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Abstract: Object detection is a computer vision based technique which is used to detect instances of
semantic objects of a particular class in digital images and videos. Crowd density analysis is one of the
commonly utilized applications of object detection. Since crowd density classification techniques face
challenges like non-uniform density, occlusion, inter-scene, and intra-scene deviations, convolutional
neural network (CNN) models are useful. This paper presents a Metaheuristics with Deep Transfer
Learning Enabled Intelligent Crowd Density Detection and Classification (MDTL-ICDDC) model
for video surveillance systems. The proposed MDTL-ICDDC technique mostly concentrates on the
effective identification and classification of crowd density on video surveillance systems. In order
to achieve this, the MDTL-ICDDC model primarily leverages a Salp Swarm Algorithm (SSA) with
NASNetLarge model as a feature extraction in which the hyperparameter tuning process is performed
by the SSA. Furthermore, a weighted extreme learning machine (WELM) method was utilized for
crowd density and classification process. Finally, the krill swarm algorithm (KSA) is applied for
an effective parameter optimization process and thereby improves the classification results. The
experimental validation of the MDTL-ICDDC approach was carried out with a benchmark dataset,
and the outcomes are examined under several aspects. The experimental values indicated that the
MDTL-ICDDC system has accomplished enhanced performance over other models such as Gabor,
BoW-SRP, Bow-LBP, GLCM-SVM, GoogleNet, and VGGNet.

Keywords: object detection; object tracking; video surveillance; computer vision; crowd density
estimation; deep learning; parameter optimization

1. Introduction

Object detection is a computer technology related to computer vision and image pro-
cessing that aims to determine and detect many target objects from still images or video
data [1]. It widely comprises different important techniques, namely image processing,
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pattern recognition, artificial intelligence (AI), and machine learning (ML). It finds applica-
bility in different domains such as road traffic accident prevention, theft detection, traffic
management, etc. [2,3]. Intelligent video surveillance is a vintage subject in the domain
of image processing and computer vision that has recently become well known. It has
numerous significant benefits, such as accurate data processing, low human resource cost,
and effective information gathering organization [4]. Crowd density estimation is regarded
as a significant application in visual surveillance, and it plays an important role in crowd
management and monitoring. Specifically for service providers in public areas, a crowd
density estimation system could show how many consumers are currently waiting and
therefore provide an appropriate reference to send the bounded sources reasonably and
effectively [5].

Crowd density estimation refers to the assessment of crowd dispersal and the par-
ticular number of people [6]. Crowd analysis has attracted substantial interest among
researchers in recent years because of various reasons. The massive increase in the global
population and in urbanization has resulted in an increase in such events as public demon-
strations, sporting events, political rallies, and so on. Similar to other computer vision
issues, crowd analysis faces numerous difficulties, such as inter-scene variations in appear-
ance, occlusions, uneven distribution of people, high clutter, intra-scene and scale issues,
non-uniform illumination, and an unclear viewpoint; these problems are immensely diffi-
cult to solve [7,8]. The perplexity of the issue along with the extensive array of applications
for crowd analysis has led to an increased focus among research scholars in recent years.

Convolutional neural network (CNN) models [9,10] have reached successful outcomes
in image processing and in the prediction of crowd density. Recent crowd density esti-
mation methodologies are primarily dependent on regression or identification. Detection
approaches can be implemented in cases that have a minimum number of persons and
no occlusion-like detectors depending on closer frames [11,12]. Other methodologies that
depend on regression are of two categories. The first includes those that identify handmade
features in the image, namely texture feature and edge feature; next, regression function
is selected for estimating aggregate person numbers [13]. Another one relies on deep
neural networks and density map regression, and this technique is considered the best for
estimating crowd density.

This paper presents a Metaheuristics with Deep Transfer Learning Enabled Intelligent
Crowd Density Detection and Classification (MDTL-ICDDC) model on video surveillance
systems. The proposed MDTL-ICDDC technique leverages a Salp Swarm Algorithm (SSA)
with NASNetLarge model as a feature extraction in which the hyperparameter tuning
process is performed by the SSA. Furthermore, a weighted extreme learning machine
(WELM) technique was employed for crowd density and classification process. Finally,
the krill swarm algorithm (KSA) is applied for effectual parameter optimization process
and thereby improves the classification results. The experimental validation of the MDTL-
ICDDC technique is carried out using benchmark dataset.

