ)2 cos(ϕ2)

(39)

.
ϕ1 = f3(a1, a2, , ϕ1, ϕ2) = σ− λa2

1 −
1
4 λa2

2 +
1
2 β1 +

3
8 β3a2

1 +
1
4 β4a2

2 +
3
8 β6a2

1 +
1
4 β8a2

2
+ 1

8 (−λ + β4 − β8 + β9)a2
2 cos(2ϕ1 − 2ϕ2) +

1
8 (−β7 + β10)a2

2 sin(2ϕ1 − 2ϕ2)

+ 1
2a1

E(1 + σ)2 cos(ϕ1)

(40)

.
ϕ2 = f4(a1, a2, ϕ1, ϕ2) = σ− λa2

2 −
1
4 λa2

1 +
1
2 β1 +

3
8 β3a2

2 +
1
4 β4a2

1 +
3
8 β6a2

2 +
1
4 β8a2

1
+ 1

8 (−λ + β4 − β8 + β9)a2
1 cos(2ϕ2 − 2ϕ1) +

1
8 (−β7 + β10)a2

1 sin(2ϕ2 − 2ϕ1)

+ 1
2a2

E(1 + σ)2 sin(ϕ2)

(41)
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where ϕ1 = σt− θ1, ϕ2 = σt− θ2. Substituting Equations (30), (31), (34), and (37) into
Equations (22) and (23), we have:

u(t) = a1(t) cos(Ωt− ϕ1(t)) (42)

v(t) = a2(t)cos(Ωt− ϕ2(t)) (43)

Equations (42) and (43) represent the periodic solution of Equations (20) and (21), where a1(t)
and a2(t) are the instantaneous oscillation amplitudes of the controlled rotor in X and Y direc-
tions, respectively, while ϕ1(t) and ϕ2(t) denote the phase angles. In addition, a1(t), a2(t), ϕ1(t),
and ϕ2(t) are governed by the autonomous dynamical system given by Equations (38) to (41).
So, setting

.
a1(t) =

.
a2(t) =

.
ϕ1(t) =

.
ϕ2(t) = 0 into Equations (38) to (41), one can obtain a

system of non-linear algebraic equations that governs the steady-state vibration amplitudes
and phase angles as follows:

f1(a1, a2, ϕ1, ϕ2) = − 1
2 µa1 +

1
2 β2a1 +

1
8 β5a3

1 +
1
4 β10a1a2

2 +
1
8 (β7 − β10)a1a2

2 cos(2ϕ1 − 2ϕ2)

+ 1
8 (−λ + β4 − β8 + β9)a1a2

2 sin(2ϕ1 − 2ϕ2) +
1
2 E(1 + σ)2 sin(ϕ1) = 0

(44)

f2(a1, a2 ϕ1, ϕ2) = − 1
2 µa2 +

1
2 β2a2 +

1
8 β5a3

2 +
1
4 β10a2a2

1 +
1
8 (β7 − β10)a2a2

1 cos(2ϕ2 − 2ϕ1)

+ 1
8 (−λ + β4 − β8 + β9)a2a2

1 sin(2ϕ2 − 2ϕ1)− 1
2 E(1 + σ)2 cos(ϕ2) = 0

(45)

f3(a1, a2, ϕ1, ϕ2) = σ− λa2
1 −

1
4 λa2

2 +
1
2 β1 +

3
8 β3a2

1 +
1
4 β4a2

2 +
3
8 β6a2

1 +
1
4 β8a2

2
+ 1

8 (−λ + β4 − β8 + β9)a2
2 cos(2ϕ1 − 2ϕ2) +

1
8 (−β7 + β10)a2

2 sin(2ϕ1 − 2ϕ2)

+ 1
2a1

E(1 + σ)2 cos(ϕ1) = 0
(46)

f4(a1, a2, ϕ1, ϕ2) = σ− λa2
2 −

1
4 λa2

1 +
1
2 β1 +

3
8 β3a2

2 +
1
4 β4a2

1 +
3
8 β6a2

2 +
1
4 β8a2

1
+ 1

8 (−λ + β4 − β8 + β9)a2
1 cos(2ϕ2 − 2ϕ1) +

1
8 (−β7 + β10)a2

1 sin(2ϕ2 − 2ϕ1)

+ 1
2a2

E(1 + σ)2 sin(ϕ2) = 0
(47)

Solving Equations (44) to (47) in terms of the system and control parameters
(i.e., σ, E, µ, λ, δ1, δ2), we can explore the influence of these parameters on the steady-
state vibration amplitudes a1 and a2 of the controlled Jeffcott system as illustrated in Section 4.
Moreover, to investigate the stability of the solution given by Equations (42) and (43), one can
check the eigenvalues of the non-linear system (38) to (41) using the Lyapunov first method.
Accordingly, let (a10, a20, ϕ10, ϕ20) be the fixed-point solution of Equations (38) to (41) (i.e., the
solution of Equations (44) to (47)) and (a11, a21, ϕ11, ϕ21) be a small deviation about that
solution. Therefore, we have

aj = aj0 + aj1, ϕj = ϕj0 + ϕj1,
.
aj =

.
aj1,

.
ϕj =

.
ϕj1; j = 1, 2 (48)

Inserting Equation (48) into Equations (38) to (41), expanding for a small deviation
a11, a21, ϕ11, and ϕ21, keeping the linear terms only, we have

