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Abstract: Physiological signals are strongly related to a person’s state of health and carry information
about the human body. For example, by ECG, it is possible to obtain information about cardiac
disease, emotions, personal identification, and the sex of a person, among others. This paper proposes
the study of the heartbeat from a soft-biometric perspective to be applied to smartphone unlocking
services. We employ the user heartbeat to classify the individual by sex (male, female) with the use
of Deep Learning, reaching an accuracy of 94.4% ± 2.0%. This result was obtained with the RGB
representation of the union of the time-frequency transformation from the pseudo-orthogonal X, Y,
and Z bipolar signals. Evaluating each bipolar contribution, we found that the XYZ combination
provides the best category distinction using GoogLeNet. The 24-h Holter database of the study
contains 202 subjects with a female size of 49.5%. We propose an architecture for managing this
signal that allows the use of a few samples to train the network. Due to the hidden nature of ECG,
it does not present vulnerabilities like public trait exposition, light/noise sensibility, or learnability
compared to fingerprint, facial, voice, or password verification methods. ECG may complement those
gaps en route to a cooperative authentication ecosystem.

Keywords: sex recognition; ECG; user authentication; soft-biometrics; smartphone applications;
machine learning

1. Introduction

ECG signals are mostly used for monitoring a patient’s health status. This signal can
provide information about arrhythmia and coronary artery disease, among other conditions.
However, researchers have found that it is possible to extract from the heartbeat specific
information such as emotions [1], age estimation [2], person identification [3], and sex [4].

Sex recognition has been studied using body [5] and face [6] images, gait [7], voice [8],
twittering [9], and keystroke dynamics [10], among others.

Cardiovascular diseases are the most prominent cause of death in the world [11].
According to the Centers for Disease Control and Prevention, each year in the USA, around
659,000 people die from heart failure, which represents 25% of deaths in the country [12].
At approximately 65 and 72 years old, respectively, men and women suffer their first
heart attack [13]. Some studies have shown that men are twice as susceptible to having
a heart attack as women [14,15], though the survival rate after a heart attack is lower in
women [13]. This may be attributed to the fact that a woman’s heart tends to be smaller
and can pump 10% less blood, and potentially because women experience the heart attack
at an older age [16]. Women’s hearts tend to have shorter PR and QRS intervals [17], longer
QT duration, and distinct T waveform dynamics compared to men [18].

We propose the ECG sex classification study as the first step and approach to fighting
cardiovascular diseases because the discrimination could help to emphasize specific heart
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behaviors given the person’s anatomical features. Although sex recognition has been
covered by cardiologists, this area has turned to machine learning (ML) algorithms since
2014 [3,19], and reciprocally, ECG has proven its biometric characteristics through ML,
too [20].

In fact, biometric multimodal studies have pointed out that the inclusion of soft-
biometric features can enrich and facilitate the discrimination performance [21], being
mostly proven in camera-related systems. Soft-biometric refers to the extraction of shared—
or nonunique—traits such as ethnicity, sex, age, etc., that help to describe human subjects
but are not strong enough to distinguish between two people [22]. Following this scheme,
we propose to treat the ECG sex property as a soft-biometric input for future inclusion in
ECG-related verification engines to complement the classification space. Moreover, we
intend to strengthen this technology to be adapted as a smartphone authentication tool
in the near future. Recent tests show that smartphone fingerprint and face authentication
hacking is possible [23–26], evidencing that biometric authentication is not infallible [27].
Therefore, user privacy protection should be turned into an authentication community,
embracing possible traits that could support the current open gates. In consequence, it is
necessary to be aware of the strengths and weaknesses of authentication tools when the
user context changes because each biometric method assumes the sensor’s constraints. ECG
biometrics’ potential is not affected by light-saturated or noisy environments in contrast to
touch-screen, camera, or microphone sensors. In addition, due to the face exposition or the
fingerprint trace in daily touched objects, the copy reproduction attack is more probable for
face and fingerprint. Instead, ECG is a hidden measure [3]. The nature of ECG includes
an inherent liveness property as a prospective ubiquitous tool that could be used for
continuous or transparent authentication mechanisms. Although this area is still maturing,
dealing with issues such as signal time acquisition, computational complexity, and user
comfortability, new related products evidence the first market inclusions as described in
Section 5.

