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Abstract: This paper focuses on training machine learning models using the XGBoost and extremely
randomized trees algorithms on two datasets obtained using static and dynamic analysis of real
malicious and benign samples. We then compare their success rates—both mutually and with
other algorithms, such as the random forest, the decision tree, the support vector machine, and the
naïve Bayes algorithms, which we compared in our previous work on the same datasets. The best
performing classification models, using the XGBoost algorithm, achieved 91.9% detection accuracy
and 98.2% sensitivity, 0.853 AUC, and 0.949 F1 score on the static analysis dataset, and 96.4% accuracy
and 98.5% sensitivity, 0.940 AUC, and 0.977 F1 score on the dynamic analysis dataset. Then, we
exported the best performing machine learning models and used them in our proposed MLMD
program, automating the process of static and dynamic analysis and allowing the trained models to
be used for classification on new samples.

Keywords: malware; classification; static analysis; dynamic analysis; supervised machine learning;
cybersecurity

1. Introduction

Today’s digital devices have become tightly interconnected with people’s lives—almost
everyone uses them to store and access information. However, due to the value of the
affected information, these devices are increasingly targeted by various types of attacks,
with attackers often using malware programs. These are programs that can perform some
kind of malicious activity in the attacked system [1]. According to the statistics published
by Malwarebytes [2], the number of threats is increasing every year, and so is their severity.
As a result of a malware attack, one may lose not only easily replaceable data, but also
sensitive data and even money. The media reports on the dangers of malware more and
more frequently, showing its effects on both companies and individuals. Even corporations
are becoming aware of the seriousness of the situation and are thus devoting significant
parts of their budgets to IT security [3].

Providers of security solutions rush to provide a fix; however, to develop new malware
detection capabilities, they have to react to the constant evolution of existing threats and the
day-to-day appearance of new malware. Traditional detection methods are often no longer
sufficient to counter the more advanced techniques used by malware to bypass detection by
security software. Another disadvantage of using traditional malware detection methods is
that they can only detect malware that has been previously analysed and whose symptoms
are already known. System security software developers also address the need for more
sophisticated malware detection techniques using machine learning models that learn from
specific input data, as they have been successfully applied to a range of other contemporary
problems [4]. An example of the successfully used innovative approaches in the form
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of deep neural network algorithms can be seen in the products of the company Deep
Instinct [5].

Analysis of the literature has led us to believe that the potential of using machine
learning based on the results of a combination of static and dynamic malware analysis
has not yet been explored and compared with the results obtained from state-of-the-art
practical solutions, such as those included in VirusTotal.

The main contributions of this work are the following:

• Analysis of the success of particular machine learning algorithms, such as extreme gra-
dient boosting (XGBoost), extreme random trees (ET), and others, in their application
in the field of malware detection;

• Exploration of the potential of combining static and dynamic analysis of malware
samples through Dependency Walker for static analysis and Cuckoo Sandbox for
dynamic analysis in machine learning applications for malware detection;

• Automation of malware analysis and classification using a newly designed solution in
the form of a software tool;

• Comparison of the proposed software tool with the published theoretical works, as
well as with the solutions used in practice, included in the VirusTotal service.

Section 2 discusses the basics of malware detection and provides an overview of the
current state of the art. Section 3 describes the origin of malicious and benign samples,
how they were processed into datasets using Dependency Walker and Cuckoo Sandbox,
how the models themselves were trained, and how the best hyperparameters were found.
Then, an assessment of the models and their best use in the proposed Machine Learning
Malware Detector (MLMD) program follows. This chapter also includes the basic design of
the program, along with some screenshots of the graphical user interface. In Section 4, we
compare our results with the other resources and also compare the success of our program
with that of the VirusTotal tool. Section 5 concludes and summarizes the paper.

2. Theoretical Background

The following section provides a brief description of the static and dynamic analysis
and the advantages and disadvantages of the traditional malware detection methods. It
also describes several existing works dealing with this issue.

2.1. Malware Analysis

The goal of malware analysis is to discover the functionality and structure of the
particular malware and the attacker’s intentions. The analysis methods can be divided into
the following categories [6]:

• Static analysis—analysis of a program without executing it. Basic static analysis
looks for static information, such as strings, network addresses, called functions,
and executable file header information. Advanced static analysis applies reverse
engineering techniques using various special tools [7].

• Dynamic analysis—analysis of a program during execution. It is performed in a secure
virtual environment, in which the activities of the executed program are observed;
these are then used to deduce the purpose of the program [8]. In a secure environment,
registry changes, network activity, function calls, disk file modifications, and so on
are observed.

Both types of analysis have their advantages and disadvantages. Static analysis is more
secure, as malicious code is not directly executed, and it can be used to detect any malicious
intent. However, the disadvantage of static analysis lies in its being ineffective against
advanced obfuscation techniques aiming to prevent source code analysis [7]. Dynamic
analysis allows one to reveal the functionality of a program without the need (eventually)
for tedious code analysis. However, to its disadvantage, a secure environment is necessary
for its execution [8], as running a malicious sample on a real system could be a risk;



Appl. Sci. 2022, 12, 6672 3 of 24

moreover, more advanced malware can often detect virtual environments or wait for either
a time or a specific event and thus refrain from malicious activity.

2.2. Malware Detection

Currently, these are the most widespread malware detection methods:

• Signature-based detection—the most commonly used malware detection method [9].
Signatures are unique sequences of bytes obtained by malware analysis. These signa-
tures are used to identify a particular piece of malware [8]. Security programs contain
a database of signatures of known malware. Whenever a new file is checked, this
file is analysed and compared with the database [9]. If the analysed file contains a
signature listed in the database, it is highly probable that the file is malicious.

• Behaviour-based detection—during the detection, the behaviour of the program and
its activities are examined. Attempts to perform abnormal or unauthorised action
could indicate the program is malicious or at least suspicious. Examples of abnormal
actions include modifying other files, adding new users to the system, and stopping
system security software, to name a few [9].

• Heuristic detection—this means looking for certain features indicating malicious
behaviour by using rules and algorithms, either by looking for commands and in-
structions typical of malware or by monitoring its behaviour and activities during
execution, or even—frequently—by a combination of the two [10]. Each activity is
then rated in terms of risk, and—if a set threshold is surpassed—preventive action is
taken [11].

The most significant disadvantage of signature-recognition-based detection is that it
can only detect known malware registered in the signature database [8]. This disadvantage
can be observed especially in the case of polymorphic and metamorphic malware. A partial
solution to this issue is to use behaviour-based detection and heuristic detection, as these
methods are capable of detecting new malware with yet unknown signatures. However,
their disadvantage is a higher false positive rate, that is, they tend to mislabel benign
programs as malicious ones [8].