.
a11 =

∂ f1

∂a11
a11 +

∂ f1

∂a21
a21 +

∂ f1

∂ϕ11
ϕ11 +

∂ f1

∂ϕ21
ϕ21 (49)

.
a21 =

∂ f2

∂a11
a11 +

∂ f2

∂a21
a21 +

∂ f2

∂ϕ11
ϕ11 +

∂ f2

∂ϕ21
ϕ21 (50)

.
ϕ11 =

∂ f3

∂a11
a11 +

∂ f3

∂a21
a21 +

∂ f3

∂ϕ11
ϕ11 +

∂ f3

∂ϕ21
ϕ21 (51)
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.
ϕ21 =

∂ f4

∂a11
a11 +

∂ f4

∂a21
a21 +

∂ f4

∂ϕ11
ϕ11 +

∂ f4

∂ϕ21
ϕ21 (52)

According to the Hartman-Grobman theorem, the linear dynamical system (49) to
(52) has the same stability behavior as the non-linear system (38) to (41) as long as the
equilibrium point of both systems is hyperbolic. Therefore, the stability of the non-linear
system (38) to (41) can be checked by investigating the eigenvalues of the linearized system
(49) to (52) (see [43]).

4. Sensitivity Investigations and Numerical Simulations

This section is devoted to exploring the dynamical behavior of the controlled Jeffcott-
rotor system. Solving the non-linear Equations (44) to (47) numerically using the predictor-
corrector newton-Raphson method (See [44]) in terms of the system and control parameters
(µ, λ, δ1, δ2) utilizing σ or E as a bifurcation parameter, one can obtain the different response
curves as shown in Figures 4 and 5. In addition, the solution stability can be investigated
via obtaining the eigenvalues of the linear system (49) to (52), where the stable solution is
illustrated as a solid line and the unstable solution is shown as a dotted line. Moreover, to
demonstrate the accuracy of the derived periodic solution given by Equations (42) to (47),
the temporal normalized Equations (20) and (21) have been solved numerically using the
ODE45 MATLAB solver, where the numerical results are plotted as a small circle and big
dot against the analytical solutions given by Equations (44) to (47). The parameters’ values
E = 0.03, µ = 0.015, λ = 0.05, δ1 = 0.83, δ2 = 0.002, β = 45

◦
, σ = 0, and Ω = 1 + σ have

been adopted to obtain the following response curves and bifurcation diagrams [12,13,26].
Before proceeding further, it should be remembered that u = x

s0
= a1 cos(Ωt− ϕ1) and

v = y
s0

= a2 cos(Ωt− ϕ2). Accordingly, a1 denotes the vibration amplitude of the rotor in
X direction with respect to the nominal air-gap size s0, while a2 represents the vibration
amplitude of the rotor in Y direction with respect to the nominal air-gap size s0. So, if
a1 ≥ 1 and/or a2 ≥ 1 this means that a rub and/or impact force between the rotor and the
eight-pole actuator occurs. Therefore, the main target of this article is to control the Jeffcott
rotor vibration amplitudes a1 and a2 below unity (i.e., a1 < 1 and a2 < 1) regardless of the
angular speed (Ω = 1 + σ) and rotor eccentricity E.
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4.1. System Dynamics without Control (β j = 0, j = 1, 2, . . . , 10)

The non-linear dynamics of the considered Jeffcott-rotor have been discussed within
this sub-section before control via solving the non-linear system (44) to (47) when
β j = 0, (j = 1, 2, . . . , 10). Figure 4 has been obtained via solving Equations (44) to (47)
when the rotor eccentricity E = 0.01, 0.02, and 0.03 utilizing σ as the main bifurcation
parameter at β j = 0, (j = 1, 2, . . . , 10). The figure shows that the vibration amplitudes (a1
and a2) are symmetric and monotonic increasing functions of the shaft eccentricity E. In
addition, the figure depicts that the Jeffcott-rotor responds as a linear system as long as the
eccentricity E < 0.01. However, increasing E beyond 0.01 results in nonlinearity dominance
of the system response where the system exhibits hard spring characteristics, bistable solu-
tions, and a jump phenomenon. In addition, Figure 4 demonstrates that the uncontrolled
system may be subjected to rub and/or impact force between the rotor and the 8-pole
actuator when E > 0.01 because a1 > 1 and a2 > 1 at some values of the angular speed
Ω = 1 + σ. In Figure 5, the eccentricity E has been utilized rather than the detuning param-
eter σ as a bifurcation parameter to plot what is known eccentricity-response curve (i.e., E
versus a1 and a2) at σ = 0, 0.05. The figure shows that the rotor oscillation amplitudes (a1
and a2) are a monotonic increasing function of E. In addition, the figure demonstrates that
the Jeffcott-rotor may respond with a mono-stable periodic solution regardless of the shaft
eccentricity magnitude (i.e., 0 < E ≤ 0.1) as long as the angular speed is equal to the rotor’s
natural frequency (i.e., Ω = 1+ σ, σ = 0). However, the increase of the rotor angular speed
beyond the system’s natural frequency (i.e., Ω = 1 + σ, σ = 0.05) results in nonlinearity
dominance of the system response, where the bi-stable solution region appears (i.e., when
0.02 < E < 0.05).