The rest of the paper is organized as follows. Section 2 offers a brief survey of recently
developed crowd density estimation and classification models. Next, Section 3 provides the
proposed MDTL-ICDDC technique for crowd classification on surveillance videos. Then,
Section 4 validates the performance of the proposed model, and finally, Section 5 concludes
with the major key findings of the work.

2. Related Works

This section presents a detailed literature review of the existing crowd density anal-
ysis models. Ding et al. [14] proposed a novel encoder-decoder CNN that combines the
feature map in encoding and decoding subnetworks for estimating the number of people
accurately. In addition, the authors present a new assessment methodology called the Patch
Absolute Error (PAE) that is more applicable for measuring the accuracy of density maps.
Zhu et al. [15] resolve crowd density evaluation problems for dense and sparse conditions.
Consequently, it generates two contributions: (1) a network called Patch Scale Discriminant



Appl. Sci. 2022, 12, 6665 3 of 20

Regression Network (PSDR). Considering an input crowd image, it splits the images as
two patches and sends them into a regression network, which then yields a density map. It
fuses the two patch density maps in order to predict the whole density map as the output.
(2) A person classification activation map (CAM) technique is the other contribution.

In [16], the authors developed a Wi-Fi monitoring detection system that could capture
smart phone passive Wi-Fi signal data involving a received signal strength indicator
and MAC address. Next, the authors present a positioning model based on a dynamic
fingerprint management strategy and smart phone passive Wi-Fi probe. In real time
social activities, an individual might possess zero, one, two, or many smart phones with
different Wi-Fi signals. Thus, it can be designed as a methodology for calculating the
possibility of users generating one Wi-Fi signal to recognize the total population of people.
Last, the authors developed a crowd density evaluation method based on a Wi-Fi packet
positioning model.

In [17], the current research progression on density estimation and crowd counting
has been comprehensively analyzed. First, the authors present the background of density
estimation and crowd counting. Next, they summarized the traditional crowd counting
method. Later, the authors focus on investigating the density estimation and crowd count-
ing methodologies based on a CNN model. In [18], the authors proposed a crowd density
estimation model, utilizing Hough circle transformation. Here, background and foreground
datasets were segregated by ViBe technology and the segmentation of foreground datasets.

In Bouhlel et al. [19], a crowd density estimation method in an aerial image is proposed
for examining a crowded region that shows an abnormal density. The presented technique
comprises an inference and offline phase. The offline phase focused on generating a crowd
model with a combination of handcrafted and relevant deep features designated by the use
of the minimum-redundancy maximum-relevance (mRMR) method. During the inference
phase, the previously generated models for classifying the aerial image patches yield the
following four classifications: None, Sparse, Medium, and Dense. In [20], the network
compression to the CNN-based crowd density estimation method is applied for reducing
their computation and storage costs. In particular, the authors depend on l1-norm for
selecting insignificant filters and physically pruning them. These models are trained to
identify the insignificant filter and to increase the regression performance simultaneously.

The authors in [21] developed a new crowd density estimation model by the use of
DL models for passenger flow recognition model in exhibition centers. At the initial stage,
the difference amplitude feature and gray feature of the central pixel are derived to create
the CLBP feature for obtaining more crowd-group description information. Moreover, the
LR activation function is used for adding the non-linear factors to the CNN and exploiting
dense blocks derived from crowd density estimation for calibrating the LR-CNN crowd
density estimation model. Bhuiyan et al. [22] developed a fully convolutional neural
network (FCNN) model for crowd density estimation on surveillance video captured
by a camera at a distance. Li et al. [23] introduces a multi-scale feature fusion network
(IA-MFFCN) depending upon reverse attention model that mapped the image into the
crowd density map for counting purposes. Wang et al. [24] developed a lightweight
CNN to estimate crowd density by the combination of the modified MobileNetv2 and the
dilated convolution.

3. The Proposed Model

In this study, a new MDTL-ICDDC technique was established for effectual identifica-
tion and classification of crowd density on a video surveillance system. The MDTL-ICDDC
model initially presented an SSA with NASNetLarge model as a feature extraction model in
which the hyperparameter tuning process is performed by the SSA. This was followed by
the KSA-WELM model, which is employed for crowd-density and classification processes.
Figure 1 illustrates the block diagram of MDTL-ICDDC technique.
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3.1. Feature Extraction Module

At the initial stage, the SSA with NASNetLarge model functions as a feature extraction
model in which the hyperparameter tuning process is performed by the SSA. For deter-
mining the optimal convolution architecture for the dataset, a search algorithm can be
used. Neural architecture search (NAS) is the most important search technique that the
authors deployed in this network. Child network is shown to accomplish some accuracy
on a validation set; in other words, it is used for convergence [25]. The subsequent accuracy
value is utilized to upgrade the controller that consecutively generates better architecture
over time. The policy gradient takes place to update the controller weight.

