
Citation: Li, Z.; Wang, J.; Huang, Z.;

Luo, N.; Wang, Q. Towards Trust

Hardware Deployment of Edge

Computing: Mitigation of Hardware

Trojans Based on Evolvable

Hardware. Appl. Sci. 2022, 12, 6601.

https://doi.org/10.3390/

app12136601

Academic Editors: Zhiwei Xu,

Bo Chen and Qi Wang

Received: 1 June 2022

Accepted: 25 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Towards Trust Hardware Deployment of Edge Computing:
Mitigation of Hardware Trojans Based on Evolvable Hardware
Zeyu Li , Junjie Wang, Zhao Huang * , Nan Luo and Quan Wang

School of Computer Science and Technology, Xidian University, Xi’an 710071, China;
zeyuli@stu.xidian.edu.cn (Z.L.); junjiewang@stu.xidian.edu.cn (J.W.); nluo@xidian.edu.cn (N.L.);
qwang@xidian.edu.cn (Q.W.)
* Correspondence: z_huang@xidian.edu.cn; Tel.: +86-1879-261-0378

Abstract: Hardware Trojans (HTs) are malicious hardware components designed to leak confidential
information or cause the chip/circuit on which they are integrated to malfunction during operation.
When we deploy such hardware platforms for edge computing, FPGA-based implementations of
Coarse-Grained Reconfigurable Array (CGRA) are also currently falling victim to HT insertion.
However, for CGRA, an evolvable hardware (EHW) platform, which has the ability to dynamically
change its configuration and behavioral characteristics based on inputs from the environment,
provides us with a new way to mitigate HT attacks. In this regard, we investigate the feasibility
of using EHW to mitigate HTs that disrupt normal functionality in CGRA in this paper. When it
is determined that HT is inserted into certain processing elements (PEs), the array autonomously
reconfigures the circuit structure based on an evolutionary algorithm (EA) to avoid the use of
HT-infected (HT-I) PEs. We show that the proposed approach is applicable to: (1) hardware platforms
that support coarse-grained reconfiguration; and (2) pure combinatorial circuits. In a simulation
environment built in Python, this paper reports experimental results for two target evolutionary
circuits and outlines the effectiveness of the proposed method.

Keywords: evolvable hardware (EHW) at edge; coarse-grained reconfigurable array (CGRA);
hardware security; hardware trojan (HT); field-programmable gate array (FPGA)

1. Introduction

Current edge computing systems are deployed in highly complex intelligent applica-
tion scenarios with dynamically changing requirements. In order to provide the expected
performance in these situations, the use of flexible hardware/software platforms at the
edge has become widespread. However, due to a lack of resilience to untrusted entities,
these flexible hardware platforms are vulnerable to various threats and attacks. To date,
several steps of integrated circuits (ICs) development are outsourced to direct or indirect
collaboration between different (sometimes untrusted) parties [1], which has opened the
door to manipulation of ICs. The globalization process has created new sources of attack.
Untrusted entities can disrupt any point of this IC supply chain in a variety of ways,
with hardware Trojans (HTs) being the most dangerous due to their stealthy nature [2].
HTs are defined as malicious building blocks that are inserted into ICs to cause undesirable
behavior [3]. When HT is activated in some way, it can lead to leakage of sensitive infor-
mation, changes in circuit functionality, increased power consumption, and even physical
permanent damage.

To ensure the safety and reliability of ICs, we must first make sure whether the HT
circuits exist. Hence, there are a large number of studies focusing on detecting HTs in ICs.
To date, The methods for detecting HT fall into two main categories: (1) dynamic detection;
and (2) static detection. The dynamic detection method is designed to detect HT circuits in-
serted by untrusted foundries during the manufacturing process [4–9]. The static detection

Appl. Sci. 2022, 12, 6601. https://doi.org/10.3390/app12136601 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136601
https://doi.org/10.3390/app12136601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9214-7135
https://orcid.org/0000-0001-7385-032X
https://orcid.org/0000-0002-9619-9880
https://doi.org/10.3390/app12136601
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136601?type=check_update&version=2

Appl. Sci. 2022, 12, 6601 2 of 14

methods use testability-based structural features extracted from IC design files to match
HTs’ features [10–14]. However, since attackers may create special types/hard-to-activate
HTs, there is no complete guarantee that HT circuits can be identified during the detection
phase. Once the HTs are activated at runtime, it is common practice to replace the existing
HT-infected (HT-I) device. However, in complex and dangerous edge computing applica-
tions, manual replacement/repair of hardware devices is almost impossible. As the ideas of
artificial intelligence have been incorporated into security and high trust research, evolvable
hardware (EHW) is becoming an important approach for fault-tolerant and highly reliable
designs [15]. Among them, Virtual Reconfigurable Circuits (VRC) and Coarse-Grained
Reconfigurable Array (CGRA) are popular ways to implement EHW architectures that
reconfigure the circuit structure in one or a few clock cycles [16]. This offers the possibility
to mitigate HT attacks on EHW architectures. However, relevant research in this area is
still in the exploratory stage.