4.2. System Dynamics with Control (β j 6= 0, j = 1, 2, . . . , 10)

According to the above discussions given in Section 4.1, the main objective of this
article is to eliminate the non-linear behaviors of the considered Jeffcott-rotor (i.e., eliminate
the hard-spring characteristic, jump-phenomenon, sensitivity to the initial conditions) via
designing a suitable control system. Within this section, the non-linear interactions between
the studied Jeffcott-rotor and the suggested control system (i.e., PD-controller and the
8-pole electro-magnetic actuator) have been explored. Figure 6 shows the controlled system
oscillation amplitudes (a1, a2) against σ at three values of eccentricity (i.e., E = 0.01, 0.02,
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and 0.03) when the control parameters δ1 = 0.83 and δ2 = 0.002. Comparing Figure 5
(i.e., ncontrolled rotor) with Figure 6 (i.e., controlled rotor), one can note that the controlled
rotor vibration amplitudes do not exceed the unity (i.e., a1 < 1, a2 < 1) regardless of
the rotor angular speed (i.e., Ω = 1 + σ,−0.2 ≤ σ ≤ 0.2) and the shaft eccentricity
(i.e., 0 ≤ E ≤ 0.03), which means that the impossibility of rub-impact occurrences between
the Jeffcott-rotor and the magnetic actuator. However, the controlled Jeffcott system exhibits
bifurcation characteristics that completely differ from the uncontrolled system. It is clear
from Figure 6 that the controlled Jeffcott system has a bi-stable solution in the vicinity of
σ = 0, which is not the case with the uncontrolled Jeffcott system. In addition, the controlled
system may lose its periodic motion at the large eccentricity as shown in Figure 6e,f when
E = 0.03 and −0.01143 < σ < 0.007408. Moreover, Figure 6 demonstrates that the hard-
spring behavior of the uncontrolled Jeffcott system that is reported in Figure 4 has been
turned into a soft-spring behavior due to non-linear interaction between the rotor and the
electro-magnetic actuator.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 34 
 

(i.e., 𝐸 = 0.01, 0.02, and 0.03) when the control parameters 𝛿 = 0.83 and 𝛿 = 0.002. 
Comparing Figure 5 (i.e., uncontrolled rotor) with Figure 6 (i.e., controlled rotor), one can 
note that the controlled rotor vibration amplitudes do not exceed the unity (i.e., 𝑎 <1, 𝑎 < 1) regardless of the rotor angular speed (i.e., Ω = 1 + 𝜎, −0.2 ≤ 𝜎 ≤ 0.2) and the 
shaft eccentricity (i.e., 0 ≤ 𝐸 ≤ 0.03), which means that the impossibility of rub-impact 
occurrences between the Jeffcott-rotor and the magnetic actuator. However, the controlled 
Jeffcott system exhibits bifurcation characteristics that completely differ from the uncon-
trolled system. It is clear from Figure 6 that the controlled Jeffcott system has a bi-stable 
solution in the vicinity of 𝜎 = 0, which is not the case with the uncontrolled Jeffcott sys-
tem. In addition, the controlled system may lose its periodic motion at the large eccen-
tricity as shown in Figure 6e,f when 𝐸 = 0.03 and −0.01143 < 𝜎 < 0.007408. Moreover, 
Figure 6 demonstrates that the hard-spring behavior of the uncontrolled Jeffcott system 
that is reported in Figure 4 has been turned into a soft-spring behavior due to non-linear 
interaction between the rotor and the electro-magnetic actuator.  

The system eccentricity response curve has been obtained as shown in Figure 7a,b 
when 𝜎 = 0, 𝛿 = 0.83, and 𝛿 = 0.002 to explore the dynamical behaviors of the con-
trolled Jeffcott system at the perfect resonance (i.e., Ω = 1 + 𝜎, 𝜎 = 0) for a wide range of 
the eccentricity 𝐸 (i.e., 0 < 𝐸 ≤ 0.075). It is clear from Figure 7a,b that the system re-
sponds with a mono-stable solution as long as 0 < 𝐸 ≤ 0.006, but the rotor system may 
have a bi-stable periodic solution if the eccentricity magnitude has been increased such 
that 0.006 < 𝐸 ≤ 0.025. In addition, the figures confirm that the controlled Jeffcott system 
may lose its periodic oscillation if the shaft eccentricity has been increased beyond 0.025.  

To investigate the nature of the unstable periodic solution that is reported in Figure 
7a,b when 𝐸 > 0.025, the Poincare-map for the controlled Jeffcott system has been con-
structed via solving Equations (20) and (21) numerically (using ODE45) utilizing 𝜎 as a 
bifurcation parameter via replacing Ω = 1 + 𝜎 as shown in Figure 7c,d. It is clear from 
Figure 7c,d that the controlled Jeffcott system oscillates with a periodic motion as long as 𝐸 ≤ 0.025. However, increasing the eccentricity beyond the critical value 𝐸 = 0.025 de-
stabilizes the stable periodic motion, where the rotor system responds with bounded ape-
riodic oscillations in the eccentricity span 0.025 < 𝐸 ≤ 0.075.  

  
(a) (b) 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 34 
 

  
(c) (d) 

  
(e) (f) 

Figure 6. 𝜎 −response curve of the controlled Jeffcott rotor (i.e., 𝛿 = 0.83, and 𝛿 = 0.002) at three 
different values of the shaft eccentricity 𝐸: (a,b) oscillation amplitudes (𝑎  and 𝑎 ) versus 𝜎 when 𝐸 = 0.01, (c,d) oscillation amplitudes (𝑎  and 𝑎 ) versus 𝜎 when 𝐸 = 0.02, and (e,f) oscillation 
amplitudes (𝑎  and 𝑎 ) versus 𝜎 when 𝐸 = 0.03. 