2.3. Detection Using Machine Learning

Recent years have seen a boom in the use of machine learning in many fields. Malware
detection is no exception to this rule. Here, it tries to address the drawbacks of established
detection methods, especially as new malware appears every day. As a result, there is an
increased interest of the scientific community in this area, leading to ever growing amounts
of reference works. These differ mainly in the algorithms and the types of analysis (static
or dynamic) used. Several review studies have already been carried out on this issue.
Gibert et al. [12] presented a survey of machine learning techniques for malware detection
and, in particular, deep learning techniques. The authors reviewed a total of 67 research
papers tackling the problem of malware detection and classification on the Windows
platform. The reviewed papers were compared and analysed according to the input features,
the classification algorithm, and the characteristics of the dataset. Another systematic
review of machine-learning-based Android malware detection techniques was presented
by Senanayake et al. [13]. The authors of this article critically evaluated 106 articles,
highlighting their strengths and weaknesses as well as potential improvements.

In the following, we describe some existing practically focused works in this domain,
specifically considering supervised machine learning.

2.4. Reference Works

Malware detection using machine learning techniques was first addressed by Schultz
et al. in their work [14], using static analysis techniques, focusing on features including
extracted strings, header information from executable files (the called and imported func-
tions), and a contiguous sequence of n bytes (n-grams). The authors of the aforementioned
paper used three machine learning algorithms (RIPPER, naïve Bayes (NB), and multi-NB),
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complemented with a traditional malware detection method (signature-based detection)
for comparison purposes. The overall detection accuracy in their experiments ranged
from 83.62% to 97.11% when using machine learning algorithms, which was a significant
increase compared to the traditional, signature-based detection, which had an overall
accuracy of 49.28%.

The use of static analysis techniques was also discussed by Bai et al. [15]. In their
work, they used 197 features extracted from the headers of executable files, namely the
number of API calls and the number of dynamically linked libraries used. To select the most
appropriate features that could best distinguish between malicious and benign samples,
the authors used filtering and wrapper methods. The algorithms used and compared in
this work were decision-tree-based algorithms, namely the J48 and random forest (RF)
algorithms. By performing several experiments, the authors achieved an overall detection
accuracy ranging from 94.6% to 99.1%.

The header information of the executables was also used by Kumar et al. [16], who used
an integrated feature set with a total of 68 features. The authors used and compared a total of
six algorithms in their work, namely the NB, RF, decision tree (DT), logistic regression (LR),
linear discriminant analysis (LDA), and k–nearest neighbors (KNN) algorithms. The overall
detection accuracies achieved ranged from 56.04% to 98.78%. The least successful algorithm
in the comparison was the NB algorithm, while the most successful algorithm with the best
detection accuracy was the RF algorithm.

The features of decompiled machine code—opcode sequences of various lengths—were
used by Bragen [17], who also used and compared six algorithms, namely the NB, RF, KNN,
multilayer perceptron (MLP), support vector machine (SVM), and J48 algorithms. Again,
the most successful algorithm with the best detection accuracy was the RF algorithm, as it
achieved a detection accuracy of 95.58% for three-byte sequences (3-grams).

By extracting five-byte sequences (5-grams) and API call information from the headers
of the executable files, Chowdhury et al. [18] used and compared the success rates of
multiple algorithms, notably the NB, J48, RF, SVM, and MLP. They performed several
experiments according to the type of features used. The best detection accuracy (97.7%)
was obtained using artificial neural network (ANN) with a feed-forward perceptron and
combining both types of features. According to this work, the least successful algorithm
was the NB algorithm, with a detection accuracy of 87.5%.

The authors of the aforementioned works extracted the features by using only static
analysis techniques. The issue with this malware detection approach was described by
Moser et al. [19], citing the use of obfuscation techniques to hide malicious code as the
main reason. Thus, they recommend also using dynamic analysis, which is less vulnerable
to this problem.

In addition to the features obtained by extracting strings from executables using static
analysis techniques, Shijo and Salim [20] also performed dynamic analysis in an isolated
virtual environment to obtain information including registry changes and API function
call counts. In their work, they compared the RF and SVM algorithms and their success
rates in different types of analysis, through several experiments. They obtained the best
result (98.7%) by applying the SVM algorithm to features obtained by combining static
and dynamic analysis. When applying the algorithm to features obtained by dynamic
analysis only, the detection accuracy was slightly worse, specifically 97.1%. Considering
static analysis, the detection accuracy was 95.88%. Thus, the achieved results showed that
the combination of static and dynamic analysis increased the detection accuracy compared
to the use of static and dynamic analysis alone.

The use of dynamic analysis techniques to extract features was also discussed by Fir-
dausi et al. [21], who used the open-source Anubis tool for dynamic analysis. In their work,
these authors used and compared a total of five machine learning algorithms—notably NB,
SVM, MLP, KNN, and J48—in several experiments. They found the J48 algorithm to be the
best (having a 96.8% detection accuracy) and the NB algorithm to be the worst (having a
62.8% detection accuracy).
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Mosli et al. [22] used the Cuckoo Sandbox, an automated dynamic malware analysis
system, to extract features from memory dumps, which are produced during the execution
of the samples. They compared the accuracies of three algorithms: KNN, SVM, and RF.
They obtained the best detection accuracy using the RF algorithm, namely 91.4%. The worst
results (91% detection accuracy) were obtained using the KNN algorithm.

Kumar and Geetha [23] proposed a malware classification scheme that constructs a
model using low-end computing resources and a very large balanced dataset—the EMBER
dataset, which consists of 1.1 million entries—for malware. The authors compared the per-
formance of nine algorithms: Gaussian NB, KNN, linear support vector classification (SVC),
DT, AdaBoost, RF, extra trees, gradient boost (GDB), and XGBoost. In their experiments,
XGBoost outperformed the other algorithms. Therefore, the authors built the final classifier
based on XGBoost. Their hyperparameter-tuned model has an accuracy of 98.5% and AUC
of 0.9989. This research is unique and significant because it uses an entire dataset with
XGBoost using gradient boost decision tree (GBDT) algorithm to get matching or higher
accuracy with low computing resources.

The NB, DT, RF, GDB, and XGBoost algorithms were used for developing the classi-
fication model for malware detection in the research of Dhamija and Dhamija [24]. They
considered five approaches to find out the discerning features for classification. Four
approaches were based on the presence of features in malware and/or benign files. The au-
thors, in their fifth approach, use feature selection methods, namely the chi-square, mutual
information, and extra trees classifiers. The features obtained from these three classifiers
were combined to form a feature set in this approach. The best detection accuracy was
99.5% for both RF and XGBoost.

Shhadat et al. [25] applied seven learning algorithms on a benchmark dataset in their
experiments, namely KNN, SVM, Bernoulli NB, RF, DT, logistic regression (LR), and hard
voting (HV) on particular classification algorithms: LR, SVM, Bernoulli NB, and DT. This
paper shows that the highest accuracy was achieved by DT, with a score 98.2% for binary
classification and 95.8% by RF for multi-class classification. The lowest accuracy was
achieved by Bernoulli NB, with an accuracy of 91% and 81.8% for binary classification and
multi-class classification, respectively.