In this paper, we investigate a solution for HT mitigation using EHW on CGRA.
Specifically, by using an evolutionary algorithm (EA) to explore and generate new circuit
structures that no longer use the PEs infected by HTs. Meanwhile, The new circuit structure
must also satisfy resource constraints, namely, minimize the resource overhead. In ad-
dition, the process of EA exploration is time-consuming, which is undesirable for most
electronic systems. To address this, we optimize the evolvable region (ER) to accelerate the
convergence. In summary, we make the following novel contributions:

• It is the first time employing an EA-based mitigation method against HTs attack in PE
of CGRA;

• A method to optimize the evolvable region is proposed for reducing the evolution time;
• The experimental results show the effectiveness of the proposed scheme for mitigat-

ing HT attacks and confirm that optimizing the evolvable region can accelerate the
evolution efficiency at the edge.

The paper is structured as follows. Section 2 provides information on HTs in digital
circuits, evolutionary algorithms and evolvable hardware. In Section 3, we describe the
proposed HT mitigation method. In Section 4, we evaluate the effectiveness of our approach
based on two target circuits. Section 5 concludes the paper.

2. Preliminaries
2.1. Hardware Trojans

HTs are malicious circuits designed to alter the original chip/circuit functionality, leak
secret information, or even cause the permanent failure of the chip on which they are inte-
grated at runtime. As shown in Figure 1, HTs can be inserted by untrusted foundries and
third-party IP core vendors at different stages of FPGA and ASIC (Application Specific Inte-
grated Circuit) design development and manufacturing. HTs consists of two parts: a trigger
and a payload. The trigger usually corresponds to a rare data input (sequence), while the
payload is the activity that causes a data leak or fault when the HT is triggered. For example,
in communication systems, a chip infected with HT can leak sensitive data to the outside
world when a specific combination or sequence of input signals is transmitted [17].

Appl. Sci. 2022, 12, 6601 3 of 14

Figure 1. FPGA/ASIC design flow and potential insertion of HTs.

To prevent/alleviate the damage of the HTs to the circuit, we must first make sure
whether the HTs exist in ICs. Hence, there are a large number of studies focusing on
detecting HTs in ICs. The methods for detecting HT fall into two main categories: (1)
dynamic detection; and (2) static detection. The dynamic detection method is designed to
detect HT circuits inserted by untrusted foundries during the manufacturing process [4–9].
The static detection methods use testability-based structural features extracted from IC
design files to match HTs’ features [10–14]. Since attackers may create special types/hard-
to-activate HTs, there is no complete guarantee that HT circuits can be identified during the
detection phase. Once the HTs are activated at runtime, it is common practice to replace
the device infected with HT. However, in complex and dangerous applications, manual
replacement/repair of hardware devices is almost impossible. Therefore, it is necessary to
adopt intelligent mitigation mechanisms to deal with HT attacks in the ICs.

To date, intelligent mitigation mechanisms aiming at HT attacks are only available for
programmable devices or virtual reconfigurable architectures. The circuit infected by HTs
can be changed by reconfiguration to eliminate HTs. However, relevant research in this
area is still in the exploratory stage. Labafniya, M et al. proposed a mechanism to mitigate
HT for VRC implemented on field-programmable gate arrays (FPGAs) [18]. The circuits are
autonomously and periodically reconfigured to eliminate the impact of HT on the circuit.
Liu, L et al. proposed a security mapping approach, dynamic resource management based
on security values, to enhance CGRA against HTs by selectively protecting PEs [19]. How-
ever, this approach is based on a triple modular redundancy architecture to mitigate HTs,
which has a high resource overhead and is difficult to mitigate in the presence of multiple
HTs. In this paper, an EA-based HT mitigation mechanism is proposed exploratively on
CGRA. HT attack mitigation is achieved by reconfiguring the circuit to avoid the use of
HT-I PEs.

Appl. Sci. 2022, 12, 6601 4 of 14

2.2. Coarse-Grained Reconfigurable Array

FPGAs have proven their potential for accelerating High-Performance Computing
(HPC) applications. Traditionally, such a device primarily contains fine-grained elements,
such as look-up tables (LUTs), switch blocks (SBs), and connection blocks (CBs), as the
basic programmable logic blocks. However, traditional implementations suffer from high
reconfiguration and development costs [20]. To solve the above problems, programmable
logic components are defined at a higher level of abstraction. These components are
called Processing Elements (PEs) and the group of PEs along with the inter-connection
network form an architecture called CGRA [21]. This abstraction facilitates faster reconfigu-
ration/replacement of applications.

