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Abstract: Metal-organic frameworks (MOFs) are arguably a class of highly tuneable polymer-based
materials with wide applicability. The arrangement of chemical components and the bonds they form
through specific chemical bond associations are critical determining factors in their functionality.
In particular, crystalline porous materials continue to inspire their development and advancement
towards sustainable and renewable materials for clean energy conversion and storage. An important
area of development is the application of MOFs in proton-exchange membrane fuel cells (PEMFCs)
and are attractive for efficient low-temperature energy conversion. The practical implementation of
fuel cells, however, is faced by performance challenges. To address some of the technical issues, a
more critical consideration of key problems is now driving a conceptualised approach to advance
the application of PEMFCs. Central to this idea is the emerging field MOF-based systems, which
are currently being adopted and proving to be a more efficient and durable means of creating
electrodes and electrolytes for proton-exchange membrane fuel cells. This review proposes to discuss
some of the key advancements in the modification of PEMs and electrodes, which primarily use
functionally important MOFs. Further, we propose to correlate MOF-based PEMFC design and the
deeper correlation with performance by comparing proton conductivities and catalytic activities for
selected works.

Keywords: polymer electrolyte membrane; fuel cells; metal-organic frameworks (MOFs); electrode;
electrolyte; proton conductivity; structural hierarchy

1. Introduction

Polymer electrolyte membrane fuel cells (PEMFCs) have the potential to succeed as a
breakthrough technology through the utilization of miniaturized materials at the nanoscale
for the efficient conversion of chemical to electrical energy [1–4] since its conception decades
ago [5]. Fuel-cell performance is inherently determined from the properties of the mem-
brane electrode assembly (MEA) efficiency, which principally generates electrical energy
from a chemical source. Architecturally, MEAs generally comprise a catalyst layer on oppos-
ing surfaces, a polymer electrolyte membrane (PEM) layer, and a gas diffusion layer located
in the interior segment. The catalyst layer in the MEA is characterised by two electrochemi-
cal reactions that are principally related to their function, namely the hydrogen oxidation
reaction (HOR) and the oxygen reduction reaction (ORR) [6], which direct the conversion
of chemical energy to electrical energy at the anode and cathode, respectively [7,8]. Further,
the PEM layer functions as a proton conductor, permitting the mobility of protons from the
anode to the cathode. Nevertheless, activity loss of the catalyst layer and conductivity loss
of PEM pose significant performance problems in the long run [9,10]. To advance Fuel-cell
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technology on larger scales, it becomes necessary to formularize catalysts and electrically
conductive materials with highly efficient and durable electrochemical characteristics. It is
highly desirable for these materials to have appropriate compositions and nanostructures to
solve these problems. Hence, Fuel-cell technology requiring high efficiency with durability
and rationalizing the design of functionally meaningful materials to address the issues
discussed above is of paramount importance.

Metal-organic frameworks (MOFs) have been developed to assist the process of ef-
ficient energy conversion and storage systems. MOFs are porous polymeric materials
composed of self-assembled ligands forming organic bridges (dicarboxylic acid, tricar-
boxylic acid, tetracarboxylic acid, and imidazolate) in combination with metal ions that
result in the opening of porous crystalline frameworks as shown in Figure 1. The MOF hier-
archy generally conform to porous, architectural and compositional structural types. MOF
hierarchical pores display multiscale porosity in the pattern of the framework, including
micro-porosity, meso-porosity, and macro-porosity, a feature that was summarized in recent
years [11–13]. Depending on how they are constructed, these pores can be intrinsically
arranged, or they can be post-synthetically etched by using a template [14,15]. In addition
to the facile tunability of pore sizes, the ability to change reaction pathways, and the im-
provement of diffusion kinetics to better reach active sites, the architectural configuration of
porous MOFs provide significant avenues for introducing structural modifications by syn-
thetic means, thus advancing hierarchical properties whilst retaining their porosity [16,17].
From a functional perspective, the design of hierarchical geometries in the MOF assembly is
recognizably critical for electrodes and electrolytes in Fuel-cell operation [18]. For example,
hierarchical MOF superstructure design features have proved strategic for enhancing the
packing density of frameworks and fabricating multi-assembled geometries for applica-
tions including transportation and catalysis [19]. The dynamics of nucleation and growth
may be tuned to generate superior MOF structures with a unique morphology. Hence,
the physical morphological order of MOF cages can be synthetically directed to embody
pores as large as 9.8 nm by altering the organic and metal components with surface areas
typically ranging between 1000 and 10,000 m2/g [20–22]. The adaptable nature of metal
nodes with the array of organic linker combinations that can be generated under controlled
conditions can provide key insights into achieving highly ordered and tuneable MOFs
possessing unique compositional and structural advantages over conventional materials
(Figure 2).
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fall in conductivity [9,26,27]. Hence, the requirements for high proton conductivity (>100 
S cm−1) and a broad temperature range (25~300 °C) considerably reduce its commercial 
value, necessitating a greater need for alternative proton-exchange membranes, which are 
less demanding in an industrial context [28]. MOFs are viewed as attractive replacement 
materials that demonstrate a wider physical and chemical property range, in conjunction 
with mechanical properties for durability. Investigations have shown that the coordina-
tion skeleton itself plays a leading role in delivering protons as a carrier [29,30]. However, 
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PEMFC technology can be made more efficient by using MOF materials that possess
appropriate physical and chemical properties. The most commercially studied and applied
proton-exchange membranes are composition-based nafion membranes. In the presence
of water in the range of 20~80 ◦C, the proton conductivity of nafion is achievable up to
10−2 S cm−1 [23–25]. Although nafion membranes and their derivative membranes have
been widely investigated, they have limited use in fuel cells owing to the complex prepa-
ration process and high production costs, which become significant and commercially
demanding at temperatures exceeding 80 ◦C and below 0 ◦C as mirrored by a consider-
able fall in conductivity [9,26,27]. Hence, the requirements for high proton conductivity
(>100 S cm−1) and a broad temperature range (25~300 ◦C) considerably reduce its com-
mercial value, necessitating a greater need for alternative proton-exchange membranes,
which are less demanding in an industrial context [28]. MOFs are viewed as attractive
replacement materials that demonstrate a wider physical and chemical property range, in
conjunction with mechanical properties for durability. Investigations have shown that the
coordination skeleton itself plays a leading role in delivering protons as a carrier [29,30].
However, a significant disadvantage is the insufficient conductivity of MOFs due to the
grain boundaries, which restrict proton migration, but the hybridization of MOFs using
acid groups (-COOH, -HSO3, -PO3H2, etc.) offers an efficient strategy for resolving this
problem [31–33].