A new searching space was designed, which permits the better architecture found on
the CIFAR-10 dataset (available at http://www.cs.toronto.edu/~kriz/cifar.html, accessed
on 12 Febuary 2022) that generalized for large, high-resolution image datasets from the
range of computation environments. To adapt input of depth of filtering and spatial
dimension, this cell is sequentially stacked. In this technique, the convolution net overall
architecture is predefined manually. They are composed of convolution cells that possess a
similar shape as the original but are weighted in a different way. Two kinds of convolution
cells have been taking place for rapidly developing scalable architecture for images of any
size: (1) convolution cells return a feature map with a 2-fold reduction in width and height,
and (2) convolution cells produce a feature map with the similar dimension. Figure 2
depicts the framework of NasNetLarge.

http://www.cs.toronto.edu/~kriz/cifar.html
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These two kinds of convolution cells are represented as Normal Cell and Reduction
Cell, correspondingly. The primary process used for the cell’s input gives a two-step stride
to minimalize the cell’s width and height. The convolution cells support striding because
they consider each operation. The Normal as well as Reduction Cells architecture that the
controller RNN search for dissimilar to convolution net. The searching region is utilized
for searching each cell shape. There are 2 hidden states (HS), namely h (i) and h (i −1),
presented for every cell in the searching space. Initially, the HS is the outcome of 2 cells
in the prior 2 lower layers or input image, correspondingly. The controller RNN make
recursive prediction on the remaining convolution cells on the basis of 2 primary HSs. The
controller prediction for all the cells is ordered into B blocks, with every block comprising
five prediction steps implemented by five discrete SoftMax classifications representing
different selections of block elements.

Step 1. Choose an HS from h (i), h (i −1), or the set of formerly generate HS.
Step 2. In the similar option as in Step1, choose the next HS.
Step 3. In Step 1, select the HS that the authors need to employ.
Step 4. After, choose an HS in Step2, choose an operation to employ.
Step 5. Define how the output from Steps 3 & 4 would be integrated to make a novel HS.

It can be helpful to apply the recently generated HS as an input for the subsequent block.
For the optimal hyperparameter tuning process, the SSA is utilized. It was initially

established as a swarm intelligence process [26]; it can be stimulated by the foraging
performance of the salp swarm that forms a chain. Similar to other algorithms, it finds an
optimum solution via the cooperation and division of salps. The population is divided into
the following categories: the leader and followers. Initially, the leaders lead the direction of
the population, and next the follower follows them; consequently, the population forms a
chain. The population X includes N agents are established as a matrix using D columns
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and N rows. The target population from the searching region is a food source represented
as F.

X =


X1,1 X1,2 · · · X1,p
X2,1 X2,2 · · · X2,p

...
...

...
...

XN,1 XN,2 · · · XN,D

, (1)

whereas population size denotes N, D indicates dimension. The leader’s location is rehabilitated.

X1,j =

{
Fj + c1 ×

((
ubj − 1bj

)
× c2 + 1bj

)
c3 ≥ 0.5

Fj − c1 ×
((

ubj − 1bj
)
× c2 + 1bj

)
c3 ≤ 0.5

(2)

Now X1,j and Fj mean the jth parameter of the leader location and food source,
respectively. c1 signifies a control variable adoptively decreased through the iteration
and calculated. The role of exploration and exploitation is to determine SSA. c2 and
c3 are created within [0, 1]. ubj and lbj indicates the jth variable of upper and lower
limits, respectively.

c1 = 2× e−(
4×l

L )
2
. (3)

Here, l and L denote the existing and maximal iterations, respectively. The follower
location is rehabilitated as [27].

Xij =
1
2
×
(
Xij + Xi−1j

)
, (4)

where i ≥ 2 and Xij indicates the jth parameter in the position of i-th follower.