The CGRA introduced in this paper is shown in Figure 2. It consists of reconfigurable
PEs which are connected to each other using reconfigurable Virtual Switch Blocks (VSBs).
In the CGRA tool flow (right-hand side of Figure 2), the user will determine the CGRA
settings that will configure the required configurable components of the CGRA to realize
the desired application [22,23]. In CGRA, PE is the main unit that executes the application
and can be configured by IP cores, Functional Units (FU) or Arithmetic Units (AU) with
different granularities. It occupies most of the entire CGRA area and is the easiest target for
HTs. At the same time, its redundancy and reconfigurability characteristics make it difficult
to detect HTs. Therefore, it is very necessary to implement a hardware Trojan mitigation
mechanism in PEs.

Figure 2. CGRA Architecture.

2.3. Evolutionary Algorithms and Evolvable Hardware

Evolutionary algorithms (EA) are population-based metaheuristic optimization tech-
niques inspired by biological evolution [24]. Currently, EAs are successfully applied
in different fields such as arithmetic circuit design [25], the design of fault-tolerant sys-
tems [26], and power consumption optimization [27]. Genetic algorithm (GA) is one of the
more widely used EAs and has been successfully applied in various digital circuit imple-
mentations [28,29]. In [30], parallel GA is used to design digital circuits based on FPGA
architecture. The employed GA involves the use of a linear representation that can be easily
used to evolve the system. In [25], the logic circuits are organized on a two-dimensional
array of cells, and the use of GA has the best circuit design in terms of circuit complexity,

Appl. Sci. 2022, 12, 6601 5 of 14

power, and time delay. Given the ease of implementing circuit design in GA, we use GA as
an EA in this paper.

EA is essentially an optimization technique. The candidate solutions to the optimiza-
tion problem are individuals in the population, and the fitness function determines the
quality of the solution. Depending on how the fitness is evaluated, evolutionary hardware
can be divided into two categories: extrinsic evolution and intrinsic evolution. In extrinsic
evolution, the EA is implemented on an external computing device, and the fitness of all
chromosomes is evaluated by software models and simulators. Only the best option is
reconfigured on the hardware device to the desired circuit. In intrinsic evolution, the EA is
implemented on the external computing device, but the evaluation of each chromosome
is performed on the programmable device by reconfiguration [31]. Compared to extrinsic
evolution, the implementation of intrinsic evolution is more complex and time-consuming.

3. Proposed HT Mitigation Method
3.1. Overview

In this paper, a new approach to protect FPGA-based implementations of CGRA
from HTs attacks is proposed. CGRA consists of a large number of PEs, and the units
can communicate with each other over an on-chip network. PEs are the basic units that
implement the functions of the circuit, and are the most vulnerable parts to HTs infection.
In this paper, we only focus on the situation where HT is inserted into the PEs of the CGRA.
For this, we employ EA to search for a new circuit structure that does not contain PEs
inserted by HTs.

Figure 3 shows our proposed architecture for protecting CGRA from HTs attacks using
circuit evolution. There are two important parts: the optimization of the evolvable region
and the evolution algorithm. The number of PEs is chosen according to the functionality
of the circuit implementation. If the circuit is complex and/or large, the EA module will
evolve over a large number of PEs, so the evolution process can be very time-consuming.
In order to improve the evolution efficiency, we optimize the evolvable region based on
the original circuit structure. The evolutionary algorithm is the core of the entire circuit
evolution process, which traverses the optimal circuit structure based on the evolvable input
regions and the evolutionary goals of the circuit, and must also satisfy the corresponding
constraints. In addition, we use a validator to input test vectors in the offline stage to check
the function of the PE in CGRA to determine whether the PE is infected by the HTs and
input the location information of HTs to the module of optimization of the evolvable region
and EA. After the EA module evolves to obtain the optimal circuit structure, a configurator
is used to load the circuit configuration file onto the CGRA to reconfigure the PE to protect
the circuit from HTs attacks.

3.2. Optimization of Evolvable Regions

EA is usually time-consuming for generating optimal target circuit structures, espe-
cially when the circuits are complex and/or oversized. To reduce the evolution time, we
propose an algorithm to optimize the evolvable region. While retaining the original circuit
occupying the on-chip region, the evolvable region is expanded step by step until it stops
when the number of redundant PEs in the current region is satisfied to be greater than HT-I
PEs. Figure 4 shows the method and the effect of optimizing the evolvable region.

Appl. Sci. 2022, 12, 6601 6 of 14

Figure 3. Proposed structure for protection of FPGA against HTs.