Additionally, Fuel-cell efficiency is also dependent on the activity of the oxygen re-
duction reaction, which is classified among the essential half-reactions [34–37]. For the
development of durable fuel cells, the search for electrocatalysts with superior efficien-
cies is therefore a significant hurdle. More recently, MOFs have been attractive for ORR
applications [38–40] where the use of metal ions or clusters and organic connectors can
aid the development of advanced catalysts. The porous structure of MOF electrocatalysts
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facilitates mass transfer in electrochemical reactions, and as a result of the uniform distribu-
tion of metal throughout the MOF precursors, the active sites of the catalyst are efficiently
utilized [41–44].

The purpose of the present review is to discuss the recent developments of the PEMFC
electrode layer and electrolyte, highlighting the relevance to MOFs and their structures,
modification and impact in advancing the next generation of PEMFC-based technologies.
Future research directions and perspectives are also highlighted in Figure 3.
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2. MOFs for Fuel-Cell Applications
2.1. MOFs as Electrode Application

The potential for supplying sustainable clean energy for Fuel-cell development through
devices with capabilities to both store and deliver energy upon demand is accelerating
efforts to engineer desirable MOF structures. However, these devices still seek technologi-
cal improvement as usable electrocatalysts for the electrochemical reduction of oxygen as
the base reaction (ORR) [45–47]. The durability and catalytic activity of electrocatalysts is
pivotal for the long-term performance of the Fuel-cell system. Cost limitations combined
with the precious metal shortage is a huge barrier to the commercialization of fuel despite
their relatively low overpotential. However, the efficient usage of particles in nanoscale
architectures provides a route for the expedition of metal sites at the surface and their
dispersion in abundancy. There is a high potential for developing fuel cells in the future
with these materials, especially those incorporating single-atom catalysts [48,49]. As has
been established by the in-depth characterization of these species and theoretical studies, it
has been demonstrated that the M-Nx type of single-atom catalyst (SAC) shows functional
importance in the ORR/OER reactions in H2/O2 fuel cells [40,50]. It has been identified
that a MOF template synthesis method is a promising way of achieving the controlled syn-
thesis of SACs through the pyrolysis of precursors. In addition, those nanostructures that
emerge from MOF-derived SACs have excellent active-site support and excellent disper-
sion properties when applied to electrocatalytic processes. High absorbent properties that
persist and are likely better controlled in self-removable supports deliver porous, hollow,
structurally defined cavities [51–54]. According to the results of our study, MOF-designed
electrocatalysts for fuel cells are capable of improving their working durability and have
the potential to replace precious metals as costly conventional materials. The performances
of known metal catalysts are summarized in Table 1.
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Table 1. Performances of MOF-based electrode materials in superior Fuel-cell devices.

Catalyst MOF Devices Voltage (V)
Current
Density

(mAcm−2)

Power Density
(mWcm−2) Cycling Life

Fe-N-C [55] Fe-ZIF-8 PEMFC 0.6 V 1650 1141 -

Fe-SAs/NPS-HC [56] ZIF-8/Fe@PZS H2/O2 fuel cell 0.8 V 50 333 -

Ferrocene [57] ZIF-8 PEMFC 0.7 V 1100 775 32.2% (10 h)

C-FeHZ8@g-C3N4-950 [58] Fe-ZIF-8@g-C3N4 PEMFC 0.8 V 133 628 48.7% (8 h)

Fe-N-C [59] ZIF-8 PEMFC 0.7 1050 690 42% (50 h)

FeN4/HOPC-c-1000 [60] Fe-ZIF-8 PEMFC 0.6 V 690 420 53% (100 h)

Fe-Fe3C [35] ZIF-8 H2-O2 Fuel Cell 0.8 V 100 760 -

20 Mn-NC [61] Mn-ZIF-8 PEMFC 0.6 V 350 460 >1000 h

20-Co-NC-1100 [62] Co-ZIF-8 H2/O2 fuel cell 0.7 V - 560 -

C-FeZIF-8@g-C3N4 [63] Fe-ZIF-8 PEMFC 0.8 V 1000 481 82% (667 h)