Figure 6. Cont.



Appl. Sci. 2022, 12, 6688 15 of 31

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 34 
 

  
(c) (d) 

  
(e) (f) 

Figure 6. 𝜎 −response curve of the controlled Jeffcott rotor (i.e., 𝛿 = 0.83, and 𝛿 = 0.002) at three 
different values of the shaft eccentricity 𝐸: (a,b) oscillation amplitudes (𝑎  and 𝑎 ) versus 𝜎 when 𝐸 = 0.01, (c,d) oscillation amplitudes (𝑎  and 𝑎 ) versus 𝜎 when 𝐸 = 0.02, and (e,f) oscillation 
amplitudes (𝑎  and 𝑎 ) versus 𝜎 when 𝐸 = 0.03. 

Figure 6. σ—response curve of the controlled Jeffcott rotor (i.e., δ1 = 0.83, and δ2 = 0.002) at three
different values of the shaft eccentricity E: (a,b) oscillation amplitudes (a1 and a2) versus σ when
E = 0.01, (c,d) oscillation amplitudes (a1 and a2) versus σ when E = 0.02, and (e,f) oscillation
amplitudes (a1 and a2) versus σ when E = 0.03.

The system eccentricity response curve has been obtained as shown in Figure 7a,b
when σ = 0, δ1 = 0.83, and δ2 = 0.002 to explore the dynamical behaviors of the controlled
Jeffcott system at the perfect resonance (i.e., Ω = 1 + σ, σ = 0) for a wide range of the
eccentricity E (i.e., 0 < E ≤ 0.075). It is clear from Figure 7a,b that the system responds
with a mono-stable solution as long as 0 < E ≤ 0.006, but the rotor system may have
a bi-stable periodic solution if the eccentricity magnitude has been increased such that
0.006 < E ≤ 0.025. In addition, the figures confirm that the controlled Jeffcott system may
lose its periodic oscillation if the shaft eccentricity has been increased beyond 0.025.

To investigate the nature of the unstable periodic solution that is reported in Figure 7a,b
when E > 0.025, the Poincare-map for the controlled Jeffcott system has been constructed
via solving Equations (20) and (21) numerically (using ODE45) utilizing σ as a bifurcation
parameter via replacing Ω = 1 + σ as shown in Figure 7c,d. It is clear from Figure 7c,d
that the controlled Jeffcott system oscillates with a periodic motion as long as E ≤ 0.025.
However, increasing the eccentricity beyond the critical value E = 0.025 destabilizes
the stable periodic motion, where the rotor system responds with bounded aperiodic
oscillations in the eccentricity span 0.025 < E ≤ 0.075.

According to Figure 7, the temporal oscillations of the controlled Jeffcott system
have been illustrated when E = 0.02, 0.05, and 0.075 as shown in Figures 8–10, respec-
tively, via solving the temporal Equations (20) and (21) at the zero initial conditions
(i.e., u(0) =

.
u(0) = v(0) =

.
v(0) = 0). Figure 8 shows the temporal oscillations

(i.e., Figure 8a,b), Poincare-map (i.e., Figure 8c,d), and frequency-spectrum (i.e., Figure 8e,f,
of the system when E = 0.02. The figure demonstrates that the Jeffcott system can perform
stable periodic motions when E = 0.02, but these motions are not symmetric in both X and
Y directions that agree with Figure 7 accurately. Figures 9 and 10 are a repetition of Figure 8,
but at E = 0.05 and E = 0.075, respectively. It is clear from Figure 9 that the controlled
system performs asymmetric quasi-periodic motions at E = 0.05, while Figure 10 confirms
that the controlled Jeffcott system exhibits a chaotic response when E = 0.075.
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Figure 7. E—response curve of the controlled Jeffcott rotor (i.e., δ1 = 0.83 and δ2 = 0.002) and the
corresponding bifurcation diagrams at σ = 0.0: (a,b) oscillation amplitudes (a1 and a2) versus E when
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Figure 8. Periodic time-response, Poincaré-map, and frequency-spectrum of the controlled Jeffcott-
rotor according to Figure 7 (i.e., at σ = 0, δ1 = 0.83, δ2 = 0.002) when E = 0.02: (a,b) the normalized
temporal oscillations u(t) and v(t) in X and Y direction, (c,d) the corresponding Poincaré-map,
(e,f) the corresponding frequency-spectrum.
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Figure 9. Quasi-periodic time-response, Poincaré-map, and frequency-spectrum of the controlled
Jeffcott-rotor according to Figure 7 (i.e., at σ = 0, δ1 = 0.83, δ2 = 0.002) when E = 0.05: (a,b) the
normalized temporal oscillations u(t) and v(t) in X and Y direction, (c,d) the corresponding Poincaré-
map, (e,f) the corresponding frequency-spectrum.