Figure 4. The effect of optimizing the evolvable region. (Red Color: the HT-I PEs; Blue Color: the
coordinates of the leftmost, topmost, rightmost and bottommost PEs; Green and Pink Color: the effect
of optimizing evolvable region).

Algorithm 1 describes the pseudo-code for optimizing the evolvable region. The algo-
rithm’s input is all PEs on the CGRA architecture, and the output is the optimized evolvable
region. First, we assign coordinate values to the positions of all PEs with the purpose of
quantifying the distance and area (lines 2–4). Based on this, we traverse to find the coordi-
nates of the leftmost, topmost, rightmost and bottommost (Xl , Yt, Xr, Yb) PEs of the current
circuit to be evolved (lines 6–8). Once these four coordinates are obtained, the area of the
rectangle in which the circuit to be evolved is located is calculated (line 10). If the number
of free PEs (Fp) contained in this rectangular area is greater than the number of PEs inserted
by the HTs (Hp), then this area is the evolvable area. Otherwise, the clustering solves for the
center coordinates (CP) of the circuit to be evolved (line 17). Afterward, an attempt is made
to expand the original region with rectangular cells (line 19) and calculate the Euclidean
distance (lines 21–23) of all the newly added PEs from the CP. After that, the Euclidean
distances are sorted in ascending order (line 25), and the relationship between the number
of Fp and the number of Hp in the current region is compared in order (lines 27–29). If there
are joined rectangular regions in which Fp is greater than Hp, the current region is an
evolvable region; otherwise, lines 18–31 are repeated until the PE requirement for evolution
is satisfied. The time complexity of this algorithm is O(n).

Appl. Sci. 2022, 12, 6601 7 of 14

Algorithm 1 Optimization of Evolvable Region Algorithm
Input: All PEs on the CGRA
Output: Optimized Evolvable Region (OER);
List_PEs:all PEs; ListC_PEs:PEs used in the current evolutionary circuit.

1: /* Assign the position of all PEs (PE_pos) to coordinate values (cv) */
2: for i in length(List_PEs): do
3: Assign PE_posi → cvi
4: end for
5: /* Traverse to find the Xl , Yt, Xr, Yb in the current evolutionary circuit */
6: for i in length(List_PEs): do
7: Find(Xl , Yt, Xr, Yb)
8: end for
9: /* Calculate the initial area (Ira) occupied by the current evolutionary circuit */

10: Ira = (Xl − Xr)× (Yt −Yb)
11: /* Compare the number of free-PEs (Fp) in the Ira with the number of HT-I PEs (Hp) */
12: if Fp >= HP then
13: Output Ira→ Ora
14: break
15: else
16: /* Clustering to solve the center point (CP) of the current evolutionary circuit */
17: CP→ Clustering(ListC_PEs.cv)
18: /* Expand the evolution area (era) horizontally or vertically
19: List_Era→ Expend(Ira)
20: /* Calculate Euclidean_distance between the added coordinates (a_cv) and CP in

turn */
21: for i in length(List_Era): do
22: Euclidean_distancei→ Calculate(CP, a_cv)
23: end for
24: /* Sort the Euclidean distance in ascending order */
25: ListS_Era→ Sort(Euclidean_distance);
26: /* Compare sequentially in ascending order of Euclidean distance Fp and Hp */
27: if ListS_Era.Fp >= HP then
28: Output ListS_Era→ Ora
29: break
30: else
31: repeat (18)–(31);
32: end if
33: end if

3.3. Evolutionary Algorithm

The overall implementation of the evolutionary algorithm is shown in Figure 5. We use
external evolution to search for the optimal circuit structure and deploy the optimal circuit
structure that satisfies the conditions to CGRA for implementation. We use one-dimensional
genetic coding to characterize individuals, where the coding length is related to the specific
circuit structure, reflecting the mapping of each function in the circuit to the PE. At first, we
generate an initial population, where each individual in the population represents a circuit
structure, and then set up an evaluation function to evaluate the individuals to further
select the best ones for subsequent evolution. For traversing the optimization space, we
employ crossover and mutation to generate new (better) individuals.

The evolutionary process is defined as a search for the optimal circuit structure Copt
that minimizes the value of the evaluation function, and the evaluation function is set as:

Evalution_valuei =
n

∑
i=1

Wire_lenghti + Cos ti. (1)

Appl. Sci. 2022, 12, 6601 8 of 14

In Equation (1), Wire_length represents the span between selected adjacent PEs and
its sum is used to measure the overall circuit wiring length, representing the resource
consumption and overall timing of the circuit. Cost represents the feasibility limit, w.r.t.,
a PE in CGRA cannot perform two functions at the same time and the PE inserted by HTs
can no longer be used. It is expressed as:

Cos ti =


10000, i f posm = posn(posm, posn ∈ C)
10000, i f posi = posHT-I(posi ∈ C)
10000, i f posi is used by other circuits(posi ∈ C)
0, otherwise

(2)

where C represents the generated circuit structure and pos represents the location of the PE.
EA-based evolution involves traversing the design space by generating new (and better)
individuals for each offspring. We use the following operations to generate new individuals
for the next generation population.