Co-N-C@F127 [64] Co-ZIF-8 H2/O2 fuel cell >0.7 V 30 870 100 h

Fe-ZIF/CN-UC [65] Fe-ZIF-8 H2/O2 fuel cell 0.2 V 2000 484 -

H-Fe-Nx-C [66] ZIF-8@Fe-TA PEMFC 0.43 V 1550 655 30 h

H-Co-Nx-C [66] ZIF-8@Co-TA PEMFC 0.43 V 103 457 30 h

H-FeCo-Nx-C [66] ZIF-8@FeCo-TA PEMFC 0.43 V 104 459 30 h

FeNi-N6 [67] ZIF-8 PEMFC 0.8 V - 216 >5000 cycles

Fe-Fe3C@Fe-N-C [35] MIL-100/ZIF-8 PEMFC 0.8 V 100 760 -

GNPCSs-800 [68] ZIF-8/GO DMFC 0.71 V - 33.8 94% (~8 h)

GO-MOF [69] Cu-MOF PEMFC 0.6 V - 110.5 -

Fe-N-C-10/1-950 [70] NH2-MIL-
88B/ZIF-8 PEMFC 0.6 V 1240 770 -

PtCu@NCC [71] ZIF-8 DFAFC 0.8 V 400 121 71% (40 h)

MOF-800 [72] Cu-bipy-BTC MFC 0.588 V - 326 >30 days

2.1.1. H2/O2 Fuel Cells

The past few years have witnessed H2/O2 fuel cells gaining increasing popularity
as a result of their high efficiency and environmental friendliness. However, a potential
problem is associated with the slow kinetics of the ORR [73,74] that can be a hindrance
for practical applications. In order to commercialize ORR technologies in the future, it is
vital to develop efficient catalysts. A range of studies reported over the past few years
have focused on SACs to address durability without impeding the atomic utilization of
the catalyst. MOF-derived nanomaterials have also been deliberated for their potential
role as functionally viable substitutes for platinum, which is a highly expensive metal in
consideration of its excellent catalytic activity [49].

It has been demonstrated by a theoretical study that M-Nx is the most catalytically
active species in the ORR [75,76]. The subjection of Fe-doped ZIF-8 to pyrolysis as a
straightforward methodology for synthesizing Fe-N-C electrocatalysts for membrane fuel
cells based on the principle of proton exchange (PEMFCs) has been suggested, which
takes advantage of less expensive approaches without diminishing the superior catalytic
properties of Fe. As a result of its atomic dispersion, Fe-N4 functions as the active molecule
for a highly efficient and stable acidic PEMFC. There is widespread use of MOFs for
controlling the morphology and atom distribution of the desired products in MNC cata-
lysts by using them as sacrificing templates. They have been effectively used to fabricate
individual or unaccompanied Fe atomic sites on an N, P, and S co-doped carbon polyhe-
dron with empty cavities (denoted as Fe-SAs/NPS-HC) using the ZIF-8/Fe@PZS method
(PZS = poly(cyclo-triphospazene-co-4,4′-sulfonyldiphenol)) in a pyrolysis experiment at
900 ◦C in Ar [56]. In order to successfully synthesize highly ordered FeN4-doped struc-
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tures on a porous carbon (FeN4/HOPC-C-1000) skeleton, Qiao et al. [60] carbonized the
MOF Fe-ZIF-8 at 1000 ◦C. FeN4/HOPC-c-1000 using a bimetallism mechanism demonstrat-
ing a current density of 0.69 A cm−2 at 0.6 V, which exceeds current expectations up to
0.5 A cm−2 for FeN4/C, and a power density of 0.42 W cm−2 at 0.57 V (0.35 W cm−2 for
FeN4/C). Aside from this, the catalyst also exhibited impressive durability when annealed
at 0.55 and 0.7 V. These results suggest an atomically dispersed FeN4 with catalytic centres
that exhibit a porous structure when annealed at optimum temperatures. An alternative
method of the binary ligand strategy aimed at a higher surface area was also presented
by using 2-methylimidazole (mIm) and 2-undecylimidazole (uIm) as ligands. This study
has offered new methods for the controlled preparation for electrocatalysts of the Fe-N-C
type [60,77] (Figure 4).
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Figure 4. (a) The schematic showing the FeNx/HOPC-c-1000 synthesis steps; (b) model of the OMS-
Fe-ZIF-8 seen from different crystallographic orientations; (c,d) SEM images of the OMS-Fe-ZIF-8
showing growth along multiple crystallographic planes; (e) SEM image and details about the inner
geometry of a broken crystal of OMS-Fe-Z(F-8); (f) the SEM image shows the internal structure of one
of the FeN4/HOPC-c-1000 particles that has broken in two; (g) illustration of the PEMFC Fuel-cell
assembly; (h) LSV curves of FeN4/HOPC-c-1000 and FeN4/C in 0.5 M H2SO4, with a scan rate of
10 mVs−1 in 0.5 M H2SO4 under unsaturated O2; (i,j) polarization and power−density measurements
carried out using a cathode catalyst of H2-O2 and a catalyst of FeN4/HOPC-c-1000 at 1 bar and (k) a
constant-potential test to determine Fuel-cell durability [60].

