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Featured Application: The proposed dynamic modeling and control method considering joint
friction could be applied not only to the trajectory control of the hip joint simulator, but also to
other parallel and series manipulators with high-loads.

Abstract: To overcome the bearing capacity deficiencies of traditional serial hip joint simulators,
complex trajectory simulation, among others, as well as a parallel manipulator with two pairs of
artificial hip joints and two moving platforms are proposed. The movements and driving forces of the
parallel manipulator under the required motion and loading are studied to provide a basis for further
research. In this study, the modeling and analysis of inverse kinematics and dynamics for a parallel
manipulator with joint friction are derived. In the inverse kinematic model, kinematic relationships
between the linear module slider and the moving platform are established, and expressions for the
slider are deduced. Subsequently, by analyzing the frictional forces of the artificial hip joint and thrust
ball bearing, a rigid body dynamics model of the parallel manipulator with joint friction is established,
which is subsequently decomposed into four driving torques associated with the moving platform,
joint lever, slider, and screw. Finally, the difference in the kinematic performance between the two
moving platforms is analyzed using numerical simulations and experiments, and the accuracy of the
established model is verified.

Keywords: parallel manipulator; kinematics; two moving platforms; friction; rigid-body dynamics

1. Introduction

Hip replacement surgery is commonly used to treat pain and disability due to cartilage
injury, synovial fluid reduction, and osteoarthritis [1,2]. However, debris from friction on
joint contact surfaces enters circulation, and many patients require revision surgery after
15–20 years [3]. Therefore, it is necessary to examine the friction and wear characteristics of
artificial hip joints using in vitro simulation methods.

Simulators of the artificial hip joint must simulate the motion and load changes of the
human hip joint simultaneously, and most existing simulators often use a serial manipulator
as the core module [4]. Groves et al. [3] developed a pendulum friction simulator that
enables the acetabulum and femoral head to maintain the correct center of rotation and
evaluated the efficacy of the simulation system by testing the natural porcine hip joint and
artificial hip joint. Daou et al. [5] developed a serial manipulator to test the biomechanics
of hip joint specimens, and reduced the hip joint clamping error by installing force sensors.
Nečas et al. [6] used a pendulum simulator to analyze the effect of the texturing of the
ultrahigh-molecular-weight polyethylene acetabular cup on tribological properties, and
the results showed that surface texturing could improve the stability of the friction of the
artificial hip joints. Although serial manipulators can partially simulate the kinematic and
dynamic performance of the human hip joint, they are deficient in terms of repeatability,
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comparative accuracy, complex trajectory simulation, and dynamic loading [7,8]. Moreover,
a serial hip joint simulator can test only a single type of joint motion. Generally, parallel
manipulators with a closed-chain structure consisting of multiple kinematic chains have
the advantages of high precision [9] and high load capacity [10], are widely used in
medicine engineering [11] and precision support [12], and are being developed to achieve
high speeds and more reconfigurability [13]. The application of parallel manipulators to
artificial hip joint testing provides precise trajectories and facilitates carrying higher loads.
Wang et al. [14,15] designed a 3SPS+1PS parallel manipulator with satisfactory performance
in simulating the kinematics, dynamics, and load changes of the hip joint. In the ISO 14242-
1:2014(E) standard, a complete test requires the completion of 5 × 106 cycles. At present,
most of the existing hip joint simulators have only one moving platform, resulting in lower
efficiency in many practical applications. Therefore, it is a great prospect to design a parallel
manipulator that can be used for the friction and wear test of various size of hip joints and
can perform the test on two hip joints simultaneously.

Generally, kinematic analysis and dynamic modeling are the basis for structural opti-
mization, performance analysis, and controller design of a parallel manipulator. Scholars
have performed many studies on lower-mobility parallel mechanisms and achieved signifi-
cant results. Chong et al. [16] proposed a 1T2R parallel manipulator dynamic performance
and acceleration capability evaluation method that discussed the dynamic isotropic perfor-
mance and area of the feasible acceleration region under the influence of velocity, external
load, and gravity. Huo et al. [17] established a dynamics model of a 2 DOF overconstrained
tracking parallel manipulator based on the principle of virtual work, and the effects of
inertia and friction are considered in the identification to achieve a balance between ac-
curacy and efficiency. Müller [18,19] proposed a kinematic modeling method for parallel
manipulators with a simple topology to flexibly establish motion equations in task space
coordinates and end-effector coordinates. According to the ISO14242 standard, the high
speed and acceleration of the parallel manipulator during the artificial hip joint wear test
lead to the need for the servo motor to change speed frequently, so the control strategy
based on kinematic parameters is difficult to maintain the accuracy of the parallel manip-
ulator. Therefore, it is important to establish a dynamics model that is close to the actual
dynamics characteristics of the parallel manipulator.