Figure 5. The implementation procedure of evolutionary algorithm.

Selection: We used a tournament selection method to select individuals for the next
generation. This selection method involves selecting the most suitable individuals, 20 (in
this paper) individuals from the current population for the next generation.

Crossover: We use the following operation to achieve crossover between two individ-
uals of a generation—selecting a fragment of the first half of the first individual to cross
with a fragment of the second half of the second individual to generate a new individual
in exchange.

Mutation: The mutation is essential to prevent the search from getting stuck in some
local optimum. We use single-point mutation to randomly select available PEs, setting a 20%
probability of randomly selecting a point of the current individual for single-point mutation.

4. Evaluation Results

This section describes the details of the scheme proposed in this paper through the
implementation of two example circuits. These two circuits perform arithmetic operations.
They occupy different numbers of PEs and perform evolution on CGRAs with different
resources. Based on the above example circuits, we have investigated the use of the
proposed approach against HT protection.

Appl. Sci. 2022, 12, 6601 9 of 14

4.1. The Target Circuit and the Expected Behavior of the HT Mitigation Mechanism

Example circuit-I performs ((a + b) × c − d)/e arithmetic operations, occupying four
PEs, and is deployed on a CGRA with a total of nine PEs. Example circuit-II performs
(a)(a + b) × (c + d) −m/(e + f) × (g + h) arithmetic operations, occupies nine PEs, and is
deployed on a CGRA with 25 PEs. The data flow diagrams (DFG) of the two circuits are
shown in Figure 6.

(a) (b)

Figure 6. DFG of 2 example circuits. (a) ((a + b) × c− d)/e. (b) (a + b)× (c + d) −m/(e + f) × (g + h).

Examples of circuits infected by HT and corrected by CGRA reconfiguration are shown
in Figures 7 and 8, where the blue arrows represent the data flow. Figures 7a and 8a show
the initial version of the circuit, and Figures 7b and 8b show the infected version of the
circuit with one PE infected with HT in circuit-I and two PEs infected with HT in circuit-II.
After performing the EA and reconfiguring the CGRA, the expected circuit function is
corrected as shown in Figures 7c,d and 8c,d.

(a) (b)

(c)

Figure 7. Description of the example circuit-I and anticipation of the HT mitigation mechanism.
(a) original circuit-I. (b) HT inserted in the circuit-I. (c) EA-based reconfiguration to correct the
circuit-I. (Red mark: the HT-I PEs; Blue Arrow: The data flow).

Appl. Sci. 2022, 12, 6601 10 of 14

(a) (b)

(c)

Figure 8. Description of the example circuit-II and anticipation of the HT mitigation mechanism. (a)
original circuit-II. (b) HT inserted in the circuit-II. (c) EA-based reconfiguration to correct the circuit-II.
(Red mark: the HT-I PEs; Blue Arrow: The data flow).

4.2. Experimental Results

The experiments are conducted by external evolution on a PC with a 4-core processor
of 11th Gen Intel(R) Core(TM) i5-1130G7 with 1.1 GHz and 8 GB of memory. Since the scale
of the experimental circuit is small, the population size is set to 100, and the corresponding
iterations are set for circuit-I and circuit-II, respectively 2000 and 20,000 iterations.

We count the time required to achieve EA in different ERs to evaluate the impact
of ER on evolutionary efficiency. Meanwhile, the evolution success rate (ESR) is also
proposed as a metric to assess the impact of the insertion of different numbers of HTs in
CGRAs on evolution. The ESR is defined as: the number of successful evolutions/the total
number of evolutions × 100%, and the total number of evolutions is set to 10 in this paper.
The corresponding number of iterations are evolved for circuit-I and circuit-II, where the
optimal evolution results are shown in Figure 9.

Tables 1 and 2 show the time required to implement EA in different ERs for circuit-I
and circuit-II. Circuit-I requires four PEs to implement EA in all evolvable region (AER,
9PE) and in the optimized evolvable region (OER, 6PE), respectively, and it can be seen
that the evolution time required in the OER is less than the AER. The increase in evolution
efficiency is not very significant, mainly due to the simpler implementation of circuit-I
and the small of AERs. Circuit-II requires eight PEs to implement EA in the AER (25PE)
and in the OER (20PE, 16PE, 15PE, 12PE, 10PE), respectively. It is clear from Table 2 that
the evolution efficiency increases sharply as the ER is reduced. The above experiments
fully illustrate that shrinking ER can help improve the evolution efficiency. The reason is
that optimizing ER can reduce the search space to accelerate the evolution of individuals
toward the optimal solution. In particular, when the ER is similar to the circuit size, only a
few of the generated initial individuals satisfy the solution conditions and it is not easy to
expand the search range, so the convergence is accelerated in the subsequent iterations.