As a result of their higher stability and remarkable catalytic activity, other transition-
metal-based catalysts have also been examined in H2/O2 fuel cells. The Fenton reactions
(Fe2+ + H2O2) used by Fe-N-C catalysts were addressed by developing a Mn-N-C type
SAC with MnN4 species being chemically distributed through the calcination of Mn-doped
ZIF-8 precursors in an acid environment [61]. In order to achieve optimal performance, the
proportion of Mn and Zn was adjusted to yield 200 Mn-NC SACs having a life of 1000 h at
0.7 V. Cobalt is another multivalent metal that shows excellent electrocatalytic participation,
so the Co-N-C type SACs have also been investigated as catalysts devoid of Fe for H2/O2
fuel cells [78]. By a similar calcination procedure, they were also able to synthesize the
Co-N-C catalyst, which behaved similar to the Fe-N-C catalysts and displayed a similar
performance to that of the Fe-N-C catalysts owing to the well-distributed CoN4 operating
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sites, which were afforded by the MOF template [43,62]. In spite of the encouraging catalytic
activity of catalysts containing Co-N-C, the presence of agglomerated regions of Co might
reduce the intrinsic capabilities of Co and N, which are atomically dispersed within the
ZIF-8 precursor, forming a Co-N-C@F127 catalyst after a composition of Pluronic F127 block
copolymer is utilized as a surface-active agent to confine the Co aggregates and collapse
the porous structure. As predicted by density functional theory calculations, CoN2+2 active
sites, with their relatively low energy of activation 0.69 eV as compared with CoN4, were
capable of catalysing the 4e− ORR process [64,79]. The problem of functional deficiency
from high voltage exposure must, however, be addressed in more detailed studies. Due to
the success of separating sites singularly as applied to M-N-C electrocatalysts in H2/O2
fuel cells, great efforts have been made to combine different active metal centres for fuel
cells. An N-doped carbon matrix was synthesized by Wang et al. [80] to be a Pt-free catalyst
that consists of Fe and Co automatically dispersed within the matrix (Figure 5a). There
is encouraging evidence to suggest that the existence of double metal sites are necessary
for the initiation of the O-O bonds from passive to active forms and the engagement of
the 4e− ORR processes, as the hydrogen–oxygen Fuel-cell experiments and hydrogen-air
Fuel-cell experiments clearly demonstrate. It was determined that the proposed (Fe,Co)/N-
C catalyst performs better in both the H2/O2 and H2/air conditions than most reported
Pt-free catalysts. This shows that the dual metal sites have a high stability in the Fuel-cell
test, suggesting that they have the potential to be produced commercially (Figure 5b,c) [80].
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In order to gain insight from the exchanges between different metal sites in key lo-
cations of the electrocatalyst, Ying et al. created SACs with numerous operational site
locations (Fe, Co, Ni) in order to explore the specific properties of the electrocatalysts [66].
However, despite the presence of multifaceted metal sites on the multiple metal catalysts,
the open circuit voltage suffered severe decay, requiring improvements in both the ratio of
the different metal sites as well as in the structural engineering. To avoid metal accumula-
tion through the provision of additional hierarchical pores, liquid SiO2 was supplemented
in the reacting system with ZIF-8, FePc and NiPc (Pc = phthalocyanine) [67]. When FeNi-N6
was prepared with four N atoms coordinated with the metal atoms, there were fewer H2O2
yields and the four-electron process resulted in better catalytic performance and longer
operating life. In the majority of active sites in electrocatalysis, Fe dominated while Ni
enhanced the cycling stability [43]. It can be concluded that active sites are very important
for electrocatalysis [67].

With the application of the above catalysis design principles, organic fuel cells can
achieve rapid ORR kinetics and can also benefit from a longer cycling life. The objective is
to improve the shielding of functioning sites and increase catalysis. Zhang et al. designed
Cu, N-incorporated carbon-based materials as catalysts. They prepared them by pyrolyzing
Cu-bipy-BTC, where bipy is 2,2′-bipyridine and BTC is 1,3,5-tricarboxylate. In its present
form, this catalyst consists of a copper–bispyridine–bistricarboxylate alloy that was burned
at 800 ◦C at high pressure to produce a sufficiently high number active sites, in particular
C-N and Cu-Nx. This catalyst was also fabricated to be porous (MOF-800) and has a high
surface exposure [72].

There is an urgent need for the further development of efficient catalysts due to the
slow ORR reaction kinetics that severely slow down the performance of H2/O2 fuel cells.
To effectively design MOF-based catalysts, it is necessary to consider ligands that contain
N, such as 2-methylimidazole, as well as metals such as Fe, Co, and Mn, all of which have
remarkably high catalytic activity for ORRs. In addition to good performance, morphology
control is also an important aspect, since metal-centre electrodes are able to efficiently
utilize the atoms due to their well-dispersed nature. An additional way of improving
catalytic capacity is to take advantage of the synergistic effects between the active sites. The
problem with finding the right catalyst for H2/O2 fuel cells remains a significant challenge,
as all of the above conditions must be met at the same time.

