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Abstract: In recent times, designated grazing areas/fields or routes for livestock grazing are usually
defined. Hence, their herding activities’ success relies on data extracted from aerial photographs.
As such, a direct and cost-effective way of monitoring livestock for perimeter coverage and in other
natural situations is required. This paper presents a coverage solution involving multiple interacting
unmanned aerial vehicles. The presented approach is built on a graph, with geographic coordinates
set such that several Unmanned Aerial Vehicles (UAVs) can successfully cover the area. The maximum
flying time determines the number of UAVs employed for coverage. The proposed solution is thought
to solve some practical problems encountered during the execution of the task with actual UAVs.
It is suitable for long-term monitoring of animal behavior under various weather conditions and
observing the relationship between livestock distribution and available resources on a grazing field.
The simulation was carried out using MATLAB and aerial images from Google Earth.

Keywords: livestock management; FANET operations; grazing field; area surveillance

1. Introduction

Unmanned Aerial Vehicles (UAVs) can revolutionize livestock herding and manage-
ment. As a result, there is an increasing scientific interest in using UAVs to manage livestock.
UAVs can be used to control livestock grazing areas and remote sensing of these animals.
In recent years, most governments have defined livestock grazing areas/fields or paths,
with the effectiveness of most herding operations relying on the extraction of information
from aerial pictures [1]. In a farm context, UAVs are typically operated at human height or
a low to medium altitude, giving them the same or wider angles of view as humans. As
established by the regulatory body, grazing field mapping can be used for UAV operations
due to the similarity of viewpoint with people at eye level. However, some computational
and scientific issues are unique to UAV operations. One of these issues is the minimum time
coverage of ground regions utilizing a group of unmanned air vehicles (UAVs) dubbed
Flying Adhoc Network (FANET) outfitted with image sensors [2]. As a result, this research
proposes a way for using UAVs to cover and sense ground areas. The paper will concentrate
on practical issues arising only during vehicle deployment. The number of UAVs utilized
in the task, for example, is determined by the area’s size and layout, the UAV’s maximum
flight time and, more crucially, the time required to prepare and launch the UAV. Figure 1
depicts the conceptual diagram. The operation of multiple UAVs to achieve adequate
coverage is dependent on the mode of communication amongst the UAVs. It is critical to
ensure that the communication efficiency among sensor-equipped devices is at the highest
level to accomplish a flawless operation of UAV-based livestock management [3]. These
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UAVs’ communication is typically affected by the speed of the UAVs within the grazing
field. Nonetheless, with the high speed of UAVs, a high coverage area is said to be achieved
because the UAVs are moving at a faster speed.
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Some studies have used aerial pictures (satellite imagery) and UAV-based commu-
nication systems to examine farm animal tracking and monitoring for applications such
as grazing distribution monitoring, pasture usage, domestic livestock management, and
livestock behavior. Grazing distribution monitoring has attracted increased attention,
intending to manage individual animals through continuous and real-time monitoring
of their perimeter coverage during grazing as well as their health, welfare, output, and
environmental effects. The data collected during the livestock monitoring procedure con-
tributes to the long-term viability of the agroecosystem by providing herders with timely
and reliable information about how their animals behave on the farm [4]. Nonetheless,
it is known that satellite usage is applicable for animal tracking and monitoring through
space-retrieved imagery that can analyze cattle productivity on different pastures. How-
ever, the use of drones is justified when the angle matters. Some uses of drones for livestock
management include spotting trespassing hunters, farming illegal activities, and controlling
herder operations.

The contributions of this paper are as follows:

i. We designed and proposed a deployment scheme that considered the geographic
coordinates of the grazing field for practical implementation. To our knowledge,
this has not been adequately treated before.

ii. The proposed deployment scheme focused on achieving an optimal coverage time
and interconnections for efficient grazing field surveillance.

iii. We also proposed a task-sharing protocol between the multiple UAVs for effective
task sharing and cooperation.

Section 2 presents a review of some of the pertinent literature works. Section 3 presents
the methodology used to present the proposed solution, which shows the step-by-step
approach and the conducted simulation. In Section 4, the obtained result is presented
together with the analysis. Finally, Section 5 presents the conclusion drawn from the results
and concludes the report.