An overview of the existing works is available in Table 1.

Table 1. Overview of existing works.

Work Analysis Type Dataset Size
(Malicious/Clean) Algorithms Compared Best Accuracy (%) Best Sensitivity (%)

Schultz et al. [14] static 3265/1001 RIPPER, NB, Multi-NB 97.11 97.43

Bai et al. [15] static 10,521/8592 J48, RF 95.1–99.1 91.3–99.1

Kumar et al. [16] static 2722/2488 RF, DT, LR, NB,
LDA, KNN 98.78 99.0

Bragen [17] static 992/771 RF, NB, KNN, SVM,
J48, ANN 95.58 96.77

Chowdhury et al. [18] static 41,265/10,920 NB, J48, RF, SVM, ANN 97.7 91

Shijo, Salim [20] static 997/490 SVM, RF 95.88 95.9

Shijo, Salim [20] dynamic 997/490 SVM, RF 97.16 97.2

Shijo, Salim [20] combined 997/490 SVM, RF 98.71 98.7

Firdausi et al. [21] dynamic 220/250 NB, SVM, MLP,
KNN, J48 96.8 95.9

Mosli et al. [22] dynamic 3130/1157 KNN, SVM, RF 91.4 91.1

Kumar, Geetha [23] Ember dataset 300 K/300 K
Gaussian NB, KNN,

Linear SVC, DT,
AdaBoost, RF, Extra
Trees, GB, XGBoost

98.5 0.89–0.99

Dhamija, Dhamija [24] open data source 4060/2709 NB, DT, RF, GB, XGBoost 99.95 -

Shhadat et al. [25] open data source 984/172 KNN, SVM, Bernoulli
NB, RF, DT, LR, HV 98.2 92
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3. Design Methods

It is clear that using machine learning to detect malware has the advantage of good
detection accuracy. Existing research also shows that using decision trees to detect malware
seems to be a suitable approach, due to its accuracy in detecting malicious samples. Detec-
tion accuracy can also be increased by combining multiple models, as is evident in the case
of the RF algorithm.

For the above reasons, we chose decision-tree-based algorithms for our program. Thus,
the next section contains a description of the steps of supervised machine learning, namely:

1. Data acquisition and processing into a suitable form to train the machine learning
models;

2. Training the models on the training data and finding the best hyperparameters for the
particular model;

3. Evaluating the models using test data and comparing them.

These steps result in trained models capable of making classifications even on the
previously unknown samples utilised in our malware detection program.

3.1. Experimental Hardware Environment

This section describes the hardware used for all tasks performed. The used workstation
had the following specifications:

• Processor: Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz;
• Memory: 16 GB DDR4;
• Hard drive: Samsung SSD 860 PRO 512GB, Samsung SSD 970 EVO Plus 500GB;
• GPU: NVIDIA GeForce RTX 3060 12 GB.

3.2. Obtaining the Training Samples

The set of samples for training and testing the classification models includes a total
of 3838 executable files—3000 malicious and 838 benign. The malicious samples come
from the VirusShare repository [26] of real malicious samples intended for the research
community and the like. The particular downloaded package was VirusShare_00164.zip,
containing a total of 65,536 malicious samples; of these, we selected 3000 executable files,
in both exe and msi format. The benign samples were taken from the PortableFreeware [27]
and PortableApps [28] repositories, from which a total of 838 benign samples in both exe
and msi formats were downloaded.

3.3. Static Analysis of the Samples

To perform static analysis of the particular programs (i.e. without executing them), we
used the Dependency Walker tool. We stored and subsequently processed its outputs into
a dataset.

3.3.1. Dependency Walker

Dependency Walker [29] is a freely available program created by Microsoft. It is a
tool used to analyse executable files, providing detailed information about the scanned file,
including information about the imported modules and functions.

3.3.2. Processing the Output and Creating the Dataset

We used the Dependency Walker tool to perform a static analysis of all samples and
to store the output of each analysis in text files containing the imported and exported
functions of the respective modules, as shown in Figure 1. The features we focused on were
112 selected functions, most commonly imported by malicious programs. Their names
were thus used as the dataset columns. Then, the number of imports of the particular
functions was written into the corresponding column (bearing the name of that function)
of the dataset. We appended a column entitled malware to the dataset. The values in the
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corresponding rows were either ‘1’ (in the case of malicious samples) or ‘0’ (in the case of
benign samples).

Figure 1. Static analysis output (excerpt).

In some cases, we could not perform static analysis using Dependency Walker, due
to the incorrect format of the test file and the missing modules, so these outputs were not
analysed. After the processing, the training and testing dataset, with 3584 rows in total,
was saved in csv format. The composition of the dataset is shown in Table 2.

Table 2. Composition of the dataset after static analysis.

Class Count

Malicious 2747
Benign 837
Total 3584

3.4. Dynamic Analysis of the Samples

Dynamic analysis was performed by running and observing the behaviour of indi-
vidual samples in a secure virtual environment, provided by the Cuckoo Sandbox tool.
The result of the analysis of the corresponding sample was then stored in a report file,
from which the features were extracted into a dataset. As features, we used the call counts
of the 298 Windows API functions called during the execution of the respective samples.
We focused on all functions that were found during the analysis of the malicious samples.

3.4.1. Cuckoo Sandbox

Cuckoo Sandbox [30] is an open-source tool to analyse executable and other files or
web pages in an isolated environment. After initiating the analysis using a web interface or
a REST API, the system collects runtime information including the files created, deleted, or
downloaded during execution, memory handling, system function calls, network activity,
and so on. The collected information is then also accessible via a graphical web interface or
a REST API.

The tool includes central management software [30] controlling the triggering and
the collection of the sample analysis results. The latter is performed in an isolated
environment—this may be a virtual or a physical device or multiple devices.

3.4.2. Dynamic Analysis Test Environment

To perform dynamic analysis, the Cuckoo Sandbox tool has to be configured correctly,
and virtual devices to run the dynamic analysis of the sample have to be created. The test
environment is shown in Figure 2. Its key parts are as follows:

• A host system running Ubuntu 18.04 LTS. This operating system contains Python
version 2.7, an installation prerequisite of the Cuckoo Sandbox tool. This system
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contains the aforementioned central management software that manages the dynamic
analysis, accessible through port 8090 of the localhost server, using a REST API.

• A guest system running Windows 7—in our case, two virtual machines created using the
VMCloak tool. On these, we performed the dynamic analysis of the samples. We stored
the clean, post-installation state of these systems as an environment snapshot. After the
analysis, this environment snapshot was automatically restored, as the execution of
the malicious samples may have disrupted the environment. Since the operating
system inherently contains security mechanisms that could prevent malicious activity
from being performed during dynamic analysis, the Windows Defender, Windows
Firewall, and Windows Update security mechanisms were disabled on both guest
systems. The virtual machines could access the Internet using the VirtualBox host-only
adapter.