2.1.2. Organic Fuel Cells

A Pt-free electrocatalyst has been developed based upon the M-Nx active sites that
have already been broadly employed as catalysts for accelerating the ORR process in H2/O2
fuel cells. They have proven to be effective at accelerating the ORR process in hydrocarbon
fuel cells. A process of oxidizing the organic fuel also encompasses the ORR, and the
result is the transformation of chemical energy into its electrical and thermal forms. An
analogy can also be made with the oxidation of hydrogen and oxygen fuel cells. The use
of methanol fuel cells for high energy density is a good example of a fuel cell that can
be used for a variety of organic fuels. In order to ensure that the ORR catalysts used in
direct methanol fuel cells (DMFCs) have good methanol tolerance, durability, and stability,
the need to design them with good ORR tolerance and structure is paramount [81,82].
The use of ZIF-8 on graphene oxide after being subjected to thermal treatment at 800 ◦C
reported the fabrication of a carbon porous framework that utilized a graphene-based
layered material (GNPCSs-800) [83]. Furthermore, this Pt/C catalyst exhibits significant
performance improvements over other conventional Pt/C catalysts in terms of open circuit
voltage as well as methanol tolerance. This is partially due to the synergy linking the
surface modification of graphene to accommodate the N-doped porous carbon layers.

Furthermore, carbon materials generally have the ability to perform as catalysts in fuel
cells and are extremely resistant to organic media. As a way to exploit the excellent catalytic
capability of Cu centres, Jahan et al. designed and fabricated a composite containing GO and
Cu-structured MOFs in order to additionally enhance their ORR/OER activity [84]. They
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were also able to integrate the sealing and electrical properties of GO into the composite.
In a polymer electrolyte membrane fuel cell, MOF composite catalysts produced power
densities that were comparable to those of platinum-based catalysts [43]. The NH2-MIL-88B
and ZIF-8 iron and carbon sources, respectively, were utilized in order to make a structure
that was shown to resemble a bamboo structure mimicked by a carbon nanotube complex
with Fe-positioned active-site nodes. A metal catalyst, which is open-source, was tested in
the polymer electrolyte membrane fuel cell and showed excellent results when used as a
catalyst [70].

There is no doubt that when designing MOF-based electrocatalysts, it is very critical
to make sure that organic material tolerances and acidic medium tolerances are taken
into account, because each of these factors is able to enhance the cycling durability under
several conditions. In acidic conditions, it can be beneficial to utilize metallic catalysts
with a lower active site such as Cu in order to protect the metal active sites, or it can be
beneficial to develop metal-free catalytic systems comprising heteroatoms or metal active
sites encapsulated in carbon to prevent them from being oxidized. In this study, we exam-
ined the relationship between MOF structure, composite composition, and electrochemical
performance to profit from the understanding of the materials’ perspective and their impact
on the potential of particle-based components for the enhancement of high-performance
Fuel-cell systems.

2.2. MOFs as Electrolyte Application

MOFs with high proton conductivities have recently attracted a lot of attention due
to their outstanding properties. The coordination skeleton can deliver protons directly or
through carrier particles [85,86]. MOFs, however, are restricted in their migration of proton
conductors as a result of their grain-boundary structure, which leads to an insufficient
conductivity. Furthermore, because of the unique and diverse crystal structures of MOFs,
it is extremely hard to directly process them for direct use in fuel cells [87]. A practical
solution to this problem is to combine MOFs with materials of a polymeric nature and their
advancement as composite membranes [85,88].

It is generally possible to divide the PEMs modified by MOFs into two basic types.
Phytic@MIL, PIL@MIL, and acids@MIL are some of the proton carriers that have been
immersed in the pores of MOFs that can be used in this method. Moreover, an alternative
approach is to augment the hydrophilic and acidic properties of MOFs by adding useful
chemical components (-SO3H, -NH2, -2COOH) to the organic ligands [89–91]. Despite
the excitement surrounding these findings, reports in this direction are scarce with much
to discover about various MOFs. There will be a brief summary of the performance
enhancements of PEMs by using different MOFs in this section, including the UIO-series,
MIL-series, ZIF-series and other MOFs. A MOF has the advantage of being able to be
customized to meet the specific requirements of any application. Because of their specific
properties, MOFs might possess the ability to enhance nafion functionality, which is a
state-of-the-art electrolyte, and thus improve water containment in structures and the
proton conductivity of nafion-based layers. Polymers and MOF composites can normally
be improved in their proton conductivity in two separate ways: either by saturating
their pores with protons or by modifying their organic groups with functional moieties
to provide them with increased hydrophobicity and acidity [92,93]. In this study, Yang
et al. developed a high-performance composite membrane made from nafion and MOFs.
They were interested in illustrating that graphene oxide (GO) can be grown on a porous
metal-organic framework (ZIF-8) and subsequently be introduced into the nafion matrix.
It was also found that ZIF-8 and GO had a synergetic effect that improved the proton
conductivity by a significant amount [92].

In order to improve PEMFC performance, UIO-66 with high stability has been exten-
sively studied. Recent research by Rao et al. revealed the use of nafion membranes for
obtaining graphene nanosheets covalently bonded to UIO-66 (Figure 6a–c) [94].
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most likely related to the large interconnection of NH2-UiO-66 and the GO substrate, 
which may lead to an interruption in proton-transfer channels. As a result of UiO-66’s 
remarkably high stability, the material has been extensively studied for potential applica-
tions in PEMFCs. Recently, an organic material designated porous organic cages has been 
shown to be a potential filler for proton-exchange membranes. The in situ crystallization 
of nafion matrixes with Cage 3 attached has been reported as shown in Figure 7a,b [95]. 
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Figure 6. (a) Conductivity measurement plot of protons (at 95% RH) of nafion and nafion/NH2-
UiO-66@GO-fused membranes under variable loadings of NH2-UiO-66@GO. (b) Proton conductivity
measurements (at 95% RH) of nafion and different nafion membrane compositions with 0.6 wt.% filler
content. (c) Proton conductivity measurements (at 95% RH) of nafion and nafion/NH2-UiO-66@GO
composite membranes with different NH2-UiO-66@GO sizes [94].