2. Literature Review

Livestock management in widespread production systems may be thought-provoking,
particularly in huge regions. The use of UAVs to gather images from the region of concern
is rapidly becoming a feasible alternative. Nonetheless, proper processes for extracting
pertinent data from the images are still rare. Conventionally, the recognition of livestock
through a UAV is centered on a simple process involving a video recording of the pasture
where the livestock is spotted and calculated manually by a human viewer. This practice
was found to be valuable in the detection and counting of cattle in a quarantine environ-
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ment [5]. However, this method is manual and always involves the presence of a human
observer. The authors in the work of [3,6,7] present the parameters and key limitations,
current regulations, potential requirements, and challenges for operating UAVs in smart
agriculture. To computerize the livestock detection and counting method, the number of
livestock was added up in the video frame by detaching its image from the background
and applying thresholding on each image frame of the video sequence [8–10]. The ability of
Unmanned Aircraft Systems (UAS) overflights for cattle surveillance was assessed in [11].
The information attained from the Unmanned Aircraft System (UAS) image was used to
model the cattle distribution, and the outcomes were related to bio-logged cattle. The
prospect of using UAV video surveillance to predict the food intake of non-nursing beef
cows was examined where the cow feeding pattern was determined from the processed
video files. The results suggest that UAV surveillance could be vital in monitoring cow
feeding behavior [12]. The work of [13] suggested a general smart video surveillance
system and studied some glitches in cow performance analysis using an intelligent image-
based monitoring system framework with a hidden Markov process. while the authors
in the work of [14] suggested a new robotic animal herding system centered on a system
of independent barking drones. Such a system aims to substitute old herding approaches
so that an enormous amount of farm animals can be speedily collected from a sparse
status and then driven to a selected place. Vayssade et al. propose a method to process
images taken by a commercial drone to automate the tracking of animal activities using a
combination of thresholding and supervised classification methods [15]. Jung et al. use a
Proportional Integral Derivative (PID) controller on four quadrotor UAVs to guide four
animals into their pen within the minimum time by creating noises of predators modeled
with an exponential function to provide a solution to the cattle roundup problem [10].

The geographical proximity used to examine grazing behavior and social structure
is a critical indicator of performance in cow behavior. As such, Mufford et al. developed
a competent way to compute the spatial proximity of beef cattle, employing UAV-based
image acquirement and photogrammetric analysis. Still-frames pulled out from the UAV
video screenshots were used to produce Orth mosaics, revealing that groups of correlated
sets were nearer than non-correlated ones [16]. Sun et al. offered a real-world method that
used UAVs and verified its use at a distinctive household pasture to examine the hourly
spatial distribution of each yak [17]. Favier et al. explored the use of UAVs to detect and
round up sheep by developing a prototype controlled from a laptop base station running
on LABVIEW [18]. Jasper Brown et al. discovered the relationship between object detector
performance and spatial degradation for livestock. Factual data was established using
focus drone images and then down sampled to various ground sample distances (GSDs).

Apart from the simple method of livestock detection, advancements in Artificial
Intelligence (AI) and Machine Learning (ML) have allowed researchers to detect livestock
using a pre-trained Convolutional Neural Network (CNN)-based architecture. For instance,
an adjusted version of R-CNN was employed to identify and count livestock on a grazing
field [19]. In this method, a selective search algorithm was used to generate a region
proposal and then applied a CNN to extract the features in the region, which were then
later classified using a Support Vector Machine (SVM). The confidence value was obtained
by applying it to a linear bounding box. Kate et al. scrutinized twelve sheep’s habits
and normal responses to a drone to fit mathematical models of shepherding to the new
dimension. The model targets make it realistic for AI to advance the independence of
farmers in shepherding above the ground [20]. Barbedo et al. proposed a cattle counting
scheme incorporating a deep learning model for the rough animal position and color
space manipulation to increase the contrast between animals and the background [21].
Jayme Garcia Arnal Barbedo et al. investigated the prospect of utilizing an incline angle to
increase the expanse of the acquired image in cattle monitoring. This feature was realized
by creating a model for animal detection using Deep Convolutional Neural Networks. Fact
findings show that oblique images can be magnificently utilized in some circumstances, but
certain real restrictions must be solved for the method to be attractive [22]. Andrew et al.
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recommend a deep neural network method for livestock recognition employing UAVs with
onboard deep learning inference [23]. Soares et al. suggested a technique for identifying
and counting cattle, in above-the-ground images acquired by UAVs, based on CNNs and a
graph-based optimization technique to remove detected duplicated images [24]. Shao et al.
propose a cattle detection and counting system based on CNNs using aerial images taken
by a UAV [25].