Figure 2. Architecture of the dynamic analysis environment.

3.4.3. Obtaining and Processing the Output, Creating the Dataset

To work with the Cuckoo Sandbox tool, we used the requests Python library: we sent
HTTP requests to the system endpoints containing the central management software (the
host system), which collects the analysis results. We used four methods of the CuckooAPI
class, implemented by us, to work with the Cuckoo Sandbox tool, namely:

• A method to submit a file for analysis (submit_file), returning the assigned ID;
• A method to submit a URL for analysis (submit_url), also returning the assigned ID;
• A method to find out the analysis status (get_status), returning the status of the

analysis with the given ID;
• A method to retrieve the final analysis report (save_report) in JSON format.

After retrieving the result of the dynamic analysis in JSON format, it is processed by a
Python script to find the number of calls to each of the 298 selected Windows API functions.
These thus constitute the features of the dataset; their names are stored in the dataset header.
The names of the functions and their runtime call counts are stored in the output JSON file,
in the behavior object and its nested objects, as shown in Figure 3. If a particular function is
found, the value in the corresponding column of the dataset is updated by the number of
calls to that function, otherwise a ‘0’ value is written to the corresponding field. After the
runtime call counts of all functions have been determined, the value of the malware column
is stored—either ‘1’ (in the case of malicious samples) or ‘0’ (in the case of benign samples).

As in the case of static analysis, in some cases, dynamic analysis failed, as the format
of the sample processed by Cuckoo Sandbox was incorrect, so these outputs were not
processed. After the processing, the training and testing dataset, with 3765 rows in total,
was saved in csv format. The composition of the dataset is shown in Table 3.
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Figure 3. Dynamic analysis output.

Table 3. Composition of the dataset after dynamic analysis.

Class Count

Malicious 2937
Benign 828
Total 3765

3.5. Training and Testing Classification Models

In this paper, we analyse the use of two supervised machine learning algorithms.
Both are based on decision trees, the use of which seems very appropriate based on the
results in existing research, in which decision-tree-based algorithms performed best. These
algorithms are the following:

• Extremely randomized trees (ET for short), implemented using the ExtraTreesClassifier
class of the Scikit-learn package;

• Extreme gradient boosting (XGBoost for short), implemented using the XGBClassifier
class from the xgboost package.

Both datasets were split using the train_test_split method from the Scikit-learn
package, with 75% of the data used for training and 25% for testing. We tested several values
of the hyperparameters listed in Tables 4 and 5. For each combination of hyperparameters,
we repeated training and testing 20 times. The classification model training based on
XGBoost for 20 iterations in our hardware environment took 16 h and 23 min. Training the
ET model took 15 h and 45 min. It is worth mentioning that the training time also depends
on the CPU utilization. The results obtained were written into a single csv file.

Table 4. Tested hyperparameters of the ExtraTreesClassifier classifier.

Hyperparameter Value

criterion gini; entropy
n_estimators 10; 50; 100; 150; 200; 300

min_samples_split 2; 3; 4; 5
min_samples_leaf 1; 2; 3; 5

max_features auto; sqrt; log2; None
class_weight balanced; balanced_subsample; None
max_depth 3; 5; 8; None
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Table 5. Tested hyperparameters of the XGBClassifier classifier.

Hyperparameter Value

n_estimators 10; 50; 100; 150; 200; 250; 300
max_depth 3; 5; 7; 9; 11

learning_rate 0.001; 0.01; 0.1; 0.2; 0.3
colsample_bytree 0.3; 0.7; 1

subsample 0.5; 1
scale_pos_weight 0.3

gamma 0; 1; 2; 3

3.6. Evaluation of the Models

We calculated the mean values of the respective results of the 20 iterations, obtained
for each combination of hyperparameters, and calculated the standard deviation values.
We ranked them from best to worst with respect to the classification accuracy metric.
Complementary to the metrics listed above were the specificity and sensitivity metrics.

3.6.1. Evaluation Metrics

The metrics we used are derived and can be calculated from the confusion matrix shown
in Figure 4, according to which the classification result can be evaluated as necessary. It
contains the following values [31]:

• True negative (TN)—the number of correctly identified benign samples;
• True positive (TP)—the number of correctly identified malicious samples;
• False positive (FP)—the number of incorrectly identified malicious samples;
• False negative (FN)—the number of incorrectly identified benign samples.

Figure 4. The confusion matrix.

Classification Accuracy

Classification accuracy expresses the number of samples—compared to the total
number of samples—that were classified correctly. It is expressed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision

Precision expresses how many samples of all positive samples were correctly predicted
as positive. It is the first part of F1 score. It is expressed as follows:

Precision =
TP

TP + FP
(2)
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Sensitivity (aka Recall)

Sensitivity (recall) expresses the ability of the model to correctly classify positive (in
our case: malicious) samples, that is, it expresses how many samples of all positive samples
were correctly classified as positive. A model with high sensitivity succeeds well in finding
all the positive cases in the data. It is the second part of F1 score. It is expressed as follows:

Sensitivity = Recall =
TP

TP + FN
(3)

Specificity

Specificity expresses the ability of the model to correctly classify negative (in our case:
benign) samples, that is, it expresses how many samples of all negative samples were
correctly classified as negative. It is expressed as follows:

Specificity =
TN

TN + FP
(4)

F1 Score

Precision and recall are the two most common metrics that take into account class
imbalance. F1 score expresses the harmonic mean between recall and precision values.
The goal of the F1 score is to combine the precision and recall metrics into a single metric.
It is expressed as follows:

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

Area under the Curve

The area under the curve (AUC) is an aggregated measure of the performance of a
binary classifier on all possible threshold values of the receiver operating characteristics
curve (ROC). It is calculated as the area under this ROC. The AUC ranges from 0 to 1.
The bigger the AUC score, the better our classifier is.

3.6.2. Extremely Randomized Trees

Table 6 shows the top five results obtained by applying the ET algorithm to the static
analysis data. In the best case, the mean classification accuracy was 91.786%, with a mean
sensitivity of 97.176% and a mean specificity of 74.067%. Recall–the part of the F1 score that
takes into account not only the number of prediction errors that the model makes, but also
looks at the type of errors that are made—achieved a value of 0.948. The AUC was 0.856.
Slightly better results were obtained by applying this algorithm to the dynamic analysis
data shown in Table 7. With these data, in the best case, the mean classification accuracy
was 96.387%, with a mean sensitivity of 98.168% and a mean specificity of 90.281%. As far
as static analysis data are concerned, the specificity metric showed lower values, which is
associated with a larger number of false positives and thus lower classification accuracy.
The F1 score was 0.977 and the AUC 0.942. Both metrics achieved a slightly better score
compared to the ET algorithm realized on the data coming from the static analysis. This
was caused by the different proportions of malware and benign files in the data sets.
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Table 6. Best results for the extremely randomized trees algorithm (static analysis).