The aim of this study was to prepare different sizes of NH2-UiO-66 for use in this
experiment (40, 90, and 140 nm), which were then attached to polydopamine-coated GO.
Interestingly, the conductivity varied with the filler content, which reached its maximum
value when it was at 0.6 wt.%. In addition, it also depended on the MOF size, which was
ideally 40 nm. MOFs have not been studied in detail for their mechanical properties or
stability. In contrast to nafion membranes with smaller NH2-UiO-66 (90 nm) and 140 nm, the
proton permeability of nafion membranes with larger NH2-UiO-66 (90 nm) was lower, most
likely related to the large interconnection of NH2-UiO-66 and the GO substrate, which may
lead to an interruption in proton-transfer channels. As a result of UiO-66’s remarkably high
stability, the material has been extensively studied for potential applications in PEMFCs.
Recently, an organic material designated porous organic cages has been shown to be
a potential filler for proton-exchange membranes. The in situ crystallization of nafion
matrixes with Cage 3 attached has been reported as shown in Figure 7a,b [95]. Cage 3 is
known to possess intrinsic 3D channels that may assist proton conduction. A composite
membrane can be greatly enhanced in terms of water-retention capacity by integrating
Cage 3 into the nafion matrix, which is typically degraded at 320 ◦C (Figure 7c). Even
though Cage 3 is potentially useful as a PEM, no mechanical studies have been conducted
to determine the impact of incorporating it into a polymeric matrix. There was a significant
improvement in proton conductivity when Cage 3 was added, but there was no substantial
improvement in the methanol permeability. Under the same operating conditions, a nafion
membrane containing Cage 3 achieved 0.27 S cm–1 with a mass fraction of 5% when heated
to 90 ◦C and used at 95% relative humidity. This is a substantial improvement over recast
nafion (0.08 S cm–1) under identical conditions (Figure 7d,e).
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Figure 7. (a) Schematic illustration of preparation of nafion-Cage 3 composite membrane;
(b,c) water-uptake capacity {WU (wt.%)} and thermogravimetric analysis (TGA) data of recast nafion
and nafion-Cage 3 composite membrane; (d) dependence of temperature (40% RH); (e) dependence
of humidity (90 ◦C) proton conductivity of recast nafion and nafion-Cage 3 composite membrane [95].

In addition, reports have been published about the use of non-classical MOFs, includ-
ing nafion-based composites. Specifically, Wang et al. have identified MOF-W1/nafion and
MOF-W2/nafion as two composite membranes, as shown in Figure 8 [96], which contain
the same type of acid: 5,5′-(butane-1,4-diylbis(oxy)) di-isophthalic acid (H4BDD). It appears
that the molecular system MOF-W1 has binuclear molecules that are connected through
hydrogen atoms, primarily hydrogen bonds between uncoordinated carboxylic groups
and water molecules. The MOF-W2 is a supramolecular two-dimensional chain formed
from one-dimensional hydrogen bonds between the uncoordinated and coordinated car-
boxylate groups. MOF-W1/nafion and MOF-W2/nafion have proton conductivity values
of 4.04 × 10−7 and 4.94 × 10−7, respectively, at 30 ◦C. Recently, Wang et al. studied the
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impact of doping NH3-modified Zn-MOF inside a nafion matrix. In order to improve
the electrochemical performance of nafion hybrid membranes, NH3-modified Zn-MOFs
were embedded as guest molecules inside nafion as a host (Figure 9a) [97]. The proton
conduction of the designed hybrid membranes was greatly enhanced by the diverse and
abundant hydrogen bonds. Upon doping Zn-MOF in the nafion membrane, the conduc-
tivity enhancement was 1.87-fold purer than nafion, whereas by doping NH3-Zn-MOF
inside the nafion membrane, the conductivity enhancement was 5.47-times purer than
nafion. In terms of performance, we see that 212-mW cm−2 of maximum power density and
660 mA cm−2 of maximum current density are both quite good for a single cell (Figure 9b).
A comparison of proton conductivity of nafion/MOF-based hybrid electrolyte is shown in
Table 2.

Appl. Sci. 2022, 12, 6659 12 of 21 
 

the electrochemical performance of nafion hybrid membranes, NH3-modified Zn-MOFs 
were embedded as guest molecules inside nafion as a host (Figure 9a) [97]. The proton 
conduction of the designed hybrid membranes was greatly enhanced by the diverse and 
abundant hydrogen bonds. Upon doping Zn-MOF in the nafion membrane, the conduc-
tivity enhancement was 1.87-fold purer than nafion, whereas by doping NH3-Zn-MOF 
inside the nafion membrane, the conductivity enhancement was 5.47-times purer than 
nafion. In terms of performance, we see that 212-mW cm−2 of maximum power density 
and 660 mA cm−2 of maximum current density are both quite good for a single cell (Figure 
9b). A comparison of proton conductivity of nafion/MOF-based hybrid electrolyte is 
shown in Table 2. 

 
Figure 8. Proton conductivity and water uptake of nafion/W1, nafion/W2 and nafion membranes 
[96]. 