Appl. Sci. 2022, 12, 6601 11 of 14

(a) (b)

Figure 9. The optimal evolution results of circuits. (a) circuit-I. (b) circuit-II. (Red mark: the HT-I PEs;
Blue Arrow: The data flow).

Table 1. Evolution time of circuit-I in different evolvable regions.

HR Times 1 2 3 4 5 6 7 8 9 10 Avg.

9 0.620 0.609 0.634 0.679 0.653 0.638 0.625 0.607 0.595 0.681 0.634
6 0.595 0.643 0.65 0.606 0.63 0.646 0.625 0.618 0.666 0.631 0.631

Table 2. Evolution time of circuit-II in different evolvable regions.

HR Times 1 2 3 4 5 6 7 8 9 10 Avg.

25 39.005 31.358 30.015 38.237 28.374 27.899 52.490 28.959 41.799 29.215 34.735
20 40.617 42.806 25.90 30.681 29.353 28.797 34.881 35.472 32.108 34.291 33.490
16 31.718 30.817 29.173 24.520 28.182 19.431 28.276 25.473 27.261 18.815 26.367
15 23.446 25.119 28.843 28.530 25.919 13.493 25.618 27.922 28.135 8.293 23.532
12 0.121 0.098 0.274 0.126 0.157 0.769 0.263 0.277 0.416 0.126 0.262
10 0.075 0.103 0.098 0.100 0.074 0.101 0.078 0.098 0.068 0.076 0.087

Figure 10 shows the effect of the insertion of different numbers of HTs in the CGRA
on the ESR. Circuit-I requires four PEs to achieve the function and it evolves on a CGRA
with nine PEs. In Figure 9a, it can be seen that circuit-I evolves successfully as long as
there are more than four available PEs in the CGRA. Circuit-II requires eight PEs to achieve
functionality and it evolves on a CGRA with 25 PEs. The range of the number of insertion
HTs at this point is 1–25. Since the ESR is 100% for all insertions less than 10 and 0 for all
insertions greater than 20, only this representative part is shown in Figure 9b to illustrate
the variety of ESR with the number of insertion HTs. When the number of insertion HTs
reaches 15, there are only 10 PEs available in CGRA. At this time, the ESR cannot reach
100%. When the number of insertion HTs reaches 16,17, it is more difficult to find a qualified
circuit structure among the available PEs, so the ESR drops significantly. The reason for this
is that circuit-II requires eight PEs to achieve the function, and the circuit combinations are
more diverse, making it difficult to obtain a feasible solution in the limited number of PEs.

Appl. Sci. 2022, 12, 6601 12 of 14

(a) (b)

Figure 10. The ESR under different numbers of HTs. (a) circuit-I. (b) circuit-II.

5. Conclusions and Future Work

In this paper, we proposed a mitigation mechanism against HTs at the edge. The pro-
posed approach is applicable to CGRAs based on FPGAs. When certain PEs are identified
to be infected with HTs, the EA is used to reconfigure the on-chip PEs. Meanwhile, the ef-
ficiency of circuit evolution is improved by optimizing the evolvable region. Eventually,
circuits based on CGRA deployments automatically recover from HTs damage through
efficient alternative configurations for edge computing. Since few studies have proposed
work on HT protection of CGRAs, we report experimental results for two example circuits
and outline the effectiveness and evolutionary efficiency of the approach.

In future work, we will evaluate the effectiveness of the HT mitigation mechanism pro-
posed in this paper more comprehensively on more different types of CGRAs. In addition,
we will further develop the mitigation mechanism to extend the case of HTs insertion into
the interconnection area in CGRA. Meanwhile, the research work in this paper is currently
implemented only for simulation to verify its effectiveness. Next, we will conduct on-board
experiments on the CGRA implemented by FPGA.

Author Contributions: Conceptualization, Q.W. and Z.H.; methodology, Z.H. and Z.L.; software,
Z.L. and J.W.; validation, Z.H., N.L. and Q.W.; writing—original draft preparation, Z.L. and J.W.;
writing—review and editing, Z.H. and N.L.; supervision, Q.W.; project administration, Q.W.; funding
acquisition, Q.W, Z.H. and N.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61972302, in part by the Fundamental Research Funds for the Central Universities under
Grant XJS220306, in part by the Natural Science Basic Research Program of Shaanxi under Grant
2022JQ-680, in part by the Key Research and Development Program of Shannxi Province under
grant 2021GY-086 and 2021GY-014, and in part by the Key Laboratory of Smart Human Computer
Interaction and Wearable Technology of Shaanxi Province.