3.2. Crowd Density Classification Module

Once the feature vectors are created, the next stage is to classify the crowd density
with the WELM model. WELM is an enhanced version of ELM that manages imbalanced
class distribution data [28]. The WELM approach presented the weighted matrix W similar
to how the original ELM model works to balance the data distribution that weakens the
majority class and strengthens the minority class. The W represents a matrix of misclassifi-
cation values according to class distribution. The W in (5) signifies diagonal matrixes with
N × N dimensional in which N indicates the overall dataset, and #(ti) denotes the overall
amount of samples that belongings to class ti.

Wii =
1

#(ti)
(5)

The WELM is based on the standardized ELM that minimizes the error vector ξ, as
well as minimizes the output weight norm β to have improved generalization outcomes. In
the following, the mathematical expression of the minimization problem is given.

minimize : LPEM = 1
2‖β‖

2 + 1
2 CW

N

∑
i=1
‖ξi‖2

subject to : h(x)β = tT
i − ξT

i , i = 1, . . . , N

(6)

The solution of β is obtained from (6) on the basis of KKT condition into (7) if N is
smaller and (8) if N is larger.

β = HT
(

I
C
+ WHHT

)−1
WT (7)

β =

(
− I

C
+ WHHT

)−1
HTWT (8)
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For multi-class classification with m class, all the labels are mapped into a vector of
[−l, 1] through length of m; for example, a dataset that is categorized into the 2nd classes
from three classes are [−1, 1,−1]. The output f (x) = HB in multi-class classification is
a vector f (x) = [ f1(x), f2(x), fm(x)] and the class label is evaluated by the following
equation. Figure 3 showcases the framework of WELM.

label o f x = argmax(x) (9)
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3.3. Parameter Tuning Process

For the optimal adjustment of the WELM parameters, the KSA is utilized in this
study. The krill swarm algorithm (KSA) [29] is a commonly used intelligent optimization
technique, due to its benefits of strong search diversity, few adjusted parameters, and
simple operation. The KSA approach originated from mutual communication and krill
foraging. In the presented approach, the location of every individual krill represents a
potential solution. The location of each krill is commonly specified in the following:

1. Individual swimming due to population migration:

Nnew
i = Nmaxαi + ωnNold

i (10)

αi = αloca1
i + α

target
i (11)

From the equation, the maximum induction speed can be represented as Nmax, and
taken as 0.01

(
ms−1), and ωn refers to the inertia weight of motion-induced range from

[0, 1]. Nold
i represents prior movement, whereas α

target
i and αlocal

i indicate the target and the
existing positions, respectively.

2. Foraging behaviour:
Fi = Vf βi + ω f Fold

i (12)

βi = β
f ood
i + βbest

i (13)
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Now, the individual direction of foraging for krill was denoted as βi. βi indicates the
attractive direction of food, and βbest

i indicates the direction of individual krill with the
optimal fitness value. Vf represents the foraging speed that takes as 0.02

(
ms−1), and ω f

represents the inertia weight that ranges from [0, 1]. Fold
i signifies the location change due

to the preceding foraging motion of the i-th individual krill; Fi denotes the location change
due to the existing foraging motion of the individual i-th krill.

3. Random diffusion of individual krill:

Di = Dmaxδ (14)

In Equation (14), Dmax indicates the maximal disturbance (diffusion) velocity, and
δ denotes an arbitrary direction vector that ranges from [−1, 1]; Di signifies the location
change due to arbitrary diffusion of i-th individual krill.

The swimming direction of each krill can be defined by the fusion of abovementioned
factors that change in the direction with minimum fitness value. The foraging and in-
duced motions have local and global searching functions. After the process is iteratively
updated, two measures are simultaneously implemented, which make stable and powerful
optimization algorithms.

The location vector from t to t + ∆t is formulated by:

Xi(t + ∆t) = Xt(t) + ∆t
dXi
dt

(15)

Here, ∆t indicates the factor for the step size.

∆t = Ct

NV

∑
j=1

(UBj − LBj) (16)

Now, NV indicates the overall amount of parameters, whereas LBj and UBj denote
the upper as well as lower bounds of the j-th parameter.

The KSA system grows a fitness function (FF) for attaining higher classifier perfor-
mance. It resolves the positive integer for denoting the best efficiency of candidate results.
In this work, the minimization of the classification error rate is measured FF, as shown in
Equation (17).