 
Figure 9. (a) Schematic diagram showing the synthesis of MOF engaging in host-guest associations 
specific to hydrogen bonding in the Zn-MOF structural unit, and (b) discrete H2/O2 Fuel-cell current-
density-voltage plot of the hybrid membrane at 60 °C [97]. 

  

Figure 8. Proton conductivity and water uptake of nafion/W1, nafion/W2 and nafion membranes [96].

Appl. Sci. 2022, 12, 6659 12 of 21 
 

the electrochemical performance of nafion hybrid membranes, NH3-modified Zn-MOFs 
were embedded as guest molecules inside nafion as a host (Figure 9a) [97]. The proton 
conduction of the designed hybrid membranes was greatly enhanced by the diverse and 
abundant hydrogen bonds. Upon doping Zn-MOF in the nafion membrane, the conduc-
tivity enhancement was 1.87-fold purer than nafion, whereas by doping NH3-Zn-MOF 
inside the nafion membrane, the conductivity enhancement was 5.47-times purer than 
nafion. In terms of performance, we see that 212-mW cm−2 of maximum power density 
and 660 mA cm−2 of maximum current density are both quite good for a single cell (Figure 
9b). A comparison of proton conductivity of nafion/MOF-based hybrid electrolyte is 
shown in Table 2. 

 
Figure 8. Proton conductivity and water uptake of nafion/W1, nafion/W2 and nafion membranes 
[96]. 

 
Figure 9. (a) Schematic diagram showing the synthesis of MOF engaging in host-guest associations 
specific to hydrogen bonding in the Zn-MOF structural unit, and (b) discrete H2/O2 Fuel-cell current-
density-voltage plot of the hybrid membrane at 60 °C [97]. 

  

Figure 9. (a) Schematic diagram showing the synthesis of MOF engaging in host-guest associations
specific to hydrogen bonding in the Zn-MOF structural unit, and (b) discrete H2/O2 Fuel-cell current-
density-voltage plot of the hybrid membrane at 60 ◦C [97].



Appl. Sci. 2022, 12, 6659 13 of 20

Table 2. Comparison of nafion/MOF-based hybrid electrolyte for Fuel-cell applications.