Acknowledgments: The authors would like to thank the Editors and Reviewers for their contribu-
tions to our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, Z.; Wang, Q.; Yang, P. Hardware trojan: Research progress and new trends on key problems. J. Comput. 2019, 42, 993–1017.
2. Sharma, R.; Rathor, V.S.; Sharma, G.; Pattanaik, M. A new hardware Trojan detection technique using deep convolutional neural

network. Integration 2021, 79, 1–11. [CrossRef]
3. Deng, D.; Wang, Y.; Guo, Y. Novel Design Strategy Toward A2 Trojan Detection Based on Built-In Acceleration Structure.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 4496–4509. [CrossRef]
4. Amelian, A.; Borujeni, S.E. A side-channel analysis for hardware Trojan detection based on path delay measurement. J. Circuits

Syst. Comput. 2018, 27, 1850138. [CrossRef]

http://doi.org/10.1016/j.vlsi.2021.03.001
http://dx.doi.org/10.1109/TCAD.2020.2977069
http://dx.doi.org/10.1142/S0218126618501384

Appl. Sci. 2022, 12, 6601 13 of 14

5. Nguyen, L.N.; Yilmaz, B.B.; Prvulovic, M.; Zajic, A. A Novel Golden-Chip-Free Clustering Technique Using Backscattering Side
Channel for Hardware Trojan Detection. In Proceedings of the 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), San Jose, CA, USA, 7–11 December 2020; pp. 1–12.

6. Rajendran, J.; Zhang, H.; Zhang, C.; Rose, G.S.; Pino, Y.; Sinanoglu, O.; Karri, R. Fault analysis-based logic encryption. IEEE Trans.
Comput. 2013, 64, 410–424. [CrossRef]

7. Samimi, M.S.; Aerabi, E.; Kazemi, Z.; Fazeli, M.; Patooghy, A. Hardware enlightening: No where to hide your hardware trojans!
In Proceedings of the 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu de
Guixols, Spain, 4–6 July 2016; pp. 251–256.

8. Dong, C.; He, G.; Liu, X.; Yang, Y.; Guo, W. A multi-layer hardware trojan protection framework for IoT chips. IEEE Access 2019,
7, 23628–23639. [CrossRef]

9. Chen, J.; Dong, C.; Zhang, F.; He, G. A Hardware-Trojans detection approach based on eXtreme Gradient Boosting. In Proceed-
ings of the 2nd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China,
16–18 August 2019; pp. 69–73.

10. Vijayan, A.; Tahoori, M.B.; Chakrabarty, K. Runtime identification of hardware Trojans by feature analysis on gate-level
unstructured data and anomaly detection. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2020, 25, 1–23. [CrossRef]

11. Inoue, T.; Hasegawa, K.; Kobayashi, Y.; Yanagisawa, M.; Togawa, N. Designing subspecies of hardware Trojans and their detection
using neural network approach. In Proceedings of the 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin),
Berlin, Germany, 2–5 September 2018; pp. 1–4.

12. Yingjian, Y.; Min, L.; Zhaoyang, Q. Design and Implementation of Hardware Trojan Detection Algorithm for Coarse-grained
Reconfigurable Arrays. J. Electron. Inf. 2019, 41, 1257–1264.

13. Huang, Z.; Wang, Q.; Chen, Y.; Jiang, X. A survey on machine learning against hardware trojan attacks: Recent advances and
challenges. IEEE Access 2020, 8, 10796–10826. [CrossRef]

14. Huang, Z.; Xie, C.; Li, Z.; Du, M.; Wang, Q. A Hardware Trojan Detection and Diagnosis Method for Gate-Level Netlists Based on
Different Machine Learning Algorithms. J. Circuits, Syst. Comput. 2022, 31, 2250135. [CrossRef]

15. Jian, G.; Mengfei, Y. Evolutionary fault tolerance method based on virtual reconfigurable circuit with neural network architecture.
IEEE Trans. Evol. Comput. 2017, 22, 949–960. [CrossRef]

16. Sekanina, L.; Friedl, Š. An evolvable combinational unit for FPGAs. Comput. Inform. 2004, 23, 461–486.
17. Aravind, A.R.; Kesavaraman, S.R.; Balasubramanian, K.; Yamuna, B.; Lingasubramaniam, K. Effect of hardware Trojans on

the performance of a coded communication system. In Proceedings of the 2018 IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–6.