The ECG fiducials orientation finds the temporal and amplitude inter- and intra-
proportions of the P, Q, R, S, and T peaks (Figure 1) and has been a classical and useful
tool for studying the ECG. However, fiducial-based approaches do not cover all the signal
waveform; for that reason, it is preferable to choose transformations or feature extraction
options that can completely cover the heartbeat. On the other hand, intending to develop a
portable device, variables such as comfort and fast configuration require a fewer amount
of electrodes; nevertheless, the best accuracy scores in sex recognition mostly implement
a 12-lead configuration using deep learning as a classifier. Similarly, during the day, a
person’s stance directly affects the heartbeat waveform change; indeed, in the field of sex
recognition, resting position samples have a preponderance in several studies. Moving
to the smartphone authentication space, users demand a fast process for unlocking their
devices; in contrast, ten seconds is the common window in the related work. Finally, unlike
static biometric traits such as face or fingerprint, the heart contains a dynamic behavior, so
the classifier needs to consider and adopt its conditions to the nature of this phenomenon.

Figure 1. Fiducial PQRST. Based on [28].

In the next list, we show the series of contributions of this text.
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1. We implement a novel system that uses heart rate as a feature of a classifier selection,
reaching a general accuracy of 94.4% ± 2.0% with a peak over 96% in some bins,
collecting only four heartbeats per sample.

2. Our approach does not use the 12-lead configuration that is common in related studies.
In contrast, we implement the use of pseudo-orthogonal lead configuration that uses
three signals.

3. We propose an RR discrimination to feed the Deep Convolutional Neural Network
(CNN) classifier. It provides a fewer number of samples to train the classifier but
achieves similar results compared with related work.

4. Taking advantage of all the signal waveforms, we provide an RGB strategy for repre-
senting orthogonal lead signals in one sample through a wavelet transform.

5. Our experiment can classify the person’s sex without controlling the person’s stance.

The structure of this work starts with the related work on sex classification in Section 2,
providing the last results in this area. The section of materials and methods are covered in
Section 3.1 with the database features, and Section 3.2 covers the methodology proposed
in this work. Then, in Section 4, we expose the architecture that contains the procedure
implemented in our work. The experimental results are exposed in Section 5, and lastly, we
conclude this article with our final discussion (Section 6) and conclusions (Section 7) of the
topics mentioned in this text.

2. Related Work

This section intends to provide a scope of the work on sex recognition in ECG during
the last few years, starting with an overview of Deep Learning in ECG, covering some
examples of applications such as arrhythmias, sleep apnea, pregnancy, R peak detection,
QRS complex recognition, cardiac rhythm, and human identification.

Most of the work in Deep Learning in ECG is related to arrhythmia detection with the
intention of avoiding human errors and supporting the processing of large databases for
better diagnosis. Izci et al. with a CNN and the database MIT-BIH differentiate normal
beats of left bundle branch block (LBBB), right bundle branch block (RBBB), premature
ventricular contractions (PVC), and premature atrial contractions (PAC) arrhythmias with
a 98.07% of accuracy [29]. Essa et al. [30], following arrhythmia detection, proposed the
bagging model of a CNN-LSTM (long short-term memory) and RRHOS-LSTM (RR Inter-
val and higher-order statistics) classifiers, each trained with different sub-samples, being
both connected with an ANN meta-classifier and verified with a final CNN-LSTM model,
allowing a general performance of 95.81%. Ahmad et al. [31] proposed the Multimodal
Image Fusion (MIF) and the Multimodal Feature Fusion (MFF) frameworks for arrhyth-
mia and Myocardial Infarction, each receives the ECG signal transformed into Gramian
Angular Field, Recurrence Plot, and Markov Transition Field images. MIF creates a new
image fusing its image input for CNN classification, while MFF generates the fusion of the
extracted features of the CNN penultimate layer for training a Support Vector Machine
(SVM) for heartbeat classification. Finally, the model got an accuracy of 99.7% and 99.2% for
arrhythmia and Myocardial Infarction. Jinghao et al. [32], from an inter-patient perspective,
transform the signal waveform and dynamics into a symbolic space in the MIT-BIH ar-
rhythmia dataset to detect the supraventricular ectopic beat (SVEB) and ventricular ectopic
beat (VEB) using a multiperspective convolutional neural network with an overall accuracy
of 96.4%. Due to the extension of this field, Ebrahami et al. [33] composed a review focused
on the application of deep learning for the detection of arrhythmias.