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(17)

4. Results and Discussion

In this section, the experimental validation of the MDTL-ICDDC model is tested with
a dataset comprising 1000 images under four class labels. The MDTL-ICDDC model is
simulated using Python 3.6.5 tool on a PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM,
250GB SSD, and 1 TB HDD. The parameter settings are given as follows: learning rate: 0.01,
dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU. Few sample images are
demonstrated in Figure 4. The details related to the dataset are given in Table 1.

Table 1. Dataset details.

Labels Class Name No. of Instances

Class-0 Dense Crowd 250

Class-1 Medium Dense Crowd 250

Class-2 Sparse Crowd 250

Class-3 No Crowd 250

Total No. of Instances 1000
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Crowd, (d) No Crowd.

Figure 5 demonstrates a set of confusion matrices formed by the MDTL-ICDDC model on
distinct epoch counts. On epoch 200, the MDTL-ICDDC model has recognized 223, 220, 236,
and 243 images under classes 0–3 respectively. Moreover, on epoch 600, the MDTL-ICDDC
technique has recognized 206, 203, 234, and 241 images under classes 0–3 respectively. At the
same time, on epoch 1000, the MDTL-ICDDC approach has recognized 197, 178, 233, and
234 images under classes 0–3 respectively. In line with, epoch 1200, the MDTL-ICDDC system
has recognized 227, 178, 236, and 242 images under classes 0–3 respectively.

Table 2 and Figure 6 offer a detailed crowd density classification outcome of the MDTL-
ICDDC model under distinct epochs and classes. The results indicated that the MDTL-
ICDDC model has gained effectual outcomes under all classes and epochs. For instance,
with 200 epochs, the MDTL-ICDDC model has provided average accuy, precn, recal , Fscore,
and Gmeasure of 96.10%, 92.20%, 92.20%, 92.18%, and 92.19% respectively. Likewise, with
600 epochs, the MDTL-ICDDC technique has obtainable average accuy, precn, recal , Fscore,
and Gmeasure of 94.20%, 88.38%, 88.40%, 88.31%, and 88.35% respectively. Similarly, with
1000 epochs, the MDTL-ICDDC system has provided average accuy, precn, recal , Fscore,
and Gmeasure of 92.10%, 84.06%, 84.20%, 83.94%, and 84.04% respectively. Eventually, with
1200 epochs, the MDTL-ICDDC methodology has offered average accuy, precn, recal , Fscore,
and Gmeasure of 96.40%, 92.82%, 92.80%, 92.80%, and 92.80% respectively.



Appl. Sci. 2022, 12, 6665 10 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 20 
 

 

Figure 5. Confusion matrices of MDTL-ICDDC technique (a) epoch 200, (b) 400 epoch, (c) epoch 

600, (d) epoch 800, (e) epoch 1000, and (f) epoch 1200. 

Table 2 and Figure 6 offer a detailed crowd density classification outcome of the 

MDTL-ICDDC model under distinct epochs and classes. The results indicated that the 

MDTL-ICDDC model has gained effectual outcomes under all classes and epochs. For 

instance, with 200 epochs, the MDTL-ICDDC model has provided average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 96.10%, 92.20%, 92.20%, 92.18%, and 92.19% respectively. 

Likewise, with 600 epochs, the MDTL-ICDDC technique has obtainable average 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 94.20%, 88.38%, 88.40%, 88.31%, and 88.35% respec-

tively. Similarly, with 1000 epochs, the MDTL-ICDDC system has provided average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 92.10%, 84.06%, 84.20%, 83.94%, and 84.04% 

respectively. Eventually, with 1200 epochs, the MDTL-ICDDC methodology has offered 

average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹𝑠𝑐𝑜𝑟𝑒 , and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 96.40%, 92.82%, 92.80%, 92.80%, 

and 92.80% respectively. 

  

Figure 5. Confusion matrices of MDTL-ICDDC technique (a) epoch 200, (b) 400 epoch, (c) epoch 600,
(d) epoch 800, (e) epoch 1000, and (f) epoch 1200.

The training accuracy (TA) and validation accuracy (VA) attained by the MDTL-ICDDC
method on test dataset are demonstrated in Figure 7. The experimental outcome implied
that the MDTL-ICDDC model has gained maximal values of TA and VA. Specfically, the
VA seemed superior to the TA.

The training loss (TL) and validation loss (VL) achieved by the MDTL-ICDDC model
on test dataset are displayed in Figure 8. The experimental outcome exposed that the
MDTL-ICDDC technique has been able least values of TL and VL. Specifically, the VL
seemed lower than the TL.