18. Labafniya, M.; Picek, S.; Borujeni, S.E.; Mentens, N. On the feasibility of using evolvable hardware for hardware Trojan detection
and prevention. Appl. Soft Comput. 2020, 91, 106247. [CrossRef]

19. Liu, L.; Zhou, Z.; Wei, S.; Zhu, M.; Yin, S.; Mao, S. DRMaSV: Enhanced Capability against Hardware Trojans in Coarse Grained
Reconfigurable Architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2017, 37, 782–795. [CrossRef]

20. Hubner, M.; Figuli, P.; Girardey, R.; Soudris, D.; Siozios, K.; Becker, J. A Heterogeneous Multicore System on Chip with Run-Time
Reconfigurable Virtual FPGA Architecture. In Proceedings of the 2011 IEEE International Parallel and Distributed Processing
Workshops and PhD Forum (IPDPSW), Anchorage, AK, USA, 16–20 May 2011; pp. 143–149.

21. Heyse, K.; Davidson, T.; Vansteenkiste, E.; Bruneel, K.; Stroobandt, D. Efficient implementation of virtual coarse grained
reconfigurable arrays on FPGAs. In Proceedings of the 23rd International Conference on Field Programmable Logic and
Applications, Porto, Portugal, 2–4 September 2013; pp. 1–8.

22. Kulkarni, A.; Vasteenkiste, E.; Stroobandt, D.; Brokalakis, A.; Nikitakis, A. A Fully Parameterized Virtual Coarse Grained
Reconfigurable Array for High Performance Computing Applications. In Proceedings of the 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL, USA, 23–27 May 2016; pp. 265–270.

23. Fricke, F.; Werner, A.; Shahin, K.; Werner, F.; Hübner, M. Automatic Tool-Flow for Mapping Applications to an Application-
Specific CGRA Architecture. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 147–154.

24. Engelbrecht, A.P. Computational Intelligence: Introduction to Evolutionary Computation; Wiley: Hoboken, HJ, USA, 2007; pp. 127–175.
25. Wang, J.; Piao, C.H.; Lee, C.H. Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel. In Proceedings

of the International Conference on Evolvable Systems: from Biology to Hardware, Wuhan, China, 21–23 September 2007;
Volume 91, pp. 23–24.

26. Swarnalatha, A.; Shanthi, A.P. Complete hardware evolution based SoPC for evolvable hardware. Appl. Soft Comput. 2014,
18, 314–322. [CrossRef]

27. López, B.; Valverde, J.; de la Torre, E.; Riesgo, T. Power-aware multi-objective evolvable hardware system on an FPGA. In
Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, UK, 14–17 July 2014;
pp. 61–68.

28. Bao, Z.G.; Watanabe, T. A New Approach for Circuit Design Optimization using Genetic Algorithm. In Proceedings of the 2008
International SoC Design Conference, Busan, Korea, 24–25 November 2008; pp. 383–386.

29. Hadjam, F.Z.; Moraga, C.; Rahmouni, M.K. Evolutionary Design of Digital Circuits Using Improved Multi Expression Program-
ming (IMEP). Univ. Politècnica Catalunya Secció Matemàtiques Inf. 2007, 14, 103–123.

http://dx.doi.org/10.1109/TC.2013.193
http://dx.doi.org/10.1109/ACCESS.2019.2896479
http://dx.doi.org/10.1145/3391890
http://dx.doi.org/10.1109/ACCESS.2020.2965016
http://dx.doi.org/10.1142/S0218126622501353
http://dx.doi.org/10.1109/TEVC.2017.2779874
http://dx.doi.org/10.1016/j.asoc.2020.106247
http://dx.doi.org/10.1109/TCAD.2017.2729340
http://dx.doi.org/10.1016/j.asoc.2013.12.014

Appl. Sci. 2022, 12, 6601 14 of 14

30. Ashraf, R.; Luna, F.; Dechev, D.; DeMara, R. Designing digital circuits for FPGAs using parallel genetic algorithms (WIP). In
Proceedings of the Symposium on Theory of Modeling and Simulation-DEVS Integrative M&S Symposium, Orlando, FL, USA,
26–30 March 2012; Volume 44.

31. Drimer, S. Volatile FPGA Design Security—A Survey. 2008. pp. 1–51. Available online: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.105.3354 (accessed on 25 April 2022).

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.3354
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.3354

	Introduction
	Preliminaries
	Hardware Trojans
	Coarse-Grained Reconfigurable Array
	Evolutionary Algorithms and Evolvable Hardware

	Proposed HT Mitigation Method
	Overview
	Optimization of Evolvable Regions
	Evolutionary Algorithm

	Evaluation Results
	The Target Circuit and the Expected Behavior of the HT Mitigation Mechanism
	Experimental Results

	Conclusions and Future Work
	References