Based on the soft-spring characteristic of the controlled Jeffcott-system reported in
Figure 6, the eccentricity response curve has been visualized when σ = −0.05 as shown in
Figure 11a,b. The figure illustrates a complex bifurcation behavior where the system may
perform mono-stable, bi-stable, or tri-stable periodic motion depending on the eccentricity
magnitude. In addition, the figure demonstrates that the Jeffcott system may lose its
stability to oscillate with bounded aperiodic motion when 0.063 < E ≤ 0.075. Based on
response curves given in Figure 11a,b, the corresponding bifurcation diagrams have been
established as shown in Figure 11c,d via obtaining the Poincare-map for Equations (20) and
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(21) when Ω = 1− 0.05. By comparing Figure 11a,b with Figure 11c,d, one can note the
excellent correspondence between the analytical investigations and the numerical results.
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Figure 10. Chaotic time-response, Poincaré-map, and frequency-spectrum of the controlled Jeffcott-
rotor according to Figure 7 (i.e., at σ = 0, δ1 = 0.83, δ2 = 0.002) when E = 0.075: (a,b) the normalized
temporal oscillations u(t) and v(t) in X and Y direction, (c,d) the corresponding Poincaré-map,
(e,f) the corresponding frequency-spectrum.
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Figure 11. E—response curve of the controlled Jeffcott rotor (i.e., δ1 = 0.83 and δ2 = 0.002) and the
corresponding bifurcation diagrams at σ = −0.05: (a,b) oscillation amplitudes (a1 and a2) versus E
when σ = 0, and (c,d) Poincaré-map of the instantaneous oscillations u(t) and v(t) versus E when
σ = 0.

Comparing Figure 5 with Figures 7 and 11, one can notice from Figure 5 that
the uncontrolled Jeffcott system is stable along the eccentricity span (i.e., as long as
0 < E ≤ 0.075) regardless of the shaft angular speed. In addition, the system can perform
symmetric lateral oscillation in both X and Y directions. On the other hand, Figures 7 and 11
demonstrate that the integration of the radial PD-control algorithm and the 8-pole actuator
has completely changed the bifurcation behavior of the studied system, where the con-
trolled Jeffcott system may perform quasi-periodic and chaotic motion beside the periodic
motion. The effect of the normalized cubic non-linear stiffness coefficient (λ) on oscilla-
tion amplitudes of the controlled Jeffcott system has been illustrated in Figure 12, where
Figure 12a,b show the system response curves at λ = 0.3, while Figure 12c,d illustrate the
system response curves when λ = −0.3. It is clear from Figure 12a,b that the response
curves have been bent to the right at the positive values of λ (i.e., λ = 0.3), which leads
to the hard-spring characteristic. On the other hand, Figure 12c,d demonstrate that the
response curves have been bent to the left at the negative values of λ (i.e., λ = −0.3), which
leads to the soft-spring characteristic.
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Figure 12. σ—response curve of the controlled Jeffcott rotor (i.e., E = 0.03, δ1 = 0.83, and δ2 = 0.002)
at the negative and positive non-linear stiffness coefficient (λ): (a,b) oscillation amplitudes (a1 and a2)
versus σ when λ = 0.3, and (c,d) oscillation amplitudes (a1 and a2) versus σ when λ = −0.3.

The effect of the proportional gain δ1 on the oscillatory motion of the Jeffcott system
has been illustrated in Figure 13, where Figure 13a,b show the system oscillation amplitudes
versus σ at δ1 = 0.85, while Figure 13c,d illustrate the vibration amplitudes at δ1 = 0.8. It
is clear from the figure that the increase of δ1 from 0.83 to δ1 = 0.85 (See Figure 6c,d) has
shifted the system response curves to the right as shown in Figure 13a,b, where the quasi-
periodic motion that is reported in Figure 6c,d at σ = 0, became a mono-stable periodic
solution. However, Figure 13a,b confirm that the Jeffcott system may respond with an
aperiodic motion (i.e., for example, at Ω = 1 + σ, σ = 0.1). On the other hand, Figure 13c,d
demonstrate the shift of the response curve to the left when δ1 has been decreased from
0.83 (See Figure 6c,d) to 0.8. Accordingly, the parameter δ1 can be used as a control key to
shifting the system response curves either to the right (i.e., via increasing δ1) or to the left
(i.e., via decreasing δ1) in order to avoid the complex oscillatory behaviors of the controlled
Jeffcott system at the resonance condition (i.e., when Ω ∼= 1). However, Figure 13 in general
shows that the Jeffcott system response curve at δ1 = 0.8 is better than the response curves
when δ1 = 0.83 and δ1 = 0.85.
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Figure 13. σ—response curve of the controlled Jeffcott rotor (i.e., E = 0.03, λ = 0.05, and δ2 = 0.002)
at two different value of the proportional gain δ1: (a,b) oscillation amplitudes (a1 and a2) versus σ

when δ1 = 0.85, and (c,d) oscillation amplitudes (a1 and a2) versus σ when δ1 = 0.8.

To validate the accuracy of the Figure 13, the system equations of motion (i.e., Equa-
tions (20) and (21)) have been solved numerically using ODE45 according to Figure 13
(i.e., when E = 0.03, δ2 = 0.002) at σ = 0.1 and δ1 = 0.85, 0.8 as shown in Figure 14. The
figure has been obtained via simulating Equations (20) and (21) by letting δ1 = 0.85 along
the time interval 0 ≤ t ≤ 700, where at instant t = 700, the control parameter δ1 has been
decreased to 0.8 on the interval 700 < t ≤ 1000. It is clear from Figure 14 that the Jeffcott
system exhibits a quasi-periodic motion (i.e., unstable periodic solution) when δ1 = 0.85
and σ = 0.1 on the time interval 0 ≤ t ≤ 700, but when δ1 has been decreased to 0.8,
the unstable periodic solution has been turned into a stable periodic solution on interval
700 < t ≤ 1000. Comparing Figure 14 with Figure 13 at σ = 0.1, one can demonstrate
the excellent correspondence between the analytical results given in Figure 13 and the
numerical simulations shown in Figure 14.