A brief precision-recall examination of the MDTL-ICDDC method on test dataset is
portrayed in Figure 9. An observation of the figure shows that the MDTL-ICDDC system
has been able to achieve maximal precision-recall performance under all classes.

A detailed ROC investigation of the MDTL-ICDDC approach on test dataset is depicted
in Figure 10. The results indicated that the MDTL-ICDDC model has exhibited its ability in
categorizing four different classes 0–3 on the test dataset.

Table 3 and Figure 11 inspect a comparative precn inspection of the MDTL-ICDDC
model with other models under distinct classes [30,31]. The experimental results indicated
that the Gabor and BoW-SRP models have shown lower classification results with least
average precn of 61.83% and 68.33% respectively. Likewise, the BoW-LBP and GLCM-SVM
models have accomplished slightly improved average precn values of 74.68% and 75.47%
respectively. At the same time, the GoogleNet and VGGNet techniques have resulted in
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reasonable average precn values of 82.98% and 86.14% respectively. However, the MDTL-
ICDDC model has gained maximum average precn of 92.90%.

Table 2. Result analysis of MDTL-ICDDC technique with distinct measures and epochs.

Class Labels Accuracy Precision Recall F-Score G-Measure

Epoch-200

Class-0 95.60 92.92 89.20 91.02 91.04

Class-1 94.10 88.35 88.00 88.18 88.18

Class-2 96.40 91.47 94.40 92.91 92.92

Class-3 98.30 96.05 97.20 96.62 96.62

Average 96.10 92.20 92.20 92.18 92.19

Epoch-400

Class-0 96.00 94.49 89.20 91.77 91.81

Class-1 94.90 90.28 89.20 89.74 89.74

Class-2 96.60 91.86 94.80 93.31 93.32

Class-3 98.30 94.98 98.40 96.66 96.68

Average 96.45 92.90 92.90 92.87 92.89

Epoch-600

Class-0 93.30 89.96 82.40 86.01 86.10

Class-1 91.20 83.20 81.20 82.19 82.19

Class-2 95.00 87.31 93.60 90.35 90.40

Class-3 97.30 93.05 96.40 94.70 94.71

Average 94.20 88.38 88.40 88.31 88.35

Epoch-800

Class-0 92.80 89.38 80.80 84.87 84.98

Class-1 90.80 82.64 80.00 81.30 81.31

Class-2 94.30 85.87 92.40 89.02 89.08

Class-3 96.10 90.11 94.80 92.40 92.43

Average 93.50 87.00 87.00 86.90 86.95

Epoch-1000

Class-0 90.80 83.47 78.80 81.07 81.10

Class-1 88.70 81.28 71.20 75.91 76.07

Class-2 93.70 83.51 93.20 88.09 88.22

Class-3 95.20 87.97 93.60 90.70 90.74

Average 92.10 84.06 84.20 83.94 84.04

Epoch-1200

Class-0 96.30 94.19 90.80 92.46 92.48

Class-1 94.30 88.14 89.20 88.67 88.67

Class-2 96.80 92.91 94.40 93.65 93.65

Class-3 98.20 96.03 96.80 96.41 96.42

Average 96.40 92.82 92.80 92.80 92.80
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Table 3. Precision analysis of MDTL-ICDDC technique with existing algorithms under various
classes.

Precision (%)

Methods Class-0 Class-1 Class-2 Class-3 Average

Gabor 57.80 47.80 56.50 85.20 61.83

BoW-SRP 76.00 49.60 59.10 88.60 68.33

Bow-LBP 75.80 55.80 72.20 94.90 74.68

GLCM-SVM 72.70 70.33 78.42 80.41 75.47

GoogleNet 74.05 89.38 78.48 90.01 82.98

VGGNet 79.42 82.11 89.78 93.23 86.14

MDTL-ICDDC 94.49 90.28 91.86 94.98 92.90
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Table 4 and Figure 12 demonstrate a comparative recal analysis of the MDTL-ICDDC
approach with other models under distinct classes. The experimental results indicated
that the Gabor and BoW-SRP models have shown lower classification results with least
average recal of 62.30% and 67.85% respectively. Moreover, the BoW-LBP and GLCM-SVM
models have accomplished somewhat enhanced average recal values of 74.15% and 73.52%
correspondingly. Simultaneously, the GoogleNet and VGGNet techniques have resulted in
reasonable average recal values of 85.26% and 82.78% respectively. But, the MDTL-ICDDC
model has gained maximal average recal of 92.90%.
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Table 4. Recall analysis of MDTL-ICDDC technique with existing algorithms under various classes.