With an increase in speed, the joint friction effect becomes significant [20,21], and fric-
tion effect plays an important role in controlling and tracking the accuracy of the parallel
manipulator [22]. Unsworth’s [23] experiments with artificial hip joint friction measure-
ments using the Durham friction simulator showed that hip joint friction under high loads
cannot be ignored. Yuan et al. [24] proposed a parallel manipulator decomposition mod-
eling method, which projected the force of the moving platform in the workspace into
the joint space to calculate the normal force of the sliding plane of the driving joint and
then obtained the friction force. Wu et al. [25] proposed a joint friction solution method
that subtracts the inertial parts from the joint torque, and the reduction of dynamic model
accuracy due to the friction model deviation can be avoided. Farhat et al. [26] solved the
discontinuity problem of the friction model of a 3-DOF parallel manipulator by dividing
the self-interval, calculating the friction force in the viscous phase, and enhancing stability.
Parallel manipulators are subjected to cyclically varying loads during friction and wear
testing, resulting in significant friction that is difficult to eliminate directly through error
compensation. Therefore, with regard to the dynamic analysis of parallel mechanisms, the
time-varying characteristics of artificial hip joint friction cannot be ignored.

In this study, to overcome the shortcomings of series hip joint simulators with regard
to their bearing capacity, trajectory simulation, accuracy, etc., and to remedy the lower
working efficiency deficiencies using a single moving platform, and considering the cost and
dimensions of the assembly, a 2(3PUS+S) parallel manipulator with two pairs of artificial
hip joints and two moving platforms is proposed, which can simultaneously conduct
friction and wear tests for two pairs of artificial hip joints. To lay the foundation for further
research, the movements and driving forces of the parallel manipulator under the required
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motion are studied. First, the inverse kinematics for the parallel manipulator is modeled,
and the kinematic relationships between the linear module slider and the moving platform
are established. Second, the driving torque of each component is analyzed separately.
Combined with the Coulomb friction model of artificial joints and thrust ball bearings,
a rigid-body dynamics model of a parallel manipulator with joint friction is established.
Finally, numerical simulations and experiments are conducted to analyze the kinematic
differences between the two moving platforms under the required motion and verify the
accuracy of the kinematic and dynamical models.

2. Mechanism and Establishing the Coordinates

For a parallel manipulator with multiple moving platforms driven by the same set of
actuators for achieving the same motion, the positions of the moving platforms should be
arranged symmetrically or in parallel to each other or in the same plane. Considering the
strengths and weaknesses of the obtained configurations, two 3PUS+S-type parallel manip-
ulators were designed as the core module of the parallel manipulator, and the two moving
platforms were arranged parallel to each other. Theoretically, both the platforms perform
the same action.

As shown in Figure 1, the 2(3PUS+S) parallel hip joint simulator comprises two pairs
of artificial hip joints, two moving platforms (m1 and m2), one base platform (B), three joint
levers, three linear modules (LNi), and one intermediate branch chain. Three active linear
modules and one intermediate branch chain were rigidly fixed to the base platform. In
this paper, P refers to the prismatic joints composed of the lead screw and nut, U refer to
the universal joints installed on the linear module slider, and S refer to the spherical joints
installed on the moving platform with a fixed-length joint lever. The figure was shown in
our previous paper [27].
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Figure 1. 2(3PUS+S) parallel manipulator.

Three surrounding branch chain PUS were placed symmetrically at 120◦ intervals,
with the intermediate branch chain S in the center of the base platform. Two fixed distance
sliders were installed on each linear module. The joint lever was designed to connect the
slider and moving platform. The motion of the servo motor was transmitted to the moving
platform through the linear module and the joint lever. The intermediate branch chain was
connected to the moving platform through the spherical joint S.