The non-linear interactions between the Jeffcott system and the eight-pole actuator at
three different values of the control parameter δ2 have been illustrated in Figure 15, where
Figure 15a,b show the oscillation amplitudes of the controlled Jeffcott system at δ2 = 0.005,
while Figure 15c,d depict the Jeffcott system vibrations amplitudes when δ2 = 0.01 and
0.02. In general, Figure 15 shows that a1 and a2 are a monotonic decreasing function of
the control parameter δ2. In addition, Figure 15c,d confirm that the increase of δ2 to a
critical value may eliminate the complex bifurcation behavior of the rotor-actuator system
to respond as a linear system regardless of the angular speed Ω = 1 + σ,−0.2 ≤ σ ≤ 0.2.

Based on Figures 13 and 15, we can report that the control parameters δ1 and δ2 can be
utilized to reshape the Jeffcott system dynamics, where one can shift σ—response curve to
the left or the right side via increasing or decreasing δ1. In addition, the system oscillations
amplitudes can be mitigated by increasing δ2. The influence of both δ1 and δ2 can be
explained simply from the mathematical point of view through the derived equations of
motion (20) and (21) that can be rewritten as follows:

..
u+(µ− β2)

.
u+(1− β1)u+λu3 +λv2u = EΩ2 cos(Ωt)+ other non− linear control trems,

..
v+(µ− β2)

.
v+(1− β1)v+λv3 +λu2v = EΩ2 sin(Ωt)+ other non− linear control trems.

Based on the above two equations, coupling a PD-control algorithm to the Jeffcott
system via a magnetic actuator has added the linear terms β1u, β1v, β2

.
u and β2

.
v. So, the

equivalent natural frequency of the controlled Jeffcott system became ω2
control = 1− β1

and its linear damping is µcontrol = µ− β2, where β1 = 8 cos2(β)− 8 cos(β)δ1 − 4δ1 + 4
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and β2 = −4δ2(1 + 2 cos(β)). Therefore, one can change the system’s natural frequency
ωcontrol via changing δ1. In addition, the system damping coefficient µcontrol can be con-
trolled via the control parameter δ2. Figure 15 clearly shows that the maximum oscillation
amplitudes of the controlled Jeffcott system occur at the perfect resonance (i.e., when
Ω = 1 + σ, σ = 0). Accordingly, the control parameter δ2 has been plotted against the
vibration amplitudes (a1 and a2) at σ = 0 to illustrate the motion bifurcation of the con-
trolled Jeffcott system at the different values of δ2 as illustrated in Figure 16. It is clear
from the figure that the system may oscillate with one of three oscillation modes depend-
ing on δ2 magnitude, where the system the Jeffcott system exhibits a bounded aperiodic
(i.e., quasi-periodic, or chaotic) motion as long as on 0 ≤ δ2 < 0.0025. In addition, Figure 16
demonstrates that the system can oscillate with one of two stable periodic solutions accord-
ing to the initial conditions (i.e., has a bi-stable periodic solution) if 0.0025 ≤ δ2 < 0.0082.
Moreover, the controlled Jeffcott system oscillates periodically with a single periodic attrac-
tor like the linear system if δ2 ≥ 0.0082.
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Figure 14. Time-response and the corresponding frequency-spectrum of the controlled Jeffcott-rotor
according to Figure 13 when σ = 0.1, E = 0.03, λ = 0.05, δ2 = 0.002 when decreasing online
the proportional gain from δ1 = 0.85 to δ1 = 0.8 at time t = 700: (a,b) the normalized temporal
oscillations u(t) and the corresponding frequency spectrum in X direction, (c,d) the normalized
temporal oscillations v(t) and the corresponding frequency spectrum in Y direction.

To validate the accuracy of δ2-response curve that is given in Figure 16, the system
temporal Equations (20) and (21) have been solved using ODE45 according to Figure 16
(i.e., when E = 0.03, σ = 0, δ1 = 0.83) at δ2 = 0.001, 0.005, and 0.04 as shown
in Figures 17 and 18. Figure 17 is obtained via plotting u(t) and v(t) versus the normalized
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time t at zero initial conditions by letting δ2 = 0.001 along the time interval 0 ≤ t ≤ 1000,
where at t = 1000, the parameter δ2 has been increased to 0.005 on the time interval
1000 < t ≤ 1200, then the parameter δ2 has been increased again to 0.04 on the time
interval 1200 < t ≤ 1400. Figure 18 is a repetition of Figure 17 but at the non-zero initial
conditions u(0) =

.
u(0) = 0,= v(0) =

.
v(0) = 0.5. It is clear from Figures 17 and 18

that the controlled Jeffcott system can perform quasi-periodic oscillation (i.e., unstable
periodic solution) at δ2 = 0.001 on the time interval 500 ≤ t < 1000, but the quasi-periodic
oscillation has been turned into a stable periodic solution on interval 1000 ≤ t < 1200
when δ2 is increased to 0.005. Moreover, the figures show that the increase of δ2 to 0.04 has
suppressed the non-linear oscillations and eliminated the sensitivity of the Jeffcott system
to the initial conditions.
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Figure 15. σ—response curve of the controlled Jeffcott rotor (i.e., E = 0.03, λ = 0.05, and δ1 = 0.83)
at three different value of the derivative gain δ2: (a,b) oscillation amplitudes (a1 and a2) versus σ

when δ2 = 0.005, and (c,d) oscillation amplitudes (a1 and a2) versus σ when δ2 = 0.01, 0.02.