Owning that the future routing protocols depend on the nature of the communication
link, the works in [26,27] present the design of an interface protocol for an indoor Flying
Ad-hoc Network-specific routing protocol, using light fidelity as a communication link. The
focus was to achieve high throughput. However, practical routing problems encountered
during UAV operations are not considered. To solve practical routing problems encoun-
tered during UAV operations, ref. [28] proposed an optimized solution for the problem of
minimum time coverage of ground areas using multiple UAVs with image sensors. This
is achieved by determining the geographic coordinates a single UAV would cover in a
minimum time and then formulating mixed-integer linear programming to route the UAVs
over the geographic area. The UAVs required to cover a particular area could then be
selected. However, the UAV routing strategy does not consider possible collisions among
the UAVs. Hence, to avoid link breakage during information transfer, the communication
path between multiple UAVs is optimized to improve communication links in flying Ad-
hoc networks using smell agent optimization and the Particle Swarm Optimization (PSO)
algorithm [29].

The reviewed studies show that several works have been conducted in livestock
management. However, only a few works considered the geographic coordinates of the
grazing field for practical implementation before optimizing the UAV’s performance in the
field in terms of communication and flight patterns. Hence, this paper presents a solution
based on the practical geographic coordinates of the grazing field for livestock perimeter
tracking and management.

3. Methodology

This subsection presents the methodology adopted in this research work. Google
Map image of a grazing field was first collected using the online Google Earth software.
This grazing field represents the area that is set to be covered by the grazing castles. The
dimension of the grazing field is employed in the simulation. Also, the parameter of
the Tello Edu drone is used during the simulation. This will allow future deployment
in the field.

The problem formulation assumed that three UAVs are supposed to cover a grazing
field area. The choice of three candidate UAVs is because the minimum number of a UAVs
that can form an Adhoc network with each other is three. Given that the area to be covered
is A, and the flight time for each UAV is 10 min (according to the Tello Edu drone datasheet),
each drone has an onboard camera for capturing and sensing. The aim will be to use these
drones to sense the entire area using the onboard sensor whilst intercommunicating. The
drone is said to fly at the same altitude [26]. Using a larger number of UAVs will lead to
a minimum coverage time but increases the chance of collision. Therefore, the problem
herein is to specify the path for each UAV to complete its mission. The collected Google
Earth map for the grading field is presented in Figure 2.

Based on the fitted-on board sensor, if the focal distance of the camera’s lens is FL, the
height between the camera and the ground is HG, which also denotes the flying height. The
width of the fitted onboard sensor is WD the camera’s coverage width CL can be computed as:

CL = HG
WD
FL

(1)

The coverage concept is depicted using the diagram in Figure 3.
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To properly determine the best direction to calculate the number of rows that can be
covered, the measurement on the map area is rotated like a polygon, and the different
heights are measured from the ground. The minimum height denoted as H is then used to
compute the number of rows to be covered.

The number of the rows to be covered is estimated as:

CR =
H

CL(1−Ol)
(2)

where Ol is the fraction of overlap between the aerial images. Therefore, the distance
between each of the parallel rows can be computed as:

dR =
H
CL

(3)

The image width and length can be computed using Equations (4) and (5), respectively.

IMW = 2FA tan
(
(FOVh/2)π

180

)
(4)

IML = 2FA tan
(
(FOVV/2)π

180

)
(5)

The variables FA, FOVh, FOVV are the flight altitude, the horizontal field of view, and
the vertical field of view, respectively. Therefore, the UAVs are said to move parallel to the
x-axis. The coordinate of the take-off point of the UAV is three sets of nodes of the graph
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G = (V, E). The movement scenario is depicted in Figure 4. The GL and GW represent the
grazing field length and width, respectively.
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The graph can be mathematically represented as an M × M matrix whereby the
distance between two of the UAV nodes a and b, dab, can be computed using Euclidean
distance. Therefore,

dab = dab, ∀(a, b) ∈ E (6)

The flight time for each the UAV to cover the grazing field can be computed as follows:

FT =
M

∑
a

M

∑
b

dab
Vab

Xk
ab + dab (7)

where Vab, Xk
ab and dab are the velocity, position, and distance between the UAVs, respec-

tively. Therefore, the total flight time for three of the UAVs is:

FTotal =
3

∑
i=1

(
M

∑
a

M

∑
b

dabi
Vabi

Xk
ab + dki

)
(8)

The grazing field coverage algorithm for the implementation is presented in Algorithm 1.