Parameters Classification
Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC F1

ET_S_1 91.786 ± 0.697 97.176 ± 0.890 74.067 ± 3.107 0.856 ± 0.014 0.948 ± 0.017
ET_S_2 91.775 ± 0.623 97.322 ± 0.817 73.541 ± 3.326 0.854 ± 0.014 0.948 ± 0.016
ET_S_3 91.774 ± 0.625 97.489 ± 0.845 72.990 ± 3.239 0.852 ± 0.014 0.948 ± 0.017
ET_S_4 91.769 ± 0.650 97.445 ± 0.853 73.110 ± 3.295 0.853 ± 0.014 0.948 ± 0.016
ET_S_5 91.769 ± 0.676 97.198 ± 0.838 73.923 ± 3.403 0.856 ± 0.015 0.948 ± 0.017

Table 7. Best results for the extremely randomized trees algorithm (dynamic analysis).

Parameters Classification
Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC F1

ET_D_1 96.387 ± 0.685 98.165 ± 0.497 90.281 ± 2.302 0.942 ± 0.012 0.977 ± 0.010
ET_D_2 96.375 ± 0.530 98.039 ± 0.525 90.663 ± 1.753 0.944 ± 0.009 0.977 ± 0.010
ET_D_3 96.375 ± 0.540 98.202 ± 0.568 90.102 ± 1.530 0.942 ± 0.008 0.977 ± 0.011
ET_D_4 96.375 ± 0.705 98.016 ± 0.495 90.740 ± 2.229 0.944 ± 0.012 0.977 ± 0.010
ET_D_5 96.375 ± 0.605 97.875 ± 0.510 91.224 ± 1.832 0.945 ± 0.010 0.977 ± 0.010

3.6.3. Extreme Gradient Boosting

The XGBoost algorithm performed slightly better on both static and dynamic analysis
data. Considering static analysis, as shown in Table 8, in the best case, the mean classifi-
cation accuracy was 91.920%, the mean sensitivity was 98.253%, and the mean specificity
was 71.100%. The best XGB model trained on features from the static analysis achieved
an F1 score of 0.949 and 0.847 AUC. Considering dynamic analysis, as shown in Table 9,
in the best case, the mean classification accuracy was 96.467%, the mean sensitivity was
98.514%, the mean specificity was 89.439%, the F1 score was 0.977, and the AUC was
0.940. The values obtained for the F1 metric and for the AUC are very similar to the values
obtained by ET in both (static, dynamic) cases.

Table 8. Best results for the XGBoost algorithm (static analysis).

Parameters Classification
Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC F1

XGB_S_1 91.920 ± 0.658 98.253 ± 0.472 71.100 ± 3.051 0.847 ± 0.014 0.949 ± 0.009
XGB_S_2 91.914 ± 0.617 98.508 ± 0.380 70.239 ± 2.762 0.844 ± 0.013 0.949 ± 0.008
XGB_S_3 91.897 ± 0.609 98.231 ± 0.426 71.077 ± 2.980 0.847 ± 0.014 0.949 ± 0.008
XGB_S_4 91.858 ± 0.635 98.464 ± 0.452 70.143 ± 3.048 0.843 ± 0.014 0.949 ± 0.009
XGB_S_5 91.853 ± 0.717 97.584 ± 0.492 73.014 ± 3.338 0.853 ± 0.016 0.948 ± 0.010

Table 9. Best results for the XGBoost algorithm (dynamic analysis).

Parameters Classification
Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC F1

XGB_D_1 96.467 ± 0.560 98.514 ± 0.602 89.439 ± 2.484 0.940 ± 0.011 0.977 ± 0.012
XGB_D_2 96.438 ± 0.522 98.670 ± 0.780 88.776 ± 2.499 0.937 ± 0.011 0.977 ± 0.015
XGB_D_3 96.387 ± 0.517 98.789 ± 0.722 88.138 ± 2.466 0.935 ± 0.011 0.977 ± 0.014
XGB_D_4 96.381 ± 0.521 98.782 ± 0.563 88.138 ± 2.482 0.935 ± 0.011 0.977 ± 0.011
XGB_D_5 96.341 ± 0.529 98.841 ± 0.559 87.755 ± 2.382 0.933 ± 0.011 0.977 ± 0.011

3.7. Choosing the Best Model

Using several metrics, we compared the best results with the results of our previ-
ous works, in which we compared multiple algorithms—RF, DT, SVM, and NB—on the
same dataset.
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Table 10 shows a comparison of the best results for each of the algorithms implemented
herein and in our previous work [32], using the dataset obtained by static analysis of the
samples using Dependency Walker. The results are ranked according to the classification
accuracy metric from best to worst.

Table 10. Comparison of the best results for each algorithm (static analysis).

Algorithm Classification
Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC

XGB 91.92 ± 0.66 98.25 ± 0.47 71.10 ± 3.05 0.85 ± 0.01
ET 91.79 ± 0.70 97.18 ± 0.89 74.07 ± 3.11 0.86 ± 0.01
RF 91.32 ± 0.92 96.94 ± 0.60 72.82 ± 2.93 0.85 ± 0.02
DT 89.74 ± 0.98 95.76 ± 1.08 69.97 ± 2.56 0.83 ± 0.01

SVM (poly) 88.48 ± 0.78 95.46 ± 0.66 65.55 ± 2.54 0.81 ± 0.01
SVM (rbf) 88.11 ± 0.61 96.69 ± 0.65 59.94 ± 2.50 0.78 ± 0.01

SVM (linear) 87.94 ± 1.02 95.75 ± 0.86 62.25 ± 4.16 0.79 ± 0.02
NB 42.27 ± 1.28 26.61 ± 1.66 93.72 ± 1.11 0.60 ± 0.01

Similarly, Table 11 shows a comparison of the best results for each of the algorithms
implemented herein and in our previous work [33], using the dataset obtained by dynamic
analysis of the samples using Cuckoo Sandbox. Again, the results are ranked according to
the classification accuracy metric from best to worst.

Table 11. Comparison of the best results for each algorithm (dynamic analysis).

Algorithm Classification
Accuracy (%) Sensitivity (%) Specificity (%) ROC AUC

XGB 96.47 ± 0.56 98.51 ± 0.60 89.44 ± 2.48 0.94 ± 0.01
ET 96.39 ± 0.68 98.16 ± 0.50 90.28 ± 2.30 0.94 ± 0.01

RFC 95.95 ± 0.58 98.08 ± 0.49 88.66 ± 2.34 0.94 ± 0.01
DT 94.53 ± 0.74 96.37 ± 0.73 88.20 ± 2.53 0.92 ± 0.01

SVM (linear) 92.38 ± 0.83 97.82 ± 0.62 73.69 ± 2.88 0.86 ± 0.01
SVM (poly) 92.17 ± 0.79 97.60 ± 0.69 73.54 ± 3.15 0.86 ± 0.02
SVM (rbf) 91.93 ± 0.84 98.68 ± 0.50 68.76 ± 3.17 0.84 ± 0.02

NB 59.53 ± 1.76 48.58 ± 2.42 97.14 ± 1.31 0.73 ± 0.01

Since in the proposed program, our main goal was to correctly detect as many
malicious samples as possible, the main compared metric was the sensitivity metric.
The XGBoost algorithm performs better than the other algorithms, in both cases. Thus,
we then exported and stored the models containing a combination of hyperparameters
achieving the best results (denoted as XGB_S_1 in Table 8 and XGB_D_1 in Table 9) using
the joblib library, for further use. The hyperparameter values for these models are shown in
Table 12. The receiver operating characteristics curve (ROC) for these models are shown
on Figure 5

Table 12. Values of the tested hyperparameters of the best models.