The intermediate branch chain, which is divided into two sections to install artificial
hip joints, is a passive branch chain. The articular head was assembled on the moving
platform, and their rotation centers were coincided. The acetabulum was fixed, and the
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moving platform could achieve rotational motion with the artificial hip joint as the center.
The articular head of joint 2 was assembled on the base platform through a thrust ball
bearing and a section of the intermediate branch chain, and the articular head of joint 1
was connected to the acetabulum of joint 2 through a thrust ball bearing and ball spline
shaft. The hydraulic system was connected to the acetabulum of joint 1 through a guide rail
and pressure sensor. A loading force was applied to artificial joint 1 and then transferred
to artificial joint 2 through the ball spline shaft. A spring equal to the gravity of moving
platform m1 was installed in the ball spline, and the height of the artificial joint remained
constant during the operation.

In Figure 2, Ai (i = 1, 2, 3) is the intersection of the linear module lead screw and base
platform, and ci is the projection point of b1i and b2i on line OAi. Let O be a center point
fixed in the triangle A1A2A3 with a circumscribed circle radius E. The absolute reference
frames O-XYZ (green) are attached at the point O with the Z-axis vertically upward, and
the X-axis is perpendicular to A1A2 and points away from OA3. Similarly, aji (j = 1, 2)
and bji are the intersection points of the rotation axes of spherical and universal joints,
respectively. The relative reference frames oj-xjyjzj (red) are attached at the center point oj
of triangle aj1aj2aj3 with a circumscribed circle radius e. The yj-axis crosses point aj2, the
zj-axis is perpendicular to triangle aj1aj2aj3 and is directed to the hydraulic system.
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Figure 2. 2(3PUS+S) parallel manipulator topological structure.

For most serial hip joint simulators, the cantilever structure is predominantly used
as the loading part, which causes angle errors in the forced direction of the hip joint.
Simultaneously, maintaining the equilibrium between the loading force and the bearing
device is generally complicated, as a serial hip joint simulator can test only a single type of
joint motion. However, the motions of the actual hip joint vary during different actions such
as walking and jogging. The loading force is generated directly by a hydraulic cylinder, and
the direction passes through the rotation center of the moving platform and can be directly
balanced by the intermediate branch chain. The dynamic characteristics of the loading
force depend entirely on the hydraulic cylinder performance. In the design process of a
parallel manipulator, there are two key points: motion simulation and implementation of
dynamic loading force. Motion simulation is the most important aspect. For the proposed
2(3PUS+S) parallel manipulator, the dynamic loading force was implemented using a
hydraulic cylinder, and this study is mainly focused on the motion simulation of the
recommended curves.
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3. Inverse Kinematics
3.1. Position Analysis

The clearance and elastic deformation of the joints and components are ignored in
the modeling; therefore, there are no practical differences (from a modeling and analysis
standpoint) between a single and multi-platform manipulator. The three PUS modules
have the same kinematic structure, and the vector relationship of one closed kinematic
chain is shown in Figure 3.
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During the working process, the frames of the moving platform are defined by the
roll, pitch, and yaw angle parameters. The orientation of the moving platforms mj at any
time can be described as qj = [αj, βj, γj]T. Let ei and eji be unit vectors along b2ib1i and bjiaji.
Let hj, rji and rci be the position vector along Ooj, ojaji and Oci in O-XYZ. From Figure 3, we
can express the closed kinematic chain as follows:

hj + rji = rci + Ljiei + ljieji, rji = Rj · raji (1)

Here, Lji is the distance between slider Sji and point ci; lji is the length of joint lever ajibji;
and lji= ll is a constant.

Based on Equation (1), according to the assembly scheme of the parallel manipulator,
the displacement of Sji can be represented as follows:

Lji = hj + rjiz −
√

l2
ji − (rjix − rcix)

2 − (rjiy − rciy)
2 (2)

where rjix, rjiy, rjiz are the direction vectors for the decomposition of rji, and rcix, rciy, rciz are
the direction vectors for the decomposition of rci.

3.2. Velocity Analysis

The hypothesis is that ωj and
.

ωj are the angular velocity and angular acceleration of
the moving platform mj, respectively. The translational velocity of slider Sji is obtained by
finding the first-order derivative of Equation (1) with respect to time.