Algorithm 1. Grazing Field Algorithm

Input: number of UAVs (N), Map
1 Capture map area
2 Initialize flying path P = 1 based on map coordinate obtained
3 Compute image width using Equation (4)
4 Compute image length using Equation (5)
5 Initialize UAV node deployment
6 Get a neighbor set of UAVs
7 for UN ∈ CR do
8 dR = H

CL

9 Establish a UAV flying path
10 If at least one path exists, then
11 Continue
12 else
13 path = 0 then stop
14 end if
15 end for

Output: Coverage region, time, flight path
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The simulation parameters for the grazing field coverage are presented in Table 1.
Some of these are the parameters obtained from the Tello Edu drone datasheet.

Table 1. Simulation Parameters.

Parameters Value

FOVh 84.6
FOVV 73.7

Resolution 2592 × 1944
Number of UAV 3
UAV setup time 60 sec
UAV flight time 30 min

flight height 10 m

The UAVs in FANET are expected to communicate with each other. This expectation
becomes necessary to achieve effective communication. Communication is key between
multiple UAVs that require a specific routing protocol [26]. Since the grazing field is a
process of surveying the field perimeter so that live stock will not move out of the field
and violate governmental laws and policies, there is a need for the UAVs to communicate
with each other as well as the base station. Hence, the paper proposes a system whereby
the captured images are dynamically shared between multiple UAVs under wireless mesh
networking using the communication protocol presented in [26]. This data sharing will
make task cooperation and sharing between the UAVs efficient. The operation of sequence
for the UAV-based FANET communication is depicted in Figure 5.
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As shown in Figure 5, the UAV-based FANET communication is achieved if data is
captured. The diagram shows that the UAVs in the FANET operation communicate with
one another for information exchange. Provided that the data is captured in the required
format, the data are then stored in the UAV for relaying to nodes or base stations.

The routing protocol used to share the captured information from the UAVs in the
grazing field monitoring was a Specific Routing Protocol for Flying Adhoc Network, which
was coined from the standard Ad Hoc On-Demand Distance Vector (AODV) as detailed
in [26,27]. The standard AODV is a loop-free routing system designed to self-start in a
network of nodes and withstand a variety of network behaviors such as node connection
failures, mobility, and packet losses. At each node, AODV retains a routing table. In a
destination’s routing table entry, a next-hop node, a sequence number, and a hop count
are needed fields. The next-hop node receives all packets headed for the destination. The
sequence number is a time-stamping system that measures the freshness of a route. The
hop count represents the current distance to the target node [30].

For connectivity purposes, a path for routing between the FANET nodes must be
established, similar to a graph G = (V, E), consisting of a set of nodes and vertices (a, b).
Mathematically the probability that a connectivity path will exist is given as:

G(N, γab) =
(
ΛN , FN , γN ,γab

)
(9)

where; ΛN = {G = G(V, E)}, FN = 2N, γN ,γab(G) = ∏(ab)∈E γab ∏(ab)∈E(1− γab), γab is the
probability of determining an edge between vertices a and b, and E is the random set of edges.

When the UAV node is static, the graph is also static. Therefore, G{HN , γ}, HN = (V, EN)
where:

γab =

{
γ, (a, b) ∈ E
γ, (a, b) /∈ E

(10)

γN ,γab(G) = γ|E|(1− γ)|EN |−|E| (11)

The variable EN is the expected utility of the number of edges in the graph. The
algorithm for the FANET node communication is presented in Algorithm 2. Using the
algorithm presented, the UAVs in operation must be within the same transmission range
for each node to communicate with each other. The range of transmission is dependent
on the type of communication medium used. It is also essential to state the size of data
captured before initiating UAV connections [26]. Based on this, the UAVs can connect
within the Map coverage area for cooperation using the connectivity routing algorithm
presented in Algorithm 2. Since the nodes move randomly within the coverage area, the
UAV establishes a connection with the closest node. However, if the request to establish a
connection is unsuccessful, the node requests again until a connection is established.