Model n_estimators max_depth learning_rate colsample_bytree subsample scale_pos_weight gamma

XGB_S_1 300 11 0.01 0.7 1 0.3 1
XGB_D_1 300 11 0.01 0.3 1 0.3 0
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Figure 5. ROC for the best models: (a) ROC for XGB_S_1 model; (b) ROC for XGB_D_1 model.

3.8. The Program and Its User Interface

To apply the trained models to classify new samples, we designed a program with a
graphical user interface to make scanning of new executables easier. In addition, it also
offers other functionalities, such as the following:

• Scanning of multiple files in a folder or the whole system;
• Quarantining malicious executable files;
• Scheduled scanning according to user-specified conditions.

Further features are scanning and classification of web sites using the Cuckoo Sandbox,
which also offers such functionality.

We created the graphical user interface using the PyQt5 Python library. The program
is composed of several basic windows, complemented by additional modal windows.
The basic window of the program consists of the following:

• A screen to select a file or to enter a URL to be scanned or to scan the entire system;
• A screen showing an overview of scheduled one-time or repeated scans of files

and folders;
• A screen showing an overview of already completed scans;
• A screen showing quarantined files;
• A screen to view and change program settings.

The main window of the program consists of a screen to select a file or to enter a URL
to be scanned or to scan the entire system. This is depicted in Figure 6. It appears upon
program start-up.
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Figure 6. The main screen of the program.

3.8.1. Scanning a File

After initiating the scanning of the test sample, the following steps are performed:

1. Static analysis using Dependency Walker and dynamic analysis using Cuckoo Sand-
box, resulting in two analysis outputs. From these, the features are extracted and the
dataset is created (as in the case of the training data).

2. Loading the two machine learning classifiers trained on the training data, separately,
for the dataset obtained by static analysis and for the dataset obtained by dynamic
analysis.

3. Classification itself.
4. Combining the obtained results (voting) to decide on the malicious, suspicious, or

benign nature of the test sample.

This sequence of steps is shown in Figure 7.

Figure 7. The proposed detection method.
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Obtaining the Final Result—Malicious/Benign Nature

The classifier assigns a value of ‘1’ if the sample is malicious and ’0’ if the sample is
benign. As the detection system consists of two classifiers, their results have to be combined
to determine the result, as shown in Table 13.

Table 13. Obtaining the final result of the classification concerning a file.

Result (Static Analysis) Result (Dynamic Analysis) Final Result

malicious (1) malicious (1) malicious
malicious (1) benign (0) suspicious

benign (0) malicious (1) suspicious
benign (0) benign (0) benign

After evaluating the maliciousness of a sample, if a malicious or suspicious sample
is found, the user is prompted to select the action to be performed with the scanned file,
as shown in Figure 8.

Figure 8. Action on a scanned file.

3.8.2. Scanning a Web Address

URL scanning is an additional feature of the program, using and mediating the
functionality of the Cuckoo Sandbox tool. In addition to the analysis of files of various
formats, this tool also allows the input of a URL, which is then visited in a browser and
analysed in an isolated virtual system environment. Once the analysis is complete, the result
is returned in the form of a JSON file containing the resulting score, ranging from 0 to
10 (in the info object), a description of the threats found, and their severity (the signatures
array), as shown in Figure 9. As to the values, 0 indicates the lowest threat level, and 10 the
highest level.

Finally, the user sees the resulting score and a verbal rating, as depicted in Table 14.

Table 14. The final score of URL scanning.

Maliciousness Score (0 = min., 10 = max.) Final Result

0 ≤ score < 4 secure
4 ≥ score < 7 suspicious

7 ≥ score ≤ 10 very suspicious
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Figure 9. Output after URL analysis by Cuckoo Sandbox.

3.8.3. Quarantine

If a suspicious or potentially malicious file is detected, many antivirus solutions allow
quarantining the file in order to prevent its execution and thus its spread to other parts of
the system. The quarantined files are not deleted, but moved to a folder hidden from the
users and—eventually—modified to prevent them from being executed. The user can then
(for example, based on additional information about the file) decide whether to keep the
quarantined file, to remove it from the quarantine and from the entire system, or to restore
it to its original location in the system.

Our program uses the Quarantine folder, located in the project directory. It is used to
preserve files moved by the program or by the user. The files in this folder are encoded
using base64 encoding and stored in .b64 format. The steps of quarantining a file are as
follows (similarly, recovering a file from the quarantine is performed by decoding it):

1. Opening the original file in read binary mode;
2. Opening a new file in write binary mode in the Quarantine folder;
3. Reading the original file line by line and transforming (encoding) it using the base64io

library;
4. Writing each transformed line to the new file;
5. Deleting the original file.

The program includes a screen providing an overview of the quarantined files. This
allows the user to restore them to their original locations and permanently remove them
from the quarantine, as depicted in Figure 10.
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Figure 10. The quarantine screen.

4. Evaluation

To evaluate the success rate, we compared our results with the following:

• Existing studies, mentioned at the beginning hereof;
• The free VirusTotal tool.

4.1. Comparison with Existing Studies

Table 15 shows a comparison with existing studies, mentioned earlier. It shows the
accuracy and sensitivity values applicable to the best cases, using the algorithms presented.
Our accuracy and sensitivity values are expressed as arithmetic mean values. They were
obtained by testing during the respective iterations and during the search for the best
parameters on a specially crafted dataset (25% of the original dataset).

Table 15. Comparison with existing studies.