Based on Figure 6, the increase of the eccentricity E can destabilize the stable periodic
motion of the controlled system. In addition, Figure 15 demonstrates that the increase in
the control parameter δ2, increases the damping coefficient, which ultimately stabilizes
the unstable motion of the controlled Jeffcott system. Accordingly, the stability chart
of the studied system in Eδ2—plane has been established as shown in Figure 19 at two
different values of the rotor angular speed (i.e., when Ω = 1 + σ, σ = 0,−0.05). The figure
demonstrates that the increase of the control parameter δ2 (i.e., δ2 > 0.006) can stabilize the
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unstable motion regardless of both the eccentricity magnitude (i.e., 0 < E ≤ 0.1) and the
shaft angular speed.
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Figure 17. Time-response and the corresponding frequency-spectrum of the controlled Jeffcott-rotor
according to Figure 16 at the initial conditions u(0) =
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u(0) = v(0) =

.
v(0) = 0 and parameter values

σ = 0, E = 0.03, λ = 0.05, δ1 = 0.83 when increasing the derivative gain online from δ2 = 0.001 to
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temporal oscillations u(t) and the corresponding frequency spectrum in X direction, (c,d) the normalized
temporal oscillations v(t) and the corresponding frequency spectrum in Y direction.
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Figure 18. Time-response and the corresponding frequency-spectrum of the controlled Jeffcott-rotor
according to Figure 16 at the initial conditions u(0) =

.
u(0) = 0, v(0) =

.
v(0) = 0.5 and parameter values

σ = 0, E = 0.03, λ = 0.05, δ1 = 0.83 when increasing the derivative gain online from δ2 = 0.0.001 to
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temporal oscillations u(t) and the corresponding frequency spectrum in X direction, (c,d) the normalized
temporal oscillations v(t) and the corresponding frequency spectrum in Y direction.
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Figure 19. Stability charts of the controlled Jeffcott rotor in E− δ2 plane when λ = 0.05, δ1 = 0.83,
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and aperiodic solutions regions in E− δ2 plane when σ = −0.05.
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5. Non-Linear Dynamics of the Jeffcott System before and after Control

The response curves of the considered Jeffcott system before and after control have
been compared within this section. According to Figures 6, 13 and 15, the optimal control
parameters have been selected such that δ1 = 0.83 and δ2 = 0.02. In Figure 20, the σ—response
curve of the considered Jeffcott system has been compared before and after control. The figure
demonstrates that the coupling of the proposed control strategy has forced the considered
Jeffcott system to respond as a linear dynamical system with a single periodic attractor, where
all non-linear bifurcation characteristics have been eliminated after control. In addition,
the figure confirms that the high oscillation amplitudes of the uncontrolled Jeffcott system
before control have been suppressed after control along the σ—axis. Numerical simulation
of the Jeffcott system lateral oscillations (i.e., u(t) and v(t)) before and after control has been
illustrated in Figure 21 via solving Equations (20) and (21) at zero initial condition according
to Figure 20 when σ = 0. Figure 21 has been obtained via plotting the instantaneous lateral
displacements u(t) and v(t) versus t by letting β j = 0 (j = 1, 2, . . . , 10) along the time
interval 0 ≤ t < 600, and at instant t = 600, the controller is turned on with the control
gains δ1 = 0.83 and δ2 = 0.02 on the time interval 600 ≤ t ≤ 800. By examining Figure 21,
one can confirm the high efficiency of the proposed controller in mitigating the high lateral
vibration of the considered Jeffcott system at a very small transient time.
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Figure 20. 𝜎 −response curve of the studied Jeffcott rotor system before control and after optimal 
control (i.e., 𝛿 = 0.83 and 𝛿 = 0.02): (a) oscillation amplitude 𝑎  versus 𝜎 when 𝐸 = 0.03, and 
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Figure 20. σ—response curve of the studied Jeffcott rotor system before control and after optimal
control (i.e., δ1 = 0.83 and δ2 = 0.02): (a) oscillation amplitude a1 versus σ when E = 0.03, and
(b) oscillation amplitude a2 versus σ when E = 0.03.

In Figure 22, the E—response curve of the Jeffcott system has been compared before
and after control at σ = 0. It is clear from the figure that the strong lateral vibration
amplitudes before control have been suppressed after control even at the strong shaft
eccentricities. In addition, the non-linear relationship between the steady-state vibration
amplitudes (a1, a2) and the eccentricity (E) before control has become a straight line
with a very small slope after control, as depicted in the figure. Figure 23 shows the
temporal oscillations of the considered Jeffcott system before and after control according
to Figure 22 when E = 0.075. The figure demonstrates the capability of the control
algorithm in mitigating the system vibrations at a very small transient time even at large
shaft eccentricity.
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Figure 21. Time-response and the corresponding frequency-spectrum of the Jeffcott-rotor system
before and after control according to Figure 20 at σ = 0.0, E = 0.03, λ = 0.05, δ1 = 0.83, δ2 = 0.02
when turning the controller on at time t = 600: (a,b) the normalized temporal oscillations u(t) and
the corresponding frequency spectrum in X direction, (c,d) the normalized temporal oscillations v(t)
and the corresponding frequency spectrum in Y direction.
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6. Conclusions