Algorithm 2 Connectivity Routing Algorithm

Input: UAV coverage Area, Transmission Range
1 Obtain coverage area from Map
2 Enter Transmission range
3 Enter packet size to be captured
4 Enter UAV speed
5 Get a neighbor set of UAVs (D(x, y))
6 If D(x, y) < Tmin then
7 Establish a UAV connection
8 Exchange date
9 else
10 Transmission range not reachable
11 Return to 5
12 end if
Output: Connection established
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The parameters in Table 2 show the simulation parameters for the connectivity routing
algorithm.

Table 2. Connectivity Routing Algorithm.

Parameters Value

Tmin 100 m
Packet size 10
UAV speed 20 m/s

The next subsection presents the result and discussion.

4. Results and Discussion

This subsection uses a series of simulations to demonstrate the proposed methodology.
All simulations were run in MATLAB with an HP Pavilion 15 Intel Core i7 3.2 GHz
processor and 8 GB of RAM specification. The YALMIP optimization toolbox was adopted
to minimize the coverage time for the UAVs on the grazing fields.

The simulation started by exploring the coverage time equation presented in Equation (4)
using three UAVs. The setup time of 120 secs and a total flight time of 10 min correspond
to the parameters presented in Table 1. The collected map was used as an input to the
algorithm, as shown in Figure 6. In the diagram in Figure 7, the grazing field map was
carved out and presented. The extracted path for the fight coverage during the mission
was extracted and presented in Figure 8.
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The carved-out region of the extracted map is depicted with a black spot, as shown
in the diagram. The UAV’s flight path is computed-based on the map’s carved-out region.
The obtained flight path is presented in Figure 8.

The green, red, and blue paths are the paths to be followed by the UAVs during the
grazing field surveillance. The paths are interwoven because the UAVs move randomly. The
time of operation of the UAVs as obtained are 23.3 min, 25.1 min, and 25.2 min, respectively,
without determining the optimal route to be followed. This shows that the UAVs could
perform their mission on the grazing field.



Appl. Sci. 2022, 12, 6654 10 of 15

The longest distance of the lane to the grazing field was 149.14 m. This parameter was
required in establishing the UAV connectivity routing algorithm. However, the UAV path
can further be optimized to reduce the coverage time, allowing the UAVs to complete their
mission faster to maximize energy. The initial coverage time of the three UAVs before the
optimal route is determined is benchmarked against the coverage time when the optimal
route is determined. This is presented in Figure 9.
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Figure 9. UAV Coverage Time.

As shown in the diagram in Figure 10, the UAV’s coverage time is presented whereby
the (1), (2), and (3) represent the first, second, and third UAVs, respectively, on the x-axis.
The y-axis is the coverage time. After the route is optimized, the obtained coverage time
is 21.3 min, 21.1 min, and 19.2 min for UAV1, UAV2, and UAV3, respectively, against the
initial 23.3 min, 25.1 min, and 25.2 min, respectively. As a result, the optimized route
path successfully covers the mission area while lowering energy consumption. Due to the
increased coverage duration, this has been a limiting problem for UAVs in grazing field
observation. Between each trip, the setup time for landing operations, battery replacement,
and take-off can take longer than the actual flight time. As a result, the quantity of survey
area that can be flown in each operation is influenced immediately.
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Figure 10. The Effect of Setup Time on Coverage.

Experts have proposed that for grazing field surveillance, UAVs with a better battery
life for extended operation be used. As such, the flight time was extended from the
conventional 30 min flight time of the Tello Edu to 40 min, 50 min, and 60 min to determine



Appl. Sci. 2022, 12, 6654 12 of 15

the effect of flight time in UAV flight operation. Table 3 shows the results of altering the
flight operation on the grazing field.

Table 3. UAV in Flight Operation.