.
Lj = J−1

aj · Jbj ·ωj = Jj ·ωj (3)

where
.
Lj =

[ .
Lj1,

.
Lj2,

.
Lj3

]T
, and

.
Lji is the translational speed of the slider Sji;

.
Lji =

(rji×eji)
T

eT
ji ·ei

·ωj, Jaj = diag
(

eT
j1 · e1, eT

j2 · e2, eT
j3 · e3

)
, Jbj =

[
rj1 × ej1, rj2 × ej2, rj3 × ej3

]T ,

Jj =

[
rj1×ej1

eT
j1·e1

,
rj2×ej2

eT
j2·e2

,
rj3×ej3

eT
j3·e3

]T
.
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The rotational angular velocity and joint lever center velocity of bjiaji can be obtained
as follows: 

ωl ji =
1
lji

[
−eji× · rji× −

(
eji × ei

) (rji×eji)
T

eT
ji ·ei

]
·ωj = Jjωi ·ωj

vl ji =

[
ei ·

(rji×eji)
T

eT
ji ·ei

− lji
2 eji× · Jjωi

]
·ωj = Jjvi ·ωj

(4)

where eji× and rji× are antisymmetric matrices corresponding to eji and rji, respectively.

3.3. Acceleration Analysis

The translational acceleration of slider Sji is obtained by finding the second order
derivative with respect to time for Equation (1).

..
Lj = Jj ·

.
ωj + Φj (5)

where
..
Lj =

[ ..
Lj1,

..
Lj2,

..
Lj3

]T
,
..
Lji =

eji ·[
.

ωj×rji+ωj×(ωj×rji)]+ljiωl ji ·ωl ji

eT
ji ·ei

, Φj =
[
Φj1, Φj2, Φj3

]T ,

Φji =
[ωj×(ωj×rji)]·eji+ljiωl ji ·ωl ji

eT
ji ·ei

.

The rotational angular acceleration and acceleration of the joint lever center of bjiaji
can be written as follows:

.
ωl ji =

eji×
[ .
ωj×rji+ωj×(ωj×rji)]−eji×

..
Ljiei

lji

al ji =
..
Ljiei +

lji
2

[ .
ωl ji × eji + ωl ji × (ωl ji × eji)]

(6)

Singularities occur when the Jacobian matrices are det(Jaj) = 0 and det(Jbj) = 0.
The first occurs when the joint levers are located in the horizontal plane, and the second
occurs when all projections of the joint lever on the horizontal plane cross the center of
the platform.

4. Inverse Rigid-Body Dynamics

If joint friction is ignored, the D’Alembert principle is employed to calculate the
resultant forces as well as the moments loaded at the center of the components. For the
moving platform mj, the equations can be expressed as follows:

Qmj =

[
Fmj
τmj

]
=

[
Fej + mmg

τej −
(

Rj ImRT
j )

.
ωj −ωj × [(Rj ImRT

j )ωj

]] (7)

where Fej and τej, respectively, denote the applied forces and moments of the moving plat-
form mj and mm and Im denote the mass and inertia of the moving platform mj, respectively.

The summation of the applied and inertial forces, as well as the moments loaded on
the joint lever bjiaji can be expressed as follows:

Ql ji =

[
Fl ji
τl ji

]
=

[
ml g−mlal ji

−
(

Rji IlRT
ji

) .
ωl1i −ωl ji × [(Rji IlRT

ji

)
ωl ji

]] (8)

where Rji denotes the rotation matrix of the body-fixed coordinate system of the joint lever
bjiaji corresponding to O-XYZ, and ml and Il are the mass and inertia of the joint lever bjiaji,
respectively.