Recall (%)

Methods Class-0 Class-1 Class-2 Class-3 Average

Gabor 52.00 47.40 58.80 91.00 62.30

BoW-SRP 63.40 49.60 67.00 91.40 67.85

Bow-LBP 74.00 61.80 67.00 93.80 74.15

GLCM-SVM 73.59 69.57 79.17 71.74 73.52

GoogleNet 79.60 83.99 87.18 90.26 85.26

VGGNet 76.08 82.46 89.82 82.75 82.78

MDTL-ICDDC 89.20 89.20 94.80 98.40 92.90
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Table 5 and Figure 13 depict a comparative accuy examination of the MDTL-ICDDC
model with other algorithms under distinct classes. The experimental results indicated
that the Gabor and BoW-SRP approaches have shown lower classification results with least
average accuy of 71.83% and 80.40% respectively. Alongside these results, the BoW-LBP
and GLCM-SVM methods have accomplished slightly improved average accuy values of
84.04% and 79.78% respectively. These results are followed by the GoogleNet and VGGNet
approaches, which have resulted in reasonable average accuy values of 84.40 and 84.75%
respectively. At last, the MDTL-ICDDC method has gained higher average accuy of 96.45%.
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Table 5. Accuracy analysis of MDTL-ICDDC technique with existing algorithms under various
classes.

Accuracy (%)

Methods Class-0 Class-1 Class-2 Class-3 Average

Gabor 55.13 80.83 65.67 85.67 71.83

BoW-SRP 79.65 86.95 70.86 84.15 80.40

Bow-LBP 91.89 80.86 74.86 88.55 84.04

GLCM-SVM 72.43 82.21 70.99 93.48 79.78

GoogleNet 93.00 73.23 92.88 78.50 84.40

VGGNet 86.73 82.73 78.95 90.57 84.75

MDTL-ICDDC 96.00 94.90 96.60 98.30 96.45
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Table 6 and Figure 14 illustrate a comparative Fscore inspection of the MDTL-ICDDC
algorithm with other techniques under distinct classes. The experimental results indicated
that the Gabor and BoW-SRP models have exposed lesser classification results with minimal
average Fscore of 61.98% and 67.88% respectively. In addition, the BoW-LBP and GLCM-
SVM models have accomplished somewhat higher average Fscore values of 74.35% and
87.99% respectively.
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Table 6. F-score analysis of MDTL-ICDDC technique with existing algorithms under various classes.

F-Score (%)

Methods Class-0 Class-1 Class-2 Class-3 Average

Gabor 54.70 47.60 57.60 88.00 61.98

BoW-SRP 69.10 49.60 62.80 90.00 67.88

Bow-LBP 74.90 58.60 69.50 94.40 74.35

GLCM-SVM 89.44 85.78 91.64 85.09 87.99

GoogleNet 83.54 78.67 75.90 85.89 81.00

VGGNet 82.37 87.98 90.28 79.17 84.95

MDTL-ICDDC 91.77 89.74 93.31 96.66 92.87
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Moreover, the GoogleNet and VGGNet approaches have resulted in reasonable av-
erage Fscore values of 81% and 84.95% respectively. Finally, the MDTL-ICDDC model has
gained superior average Fscore of 92.87%. These results and discussion pointed out that the
MDTL-ICDDC model has proficiently detected and classified the crowd density in enabled
video surveillance systems.

5. Conclusions

In this study, a new MDTL-ICDDC method was established for effectual identification
and classification of crowd density on video surveillance systems. The MDTL-ICDDC
model initially presented an SSA with NASNetLarge model as a feature extraction model in
which the hyperparameter tuning process is performed by the SSA. This was followed by
the WELM model, which is employed for crowd density and classification processes. At last,
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the KSA is applied for the effectual parameter optimization process and thereby improves
the classification results. The experimental validation of the MDTL-ICDDC system was
carried out with a benchmark dataset and the outcomes are examined under several aspects.
The experimental values indicated that the MDTL-ICDDC approach has accomplished
enhanced performance over other models. The proposed model can be extended to crowd
density estimation in public places such as railway stations, airports, sports stadiums,
shopping malls, etc. In the future, the crowd density classification performance can be
further boosted by the design of a hybrid metaheuristics algorithm.
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