Flight Time (min) Tin Topt

40
UAV1 = 22.8387 UAV1 = 20.8387
UAV2 = 24.7665 UAV2 = 20.7665
UAV3 =24.3536 UAV3 = 18.3536

50
UAV1 = 23.6503 UAV1 = 21.6503
UAV2 = 25.3484 UAV2 = 21.3484
UAV3 = 25.2878 UAV3 = 19.2878

60
UAV1 = 23.9816 UAV1 = 21.9816
UAV2 = 25.9041 UAV2 = 21.9041
UAV3 = 25.5101 UAV3 = 19.5101

As presented in Table 3, the relationship between flight time and coverage time is
linear because an increase in flight time leads to a corresponding increase in the time spent
on coverage. The result shows that as the flight time increases, the UAVs can sense and
cover the area better, increasing the coverage time. Also, to see the effect of the setup time
on the mission coverage time, one of the flight times was kept constant, and the setup was
varied. The diagram in Figures 11 and 12 shows how the setup time during a mission
affects the coverage time.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 15 
 

 

From the figure presented, it is observed that as the setup time increases, the coverage 

time also increases. 

 

Figure 11. The Effect of Setup Time on Coverage (optimal route). 

Looking at the effect of the setup time when UAVs are tasked to determine the opti-

mal route, as presented in Figure 11, the diagram shows that the presented algorithm can 

effectively reduce the coverage time as the setup time increases. The obtained results us-

ing the map of the grazing field in terms of the land coverage were used to check the 

connectivity between the UAV nodes on the grazing field. This result was used in con-

junction with the parameters presented in Table 2. The typical coverage distance of an 

embedded Wi-Fi in a UAV is between 60–140 m [31]. Therefore, if the distance between 

the UAVs exceeds the maximum range, communication will not be established between 

the UAVs. As such, 100 m was arbitrarily chosen to simulate the connection between the 

UAVs in the grazing field. The result obtained for the connectivity routing of the UAVs is 

presented in Figure 12. 

 

Figure 12. UAV Connectivity Routing. 

0

5

10

15

20

25

30

35

2 4 6 8 10

C
o

ve
ra

ge
 T

im
e

 (
m

in
)

Setup time (min)

Effect of Setup Time (Optimal route)

UAV1 UAV2 UAV3

Figure 11. The Effect of Setup Time on Coverage (optimal route).

From the figure presented, it is observed that as the setup time increases, the coverage
time also increases.

Looking at the effect of the setup time when UAVs are tasked to determine the optimal
route, as presented in Figure 11, the diagram shows that the presented algorithm can
effectively reduce the coverage time as the setup time increases. The obtained results
using the map of the grazing field in terms of the land coverage were used to check
the connectivity between the UAV nodes on the grazing field. This result was used in
conjunction with the parameters presented in Table 2. The typical coverage distance of an
embedded Wi-Fi in a UAV is between 60–140 m [31]. Therefore, if the distance between
the UAVs exceeds the maximum range, communication will not be established between
the UAVs. As such, 100 m was arbitrarily chosen to simulate the connection between the
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UAVs in the grazing field. The result obtained for the connectivity routing of the UAVs is
presented in Figure 12.
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As shown in Figure 12, the UAVs could intercommunicate in the grazing field to share
resources, thereby cooperating to achieve the mission faster and more effectively. The
number of nodes in the simulation was doubled to depict the fast-moving nature of UAV
nodes. The use of a base station was also considered in the simulation, which depicts the
farmer/end-user controlling the entire grazing field operation. This process demonstrates
the cooperative communication of the entire operation on the grazing field using a real-life
mapping scenario. The following section presents the conclusion drawn for the work and
further research.

5. Conclusions

This paper has presented a coverage solution using multiple unmanned aerial vehicles
communicating with each other when surveying a grazing field. This is in response to
governmental policies defined in several countries that restrict the grazing areas/fields or
paths for livestock grazing. This policy is said to make herding operations effective and
disaster-free. To achieve this, this paper presented a technique that relies on extracting
information from aerial pictures to proffer a coverage solution for herding operations,
thereby providing a direct and cost-effective method of monitoring livestock for perimeter
coverage as well as under other natural conditions.

The method’s key contribution is that it directly and formally examines various
practical issues that only arise during actual UAV deployment on a grazing field. The
number of UAVs employed in this paper is the bare minimum for forming a FANET.
However, the number of UAVs should be determined by the size and format of the grazing
field and the vehicles’ maximum flight time in a mission. It is worth noting that the
technique might not be able to solve the coverage problem if the battery life is insufficient
for the size of the region to be covered. Nonetheless, the coverage time for the UAVs was
optimized for adequate coverage. Further work should consider real-world implementation
(prototype development) by introducing an FPGA or Arduino-based controller other than
the existing ones on the drones to avoid collision of the UAVs.
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