The applied and inertial forces loaded at the slider Sji can be obtained as follows:

FLji =
(

mLg−mL
..
Ljiei

)T
ei (9)
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where mL denotes the mass of slider Sji.
Supposing τi is the drive-torque output from the motor, the moment of inertia of the

lead screw on the linear module LNi can be expressed as follows:

τ0i = τi −
2π IL

p

..
L1i (10)

where IL and p are the rotary inertia and lead of the lead screw.
The sum of the virtual work of the active forces and moments, as well as the inertial

forces and moments on the parallel manipulator, must be zero, so the following expression
can be obtained:

2

∑
j=1

ωT
j ·
(

τmj − τm f j

)
+

3

∑
i=1

2

∑
j=1

[
vT

lji · Fl ji + ωT
lji · τl ji

−ωT
aji · τa f ji −ωT

lji · τb f ji

]
+

2

∑
j=1

[
.
L

T
j ·
(

FLj − FL f j

)]
+

.
θ

T
·
(

τ0 − τf

)
= 0 (11)

where τm f j is the sum friction moment of the artificial hip joint and the thrust ball
bearing; ωaji is the relative angular velocity of the spherical joint aji; τa f ji and τb f ji are
the friction moments of the spherical joint aji and the universal joint bji, respectively;
FLj = [FLj1, FLj2, FLj3]

T , FL f j = [FL f j1, FL f j2, FL f j3]
T , and FL f ji is the friction of the slider

Sji;
.
θ =

[ .
θ1,

.
θ2,

.
θ3

]T
,

.
θi is the angular velocity of the lead screw of linear modules LNi,

τ0 = [τ01, τ02, τ03]
T , τf = [τf 1, τf 2, τf 3]

T , and τf i is the friction moment of the lead screw.
According to the relative motion between the joint lever and moving platform, ωaji

can be represented as
ωaji = Jarjiωj (12)

where Jarji =

cαjsγj − cγjsαjsβ j cαjcβ jcγj cγjsαj − cαjsβ jsγj
cαjcγjsβ j + sαjsγj cβ jcγjsαj −cαjcγj − sαjsβ jsγj

0 −cγjsβ j −cβ jsγj

 ·
cβ jcγj −sγj 0

cβ jsγj cγj 0
−sβ j 0 1


and simple notations, with the compact notation sβ j = sin β j and cβ j = cos β j.

Considering joint friction, the input torques driven by the linear module motor can be
expressed as follows:

τ = τL + τf −
p

2π

2

∑
j=1

{
(JT

j )
−1
[(

τmj − τm f j

)
+

3

∑
i=1

(
JT

jvi · Fl ji + JT
jωi · τl ji

−JT
arji · τa f ji − JT

jωi · τb f ji

)]
+
(

FLj − FL f j

)}
(13)

where τL = 2πIL
p

[ ..
L11,

..
L12,

..
L13

]T
.

To signify the contribution of each part to the input torques driven by the linear module
motor, the driving torques were divided into four parts. The four parts are described as the
driving torque transformed into the inertia of the moving platform τm, the driving torque
transformed into the gravity and inertia of the joint lever τl , the driving torque transformed
into the gravity and inertia of the slider τs, and the driving torque transformed into the
inertia of the screw τL.

τm = p
2π

2
∑

j=1

(
JT

j

)−1
τmj

τl =
p

2π

2
∑

j=1

3
∑

i=1

(
JT

j

)−1(
JT

jvi · Fl ji + JT
jωi · τl ji

)
τs =

p
2π

2
∑

j=1
FLj

τL = 2π IL
p

[ ..
L11,

..
L12,

..
L13

]T

(14)
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5. Simulation and Experiment Analysis
5.1. Kinematics Simulation

To investigate the control behavior of hip joint prosthesis motion, experiments were
carried out on ISO14242-1:2014(E), in which the spin axes of the X-axis, Y-axis, and Z-axis
were 18◦–25◦, −4◦–7◦, and −10◦–2◦, respectively. To illustrate the role of the wear test
machines, the control input is shown in Figure 4.
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Figure 4. Loading and displacement parameters for wear-testing machines. (a) Motion curves;
(b) Loading force.

Based on a preliminary parameter optimization considering the mounting dimension
and maximal rotary angle of the spherical joint, maximum stroke and driving force of the
linear module, and orientation working space of the moving platform, the main structural
parameters of the parallel manipulator are obtained, as listed in Table 1.

Table 1. Main structure parameters of the parallel manipulator.