This work is intended to control the undesired vibrations of a non-linear Jeffcott rotor
system utilizing a new control strategy. The introduced control system is a combination
of both a radial PD-controller and an eight-poles active magnetic bearings actuator. It is
worth mentioning that this is the first time the non-linear interaction between both a Jeffcott
rotor model and the eight-pole magnetic actuator that are coupled together via a radial
PD-controller has been investigated.. Based on the principle of classical mechanics, the
whole mathematical model that governs the rotor-actuator interaction has been derived.
Then, the asymptotic analysis has been employed to obtain an analytical solution for the
obtained mathematical model. According to the derived analytical solution, the non-linear
interaction between the Jeffcott system and the eight-pole actuator has been explored. In
addition, the performance of the introduced control technique in mitigating the undesired
non-linear oscillation of the Jeffcott system has been explored via plotting the different re-
sponse curves. Finally, numerical confirmations for all obtained analytical results have been
illustrated. Based on the above discussions, we can conclude with the following remarks:

1. The uncontrolled Jeffcott rotor system responds as a linear dynamical system with a
mono-stable periodic solution regardless of the system angular velocity as long as the
shaft eccentricity E ≤ 0.01 as shown in Figure 4.

2. At the large disc eccentricity (i.e., E > 0.01), the nonlinearities dominate the response
curves of the uncontrolled Jeffcott system, where the rotor may oscillate by one of two
periodic solutions depending on the initial conditions as shown in Figure 4.
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3. The uncontrolled Jeffcott system has symmetric bifurcation characteristics and sym-
metric stable periodic motion in both the horizontal and the vertical direction regard-
less of the shaft eccentricity and the rotor spinning speed.

4. The coupling of the radial PD-control algorithm to the Jeffcott rotor via an eight-pole
magnetic actuator results in a new dynamical system with completely different oscil-
latory behaviors and bifurcation characteristics than the uncontrolled Jeffcott system.

5. The proportional gain δ1 of the radial-PD-controller can be used as a control
key to change the natural frequency of the controlled Jeffcott system ω2

control
(i.e., ω2

control = −3− 8 cos2(β) + 8 cos(β)δ1 + 4δ1) to avoid the high oscillation ampli-
tudes of the rotor system at resonance conditions as illustrated in Figures 13 and 14.

6. The derivative gain δ2 of the radial-PD-controller can be utilized to increase the damp-
ing ratio of the controlled Jeffcott system µcontrol (i.e., µcontrol = µ + 4δ2(1 + 2 cos(β))
in order to mitigate the lateral oscillations of the rotor system at the strong eccentricity
magnitudes as shown in Figures 15–17.

7. The optimal selection of the control parameters δ1 and δ2 (i.e., δ1 = 0.83 and δ2 = 0.02) can
eliminate the non-linear bifurcation behaviors and force Jeffcott-system to behave like
the linear system regardless of the eccentricity magnitude as depicted in Figures 20–23.

8. Despite that the vibration control efficiency of the eight-pole magnetic actuator is
higher than that of the four-pole magnetic actuator [24–28], it may destabilize the sta-
ble motion and force the Jeffcott system to oscillate with a quasi-periodic or chaotic mo-
tion if the control parameters (δ1 and δ2) have not selected properly, as in Figures 7–10.
However, that is not the case with the four-pole actuator as reported in refs [24–28].

9. The controlled Jeffcott system has symmetric bifurcation characteristics and asymmet-
ric oscillation in both the horizontal and the vertical direction regardless of the shaft
eccentricity and the rotor spinning speed.
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List of Symbols

u,
.
u,

..
u

Normalized displacement, velocity, and acceleration of the controlled
Jeffcott-rotor in X direction.

v,
.
v,

..
v

Normalized displacement, velocity, and acceleration of the controlled
Jeffcott system in Y direction

µ Normalized Linear damping of Jeffcott-rotor system in X and Y directions.
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λ Normalized cubic non-linear stiffness coefficient of Jeffcott-rotor system
Ω Normalized angular speed of the rotor.
E Normalized Jeffcott-rotor eccentricity.
δ1 Normalized proportional gain of the applied radial PD-controller.
δ2 Normalized derivative gain of the applied radial PD-controller.

β j, j = 1, 2, . . . , 10 Normalized linear and non-linear coupling coefficients between the Jeffcott
system and the eight-pole actuator.

σ
Detuning parameter to describe the difference between the system angular
speed and normalized natural frequency, where σ = Ω− 1

a1, a2
Normalized oscillation amplitudes of the controlled Jeffcott-rotor system in
X and Y directions.

Appendix A

β1 = 8 cos2(β)− 8 cos(β)δ1 − 4δ1 + 4,
β2 = −4δ2(1 + 2 cos(β)),
β3 = 8 + 16 cos4(β)− 12δ1 − 24 cos3(β)δ1 + 4δ2

1 + 8 cos2(β)δ2
1 ,

β4 = 24 cos2(β)δ2
1 − 72 cos3(β)δ1 + 48 cos4(β),

β5 = 16 cos2(β)δ1δ2 + 8δ1δ2 − 12δ2 − 24 cos3(β)δ2,
β6 = 4δ2

2 + 8 cos2(β)δ2
2 ,

β7 = 32 cos2(β)δ1δ2 − 48 cos3(β)δ2,
β8 = 8 cos2(β)δ2

2 ,
β9 = 16 cos2(β)δ2

2 ,
β10 = 16 cos2(β)δ1δ2 − 24 cos3(β)δ2.
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