Work Analysis Type Dataset Size
(Malicious/Clean) Best Algorithm Accuracy (%) Sensitivity (%)

Schultz a kol. [14] static 3265/1001 RF 97.11 97.43
Bai a kol. [15] static 10,521/8592 J48 95.1–99.1 91.3–99.1

Kumar a kol. [16] static 2722/2488 RF 98.78 99.0
Bragen [17] static 992/771 RF 95.58 96.77

Chowdhury a
kol. [18] static 41,265/10,920 ANN 97.7 91

Shijo a Salim [20] static 997/490 SVM 95.88 95.9
This study static 2747/837 XGBoost 91.92 98.25
This study dynamic 2937/828 XGBoost 96.48 98.51

Shijo a Salim [20] dynamic 997/490 SVM 97.16 97.2
Shijo a Salim [20] combined 997/490 SVM 98.71 98.7

Firdausi a kol. [21] dynamic 220/250 J48 96.8 95.9
Mosli a kol. [22] dynamic 3130/1157 RF 91.4 91.1

Kumar and
Geetha [23] Ember dataset 300 K/300 K

Gaussian NB,
KNN, Linear SVC,
DT, AdaBoost, RF,

Extra Trees,
GB, XGBoost

98.5 0.89–0.99

Dhamija and
Dhamija [24] Open data source 4060/2709 NB, DT, RF,

GB, XGBoost 99.95 -

Shhadat et al. [25] Open data source 984/172
KNN, SVM,

Bernoulli NB, RF,
DT, LR, HV

98.2 92
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We have achieved particularly good results in terms of the sensitivity metric, so we
can classify malicious samples well, while maintaining a low false negative rate. For the
dataset obtained by static sample analysis, we lag behind slightly in terms of classification
accuracy—this is mainly related to the number of false positives, which we attribute to the
imbalanced data. In the case of the dataset obtained by dynamic sample analysis, the results
are slightly better than those obtained by static analysis, which may be due to a better
selection of features to distinguish between malicious and benign samples in the case of
the data obtained by dynamic analysis.

4.2. Comparison of MLMD and VirusTotal

VirusTotal is one of the most popular online tools to scan suspicious files and websites.
It is a kind of information aggregator combining the output of various—currently more
than 70—antivirus products. The following comparison is a comparison of the output of
our own MLMD program with the output of VirusTotal.

4.2.1. Test Samples

The test suite consisted of 105 samples. Its composition in terms of maliciousness is
shown in Table 16.

Table 16. Test sample composition.

Class Count

Malicious 70
Benign 35
Total 105

The malicious samples consisted of executables downloaded from the VirusShare
repository of malicious samples, namely the VirusShare_00164.zip package. The malicious-
ness was assessed by the VirusShare repository. This was also used to obtain our training
data. As the aforementioned package contains a total of 65,536 malicious samples, and we
only used the first 3000 samples for training, we selected samples that were not used in
training our machine learning models. The benign samples also consisted of executables
randomly selected from the free PortableApps site.

We tested each test sample with both our program and the VirusTotal tool. After testing
a particular sample by our program, we recorded one of the following results:

• Malicious—both classification models classified the sample as malicious;
• Suspicious—one classification model classified the sample as malicious, the other

as benign;
• Benign—both classification models classified the sample as benign.

In case of the VirusTotal tool, the score, recorded for the respective sample, consisted
of the following:

• The number of systems that detected the sample as malicious;
• The number of systems that detected the sample as benign.

4.2.2. Comparison of Classifications

Table 17 and the charts shown in Figure 11 show the percentage distribution of
classifications made by our program and VirusTotal on malicious samples.

As is evident, our MLMD program classified 94.29% of all samples as malicious, which
was a correct classification. The remaining 5.71% were samples classified as suspicious,
which can also be considered as a partially correct answer, considering the malicious
samples.
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Table 17. Comparison of classifications of malicious samples.

MLMD VirusTotal

All samples 70 70
Malicious samples (%) 94.29 71.17
Suspicious samples (%) 5.71 -

Benign samples (%) 0 26.83

As far as VirusTotal is concerned, a total of 71.17% of systems considered the samples
to be malicious. This value represents the sensitivity of VirusTotal as a whole service, not
individual scanners. However, a number of systems incorrectly flagged the samples to be
benign, in 26.83% of all cases.

Figure 11. Comparison of predictions of malicious samples.

Table 18 and the charts shown in Figure 12 show the percentage distribution of
classifications made by our own MLMD and VirusTotal on benign samples.

Table 18. Comparison of classifications of benign samples.

MLMD VirusTotal

All samples 35 35
Malicious samples (%) 0 1.94
Suspicious samples (%) 17.14 -

Benign samples (%) 82.86 98.06

As far as the benign samples are concerned, the only correct classification of the
sample is its classification as benign. Our MLMD program classified 82.86% of all samples
as benign, which was a correct classification. It made an incorrect classification for 17.14%
of the samples (it classified the samples to be suspicious); thus, one of our classification
models made an incorrect classification. However, none of the samples were classified to
be malicious by the program.

Figure 12. Comparison of classifications of malicious samples.
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The VirusTotal system—to be precise, the systems it uses—performed better on benign
samples. In the case of benign samples, 98.06% of all systems correctly labelled the samples
as benign and only 1.94% incorrectly as malicious.

Table 19 shows the number of samples incorrectly classified as malicious. We defined
the success threshold to be 35, which is approximately half of VirusTotal’s available detec-
tion systems. Thus, this is the number of samples that were flagged correctly as malicious
by fewer than 35 systems and flagged incorrectly as benign by most systems. We found
eight such samples. However, our program classified only two of these samples incorrectly
(i.e., as suspicious but not malicious).

Table 19. Number of samples classified incorrectly to be malicious samples.

Tool Count

VirusTotal 8
MLMD 2

A similar comparison for benign samples can be seen in Table 20. As in the previous
case, we have defined the success threshold to be 35. Thus, the table shows the number
of samples that were flagged correctly as benign by fewer than 35 systems and flagged
incorrectly as malicious by most systems. However, considering VirusTotal, there were no
such samples; the majority of samples was correctly detected to be benign by most systems.
Our program flagged six samples as suspicious incorrectly.

Table 20. Number of samples classified incorrectly as benign.

Tool Count

VirusTotal 0
MLMD 6

In all of the above comparisons, we saw a good success rate of the XGBoost algorithm,
especially in classifying the selected group of malicious samples, which confirms the success
observed on the test data. However, it is important to mention that all decision-tree-based
algorithms proved to be the best in detecting malware, outperforming other algorithms by
a wide margin.

5. Conclusions

Our research aimed to contribute to the field of malware detection and to come up
with a new solution that can help to avoid cyber threats. This led us to use machine learning
algorithms and classification models, from which we evaluated the best results.

Two machine learning algorithms have been implemented, which led to the creation
of classification models.

As revealed by the comparison of trained models, the best results were achieved by
the XGBoost algorithm, where in the case of static analysis we achieved results with a
classification accuracy of 91.92%, and in the case of dynamic analysis we achieved results
with a classification accuracy of 96.48%.

The results show that the use of machine learning algorithms is sufficient to detect
malware, as indicated by the existing work mentioned in the introduction to this article.
Based on our experiments, we can confirm that machine learning using combined static
and dynamic analysis techniques is a suitable way to detect malicious software.