Parameters Values Parameters Values

Length of joint lever (ll) /mm 328 Height (h1)/mm 899
Radius (e)/mm 144 Height (h2)/mm 490
Radius (E)/mm 265 Lead of the lead screw (p)/mm 10

The control strategy of the PD controller based on the workspace is shown in Figure 5,
and the driving force matrix of the active branch chains can be expressed as follows:

Fj = J−1
j [Kd

.
ωj + Kpω] (15)

where ∆ωj = ωd
j −ωj is the attitude angle error of the moving platform.
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To avoid singular positions in the operation process of the parallel manipulator, the
initial position is obtained from the motion curves in Figure 6b at zero after a 30◦ rotation
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around the Z-axis. The displacements, velocities, and accelerations of the sliders were
simulated as shown in Figure 6.
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As shown in Figure 6, the curves of the displacements, velocities, and accelerations of
the sliders were smooth, and there were no rush points. The maximum displacements of slid-
ers S11, S12, and S13, corresponding to the moving platform m1 were 665.58 mm, 660.47 mm,
and 624.42 mm, respectively. The maximum displacements of sliders S21, S22 and S23 corre-
sponding to moving platform m2 were 256.58 mm, 251.47 mm, and 215.42 mm, respectively.
Sliders S11 and S21, S12, and S22, and S13 and S23 were installed on the same lead screws and
the corresponding maximum velocities and accelerations are 275.15 mm/s, 267.80 mm/s,
143.97 mm/s, and 2152.40 mm/s2, 2100.80 mm/s2, 1270.90 mm/s2, respectively.

With moving platform m2 as the control object and moving platform m1 as the follower,
the posture angles were detected by the attitude heading reference system installed on
the moving platform. The errors in the output posture angles of the moving platform are
shown in Figure 7.

From Figure 7, it can be observed that the error of the posture angle around the Z-axis
was larger than that around the X-axis and Y-axis. In the intermediate branch chain, the
position of the rotation center of the moving platform m1 in the absolute reference frames
along the Z-axis direction was influenced by the position of the mobile platform m2, and
the attitude error of the moving platform m1 was greater than that of the moving platform
m2 because of the cumulative effect of the error.
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5.2. Dynamics Simulation

Due to the large number of joints in the parallel Manipulator with two moving plat-
forms, the control performance of parallel manipulator was significantly affected by the
friction of the motion joints. Especially when the robot was used for the artificial hip joint
friction and wear test, the 300 N~3000 N dynamic load was loaded directly on the joint, and
the friction at the artificial joint and thrust ball bearing would have a more significant effect.

During the dynamic simulation of the hip joint simulator, only the effect of the fric-
tional force of the intermediate branch chain with higher loading force on the dynamic
characteristics of the manipulator is discussed. Subsequently, the Coulomb friction model
of the artificial joints and thrust ball bearings is established.

τmfj =
ωj

‖ωj‖
rhµh‖Fej‖+

ωj

‖ωj‖
rtµt‖Fej + mmg‖ (16)

where rh and µh denote the radii and friction factors of the hip joint, and rt and µt denote
the radii and friction factors of the thrust ball bearing, respectively.

The MATLAB software was used to validate the dynamic model of the parallel manip-
ulator. In the manuscript, parts of the virtual prototype are established in the Solidworks
software, and the mass and inertia parameters can be obtained, as shown in Table 2.

From the aforementioned analysis, the contributions of each part to the input torques
actuated by the motors were obtained, as shown in Figure 8.

As shown in Figure 8, in the working process of the parallel manipulator, the maximum
driving torques of the three linear modules related to the inertia of the moving platform
were 300.18 N·mm, 289.79 N·mm, and 267.69 N·mm, respectively. The maximum driving
torques of three linear modules related to the gravity and inertia of the joint lever were
26.22 N·mm, 30.97 N·mm, and 26.38 N·mm, respectively. The maximum driving torques of
the three linear modules related to the gravity and inertia of the slider were 118.41 N·mm,
119.30 N·mm, and 115.11 N·mm, respectively. The maximum driving torques of the three
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linear modules related to the inertia of the lead screw were 74.261 N·mm, 72.69 N·mm,
and 44.12 N·mm, respectively. The driving torques of the three linear modules related to
the moving platform were greater than those associated with the other parts. The driving
torque can be reduced to a certain degree by reducing the masses of the moving platform
and slider. The block diagram of the designed augmented PD controller can be seen in
Figure 9.