Filler Polymer Backbone Proton Conductivity (S cm−1) Conditions

Cr-MIL-101-NH2 [98] SPES 4.1 × 10−2 160 ◦C

UiO-66 [99] Nafion 1.65 × 10−1 80 ◦C, 95% RH

UiO-66-SO3H [99] Nafion 1.71 × 10−1 80 ◦C, 95% RH

UiO-66-NH2 [100] Nafion 1.84 × 10−1 80 ◦C, 95% RH

UiO-66-NH2 + UiO-66-SO3H [100] Nafion 2.56 × 10−1 90 ◦C, 95% RH

UiO-66-NH2 + UiO-66-SO3H [101] Chitosan 5.2 × 10−2 100 ◦C, 95% RH

GO@UiO-66-SO3H [102] SPEEK 2.68 × 10−1 70 ◦C, 95% RH

GO@UiO-66-NH2 [94] Nafion 3.03 × 10−1 90 ◦C, 95% RH

PWA@UiO-66-NH2 [103] Nafion 9.2 × 10−2 Ambient condition

MIL-101 [104] Chitosan 3.4 × 10−2 100 ◦C, 100% RH

S-MIL-101 [104] Chitosan 6.4 × 10−2 100 ◦C, 100% RH

H2SO4@MIL-101 [104] Chitosan 9.5 × 10−2 100 ◦C, 100% RH

H3PO4@MIL-101 [104] Chitosan 8.3 × 10−2 100 ◦C, 100% RH

CF3SO3H@MIL-101 [104] Chitosan 9.4 × 10−2 100 ◦C, 100% RH

H3P04/ZIF-8 [105] PBI 3.1 × 10−3 180 ◦C, anhydrous

H3P04/ZIF-67 [105] PBI 4.2 × 10−2 180 ◦C, anhydrous

H3P04/ZIF-mix [105] PBI 9.2 × 10−2 180 ◦C, anhydrous

ZIF-8 [106] SPEEK 1.6 × 10−2 100 ◦C

ZIF-67 [106] SPEEK 1.5 × 10−2 100 ◦C

ZIF-mix [106] SPEEK 2.9 × 10−2 100 ◦C

SO3H-MIL-100(Fe) [107] SPS 3.82 × 10−3 25 ◦C, 100% RH

Polydopamine-ZIF-8 [108] Nafion 2.5 × 10−1 80 ◦C, 95% RH

polyacrylate carboxyl-ZIF-8 [109] Nafion 2.4 × 10−1 25 ◦C, 100% RH

Phytic@MIL101 [110] Sulfonated poly (arylene ether
ketone) 0.192 80 ◦C, 100% RH

MOF-1 [89] Aquivion 3.49 × 10−2 25 ◦C, 100% RH

Co-tri MOF [111] Aquivion 5.06 × 10−2 25 ◦C, 100% RH

SO3H-MIL101 [112] SPEEK 3.406 × 10−1 75 ◦C, 100% RH

HPW-MIL-101(Cr) [113] SPEEK 2.72 × 10−1 65 ◦C, 100% RH

Cu–TMA [114] SPEEK 4.5 × 10−2 70 ◦C, 98% RH

MOF-801 [115] C-SPAEKS 1.0 × 10−1 90 ◦C, 100% RH

MIL-100(Fe) [116] C-SPAEKS 1.38 × 10−1 100 ◦C, 98% RH

Im@MOF-801 [117] C-SPAEKS 1.28 × 10−1 90 ◦C, 100% RH

MOF-5(SiO2) [118] SPEEK 3.69 × 10−3 20 ◦C

MOF-Z1 [119] SPEEK 3.95 × 10−3 80 ◦C, 98% RH

MOF-Z2 [119] SPEEK 3.17 × 10−3 80 ◦C, 98% RH

ZIF-L [120] SPEEK 1.83 × 10−1 70 ◦C, 90% RH

SO4-MOF-808 [121] SPEEK 1.96 × 10−1 70 ◦C, 90% RH

Fe-MIL-101-NH2 [122] SPPO 2.5 × 10−2 90 ◦C, 98% RH

NAPI-Fe-MIL-101-NH2 [123] SPPO 4 × 10−2 160 ◦C, 15% RH

Cd-MOF [124] SPPO 2.64 × 10−2 70 ◦C, 98% RH

MOF-azo [125] Nafion 1.12 × 10−2 Ambient conditions
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Table 2. Cont.

Filler Polymer Backbone Proton Conductivity (S cm−1) Conditions

MOF-bpy [125] Nafion 2.6 × 10−2 Ambient conditions

MOF-bpe [125] Nafion 2.95 × 10−1 Ambient conditions

ZIF-67 NFMs [126] Nafion 2.88 × 10−1 80 ◦C, 100% RH

ZHNFs [127] Nafion 2.77 × 10−1 80 ◦C, 100% RH

MOF-Mn1 [128] Nafion 3.35 × 10−4 70 ◦C, 30% RH

MOF-Mn2 [128] Nafion 3.67 × 10−4 70 ◦C, 30% RH

H3PO4/Ni-BDC [129] PAN 1.05 × 10−2 80 ◦C, 90% RH

Ni-BDC [129] PAN 1.67 × 10−4 80 ◦C, 90% RH

[BMIM]BF4@UiO-67) [130] PAN 2.53 × 10−4 90 ◦C, 35% RH

Ni-BDC [131] PAN 6.04 × 10−5 90 ◦C, 90% RH

Zr-Cr-SO3H [132] BSP 1.54 × 10−1 80 ◦C, 100% RH

MOF-Z4 [133] PVA 2.1 × 10−4 65 ◦C, 98% RH

MOF-Z5 [133] PVA 2.9 × 10−4 65 ◦C, 98% RH

ZIF-8 [134] PBI 3.1 × 10−3 200 ◦C, anhydrous

ZIF-67 [134] PBI 4.1 × 10−2 200 ◦C, anhydrous

ZIF-8 + ZIF-67 [134] PBI 9.1 × 10−2 200 ◦C, anhydrous

MIL-100(Fe) [135] sPSU 2.55 × 10−3 25 ◦C, 100% RH

UiO-66-NH2-Glu [136] sPSU 2.1 × 10−1 80 ◦C, 100% RH

SPES—sulfonated polyethersulfone; SPEEK—sulfonated poly(ether ether ketone); PBI—polybenzimidazole; SPS—
sulfonated polysulfone; SPAEKs—sulfonated poly(arylene ether ketone)s; SPPO—sulfonated poly(phenylene
oxide); PAN—polyacrylonitrile; BSP, PBA—poly(butyl acrylate); sPSU—sulfonated polysulfone; BSP—branched
sulfonated polymer.

3. Conclusions and Perspective

Recent studies have demonstrated that MOFs hold a prominent position in electro-
chemistry due to their large surface area, excellent mass transfer, porosity and effective
active sites. Inspired by this, we have systematically summarized various literature fo-
cussing on the use of MOFs in Fuel-cell systems in tabular form. At the present time,
considerable efforts have been made to integrate MOF-based materials for commercial use.
However, technical difficulties still exist for tuning the MOF chemistry towards Fuel-cell
technologies for industrial production. By using environmentally friendly rechargeable
batteries, we can reduce energy consumption and protect the environment. It is cru-
cial to mention that fuel cells are proficient in directly converting chemical to electrical
energy. This technology has become known for its ultra-high power density, excellent
reaction efficiency, quick start-up, easy manufacturing, low operating temperatures, and
convenience of industrial production. However, the electrochemical performance and the
cost-effectiveness of these batteries need to be enhanced to ensure their long-term reliability
and durability. To enable better enhance Fuel-cell-related performance technology at the
present time, electrolytes and electrocatalysts need to be optimized for their interfacial
effects. Further, proton-transport capacity has to be increased and the resistance must be
reduced. Electrocatalytic reactions involving oxygen reduction reactions are substantially
affected by the coordination surrounding the active sites inside MOFs. Real-time monitor-
ing of degradation processes and electrocatalytic activity can improve Fuel-cell life and
stability. There are still a variety of practical issues associated with Fuel-cell technology
despite the major scientific and technological advancements in these fields. These issues
may include local and material degradation and side reactions. In hindsight, one of the
main factors restricting the commercial success of PEMFCs is their durability. Hence, the
present scenario is to predict the process lifetime while making informed judgements
about the degradation and performance of PEMFCs under Fuel-cell operation conditions.
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Improvements in certainty will require more powerful and accurate practical models, and
artificial-intelligence-based methods will be in demand [137–142].
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