Our research also includes the MLMD software, which points to the applicability of
machine learning models in practice. The solution was tested against real working antivirus
software with comparable results.
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SSD Solid-state drive
SVC Support vector classification
SVM Support vector machine
TN True negative
TP True positive
URL Uniform resource locator
XGBoost Extreme gradient boosting

https://virusshare.com/
https://virusshare.com/about


Appl. Sci. 2022, 12, 6672 23 of 24

References
1. Monnappa, K. Learning Malware Analysis, 1st ed.; Packt Publishing: Birmingham, UK, 2018; Chapter 1, ISBN 978-178-839-250-1.
2. 2020 State of Malware Report. Available online: https://www.malwarebytes.com/resources/files/2020/02/2020_state-of-

malware-report.pdf (accessed on 28 March 2022).
3. Elisan, C. Malware, Rootkits & Botnets A Beginner’s Guide, 1st ed.; McGraw-Hill Education: New York, NY, USA, 2012; Chapter 1,

ISBN 978-007-179-206-6.
4. Ławrynowicz, A.; Tresp, V. Introducing Machine Learning. In Perspectives on Ontology Learning; Microsoft Press: Redmond, WA, USA,

2014; pp. 35–50.
5. Deep Instinct Website. Available online: https://www.deepinstinct.com (accessed on 10 June 2022).
6. Mohanta, A.; Saldanha, A. Malware Analysis and Detection Engineering: A Comprehensive Approach to Detect and Analyze Modern

Malware, 1st ed.; Apress: New York, NY, USA, 2020; ISBN 978-148-426-192-7.
7. Fedak, A.; Stulrajter, J. Fundamentals of static malware analysis: Principles, methods, and tools. Sci. Mil. 2014, 15, 45–53.
8. Hisham, S.G. Behavior-based features model for malware detection. J. Comput. Virol. Hacking Tech. 2015, 12, 59–67.
9. Damodaran, A.; Troia, F.D.; Visaggio, C.A.; Austin, T.H.; Stamp, M. A comparison of static, dynamic, and hybrid analysis for

malware detection. J. Comput. Virol. Hacking Tech. 2017, 13, 1–12. [CrossRef]
10. Cisar, P.; Joksimovic, D. Heuristic scanning and sandbox approach in malware detection. Archibald Reiss Days 2019, 9, 299–308.
11. Advanced Heuristics to Detect Zero-Day Attacks. Available online: https://hackernoon.com/advanced-heuristics-to-detect-

zero-day-attacks-8e3335lt (accessed on 28 March 2022).
12. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments,

trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [CrossRef]
13. Senanayake, J.; Kalutarage, H.; Al-Kadri, M.O. Android Mobile Malware Detection Using Machine Learning: A Systematic

Review. Electronics 2021, 10, 1606. [CrossRef]
14. Schultz, G.M.; Eskin, E.; Zadok, F.; Stolfo, J.S. Data Mining Methods for Detection of New Malicious Executables. In Proceedings

of the IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 13–16 May 2001; pp. 38–49.
15. Bai, J.; Wang, J.; Zou, G. A Malware Detection Scheme Based on Mining Format Information. Sci. World J. 2014, 2014, 260905.

[CrossRef] [PubMed]
16. Kumar, A.; Kuppusamy, K.S.; Aghila, G. A learning model to detect maliciousness of portable executable using integrated feature

set. J. King Saud Univ.—Comput. Inf. Sci. 2019, 31, 252–265. [CrossRef]
17. Bragen, R.S. Malware Detection Through Opcode Sequence Analysis Using Machine Learning. Master’s Thesis, Gjøvik University

College, Gjøvik, Norway, 2015.
18. Chowdhury, M.; Rahman, A.; Islam, M. Protecting data from malware threats using machine learning technique. In Proceedings

of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017;
pp. 1691–1694.

19. Moser, A.; Kruegel, C.; Kirda, E. Limits of Static Analysis for Malware Detection. In Proceedings of the Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 10–14 December 2007; pp. 421–430.

20. Shijo, P.V.; Salim, A. Integrated Static and Dynamic Analysis for Malware Detection. Procedia Comput. Sci. 2015, 46, 804–811.
[CrossRef]

21. Firdausi, I.; Lim, C.; Erwin, A.; Nugroho, A.S. Analysis of machine learning techniques used in behavior-based malware detec.
In Proceedings of the 2010 Second International Conference on Advances in Computing, Control, and Telecommunication
Technologies, Jakarta, Indonesia, 2–3 December 2010; pp. 201–203.

22. Mosli, R.; Yuan, B.; Li, R.; Pan, Y. A Behavior-Based Approach for Malware Detection. In Proceedings of the 13th IFIP International
Conference on Digital Forensics (DigitalForensics), Orlando, FL, USA, 30 January–1 February 2017; pp. 187–201

23. Kumar, R.; Geetha, S. Malware classification using XGboost-Gradient Boosted Decision Tree. Adv. Sci. Technol. Eng. Syst. J. 2020,
5, 536–549. [CrossRef]

24. Dhamija, H.; Dhamija, A.K. Malware Detection using Machine Learning Classification Algorithms. Int. J. Comput. Intell. Res.
2021, 17, 1–7.

25. Shhadata, I.; Bataineh, B.; Hayajneh, A.; Al-Sharif, Z.A. The Use of Machine Learning Techniques to Advance the Detection and
Classification of Unknown Malware. Procedia Comput. Sci. 2020, 170, 917–922. [CrossRef]

26. VirusShare Malware Repository. Available online: https://virusshare.com/ (accessed on 29 March 2022).
27. The Portable Freeware Collection. Available online: https://www.portablefreeware.com/ (accessed on 29 March 2022).
28. Portable Software Repository. Available online: https://portableapps.com/ (accessed on 29 March 2022).
29. Dependency Walker Website. Available online: https://www.dependencywalker.com/ (accessed on 29 March 2022).
30. Cuckoo Sandbox Website. Available online: https://cuckoosandbox.org/ (accessed on 29 March 2022).
31. Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag.

Process 2015, 5, 1–11.

https://www.malwarebytes.com/resources/files/2020/02/2020_state-of-malware-report.pdf
https://www.malwarebytes.com/resources/files/2020/02/2020_state-of-malware-report.pdf
https://www.deepinstinct.com
http://doi.org/10.1007/s11416-015-0261-z
https://hackernoon.com/advanced-heuristics-to-detect-zero-day-attacks-8e3335lt
https://hackernoon.com/advanced-heuristics-to-detect-zero-day-attacks-8e3335lt
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.3390/electronics10131606
http://dx.doi.org/10.1155/2014/260905
http://www.ncbi.nlm.nih.gov/pubmed/24991639
http://dx.doi.org/10.1016/j.jksuci.2017.01.003
http://dx.doi.org/10.1016/j.procs.2015.02.149
http://dx.doi.org/10.25046/aj050566
http://dx.doi.org/10.1016/j.procs.2020.03.110
https://virusshare.com/
https://www.portablefreeware.com/
https://portableapps.com/
https://www.dependencywalker.com/
https://cuckoosandbox.org/


Appl. Sci. 2022, 12, 6672 24 of 24
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