The dynamics experiment platform consists of an industrial control computer (IPC), a
drive system, a hydraulic loading system, and a data acquisition system. The control and
compensation program are programmed by LabVIEW and installed in the IPC. The servo
motor is controlled by a motion control card (GTS-400-PV from Goodco) and a servo driver.
The hydraulic cylinder is controlled by PLC and the hydraulic system applies the loading
force by controlling the opening size of the proportional valve. The data acquisition system
consists of an encoder, attitude heading reference system, and pull wire displacement
sensor. The structure of the control and data acquisition system is shown in Figure 10.

Table 2. Mass and inertia parameters of the parallel manipulator.

Parameters Values Parameters Values

Radius of the articular head
(rh)/mm 15 Radius of the thrust ball

bearing (rt) / mm 64

Friction factor of the hip joint (µh ) 0.095 Friction factor of the thrust ball bearing (µt ) 0.025

Mass of the joint lever (ml)/kg 1.43 Acceleration of gravity (g)/
m/s2 9.8

Rotational inertia of the lead
screw (IL)/kg·mm2 54.91 Mass of the slider (mL)/kg 3.00

Inertia tensor of the joint lever
(Il)/kg·mm2

diag(26,395.81, 26,339.29,
480.07)

Inertia tensor of the moving
platform (Im)/kg·mm2

diag(248,030.50, 249,940.25,
386,502.35)
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The rotation angle, angular velocity, and angular acceleration of the servo motor are
measured directly by the encoder. The attitude of the moving platform is measured by
an attitude heading reference system with a single experiment time less than five minutes
caused by the zero point drift of the device. Owing to the measurement delay, the pull-wire
displacement sensor cannot be used for feedback of the control system, but for calibration
of the zero point of the slider.

As observed in Figure 11, the results from the dynamic model and the experiment
showed the same trends in their variation. The drive torque of the three linear modules
was similar in one cycle, which indicates that the load of the linear modules were balanced.
The driving torque was larger at 0.4–0.6 s, with maximum values reached 850 N·mm,
806 N·mm, and 743 N·mm, respectively. Further, there was a large difference in the driving
torque at 0 s–0.6 s and 0.6 s–1 s. Combined with Figure 4b, it can be seen that the friction
torque of the moving platform was larger at 0 s–0.6 s because of the larger pressure output
by the loading system, and the friction torque of the moving platform was smaller at 0.6–1 s
because of the smaller and stable pressure output by the loading system.
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The difference between the theoretical and actual parameters of the parallel manipu-
lator resulted in errors in the driving torque. The errors of the three linear module drive
torque were larger around 0.55 s, and the maximum values reached 158 N·mm, 220 N·mm,
and 186 N·mm, respectively, which may be caused by the rotation direction variation of the
moving platform. At this point, the hydraulic loading system outputs a larger loading force,
and the nonlinear dynamics become significant. Experiments were conducted to verify
the correctness of the dynamic model, which demonstrated that the established dynamic
model can accurately describe the performance of the parallel manipulator.

6. Conclusions

In this study, a 2(3HUS+S) parallel hip joint simulator with two moving platforms
that can be used for simultaneous friction wear tests of two artificial hip joints is proposed.
The inverse kinetics of a parallel manipulator were derived, and the rigid-body dynamics
of the two moving platforms with joint friction were analyzed. In the inverse kinematic
model, the kinematic relationships between the slider of the linear module and the moving
platform were established. Accordingly, a PD controller based on the workspace was
designed, and small errors in the output posture angles of the moving platform verified
the correctness of the derived kinematic model. The right linear module can be selected
according to the kinematic and dynamic models.

A dynamic model of a parallel manipulator with joint friction was designed. The
contributions of each part to the input torques actuated by the motors of the parallel
manipulator were studied, and the results indicated that the driving torques required to
actuate the moving platform were greater than those required to actuate the other parts.
The driving torque could be reduced by reducing the masses of the moving platform
and the slider. The difference between the ideal and actual parameters of the parallel
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moving platform resulted in errors between the driving torques by the dynamic model and
the actual driving torques. The errors were larger around 0.55 s, caused by the rotation
direction variation of the moving platform, and the nonlinear dynamics become significant.
Realistic kinematic and dynamic analyses of parallel manipulators are the basis for control
system design.
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