Covering the sleep apnea detection study, Bahrami et al. [34] performed a comprehen-
sive comparison between 14 conventional ML algorithms and deep learning approaches
such as CNN, recurrent networks, and hybrid-CNN, having the best detection on hybrid
deep models with an accuracy, sensitivity, and specificity of 88.13%, 84.26%, and 92.27%. For
pregnancy ECG separation, Lee et al. [35] seek to distinguish the ECG of the prenatal person
due to the dominance of the abdominal maternal ECG signal, looking for early cardiac de-
tection risks, decomposing the joint signal using the W-net deep learning architecture based
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on QRS complexes with a recall and precision of 98.23% and 99.3% with the abdominal and
direct fECG database (ADFECGDB). For future analysis, there is an approach proposed
by Li et al. to be tested that consists of the signal separation by IMF decomposition to
recognize specific maternal and prenatal components by LSTM-RNN [36,37]. In the R peak
detection, the study of Gajare et al. is trained with wavelet scalograms from the ECG
Heartbeat Categorization Dataset from Kaggle and evaluated by the MIT-BIH Arrhythmia
Dataset, achieving an accuracy of 98.32% [38]. In the field of QRS findings, Cai et al. [39],
with the presence of noise in arrhythmia samples, categorize it with CNN and CRNN
models, reaching an F1 score of 0.99 with four different databases, ensuring a generalizable
model. Pokaprakarn et al. [40] classify the ECG rhythm with the spectrogram and signal
waveform inputs with sequences of 5 seconds with noise presence and verified it with an
external database, achieving an F1 score of 0.89 for discriminating Normal Sinus Rhythm
(NSR), Atrial Fibrillation (AF), Supraventricular Tachyarrhythmia (SVTA), Bigeminy (B),
and Trigeminy (T) classes. Finally, an emerging area is biometric ECG. An application
example is performed by Abdeldayem et al., which developed a person identification
CNN classification cross-validating nine different databases reaching a 95.6% accuracy
in extracting attributes by spectral correlation [41]. Due to the expansion of this topic,
we recommend the work of Uwaechia et al. [42], which presents a survey that covers
deep supervised learning, deep semi-supervised learning, and deep unsupervised learning
methods for the identification of people.

Regarding ECG sex recognition, Strodthoff et al. provided the Physikalisch-Technische
Bundesanstalt (PTB-XL), a database that contains 71 different annotations and 5 diagnostic
super-classes. PTB-XL follows the standard communications protocol for computer-assisted
electrocardiography (SCP-ECG) with the purpose of being a reference point for future
research into the machine learning scope for different classification approaches in ECG [43].
Additionally, they seek to classify person sex with transfer learning and inception models,
getting an accuracy of 84.9% with a ResNet pre-trained model. Strodthoff et al.’s work also
focuses their direction on age prediction, diagnosis likelihood, and person stratification.

The work proposed by Siegersma et al. used a study of risk mortality by misclassified
sex data with an increasing score of 1.4 times over people with ECG samples that were
properly classified [44]. At the same time, they implemented a Deep Neural Network
(DNN) for sex classification, achieved an interval confidence of 95%, an accuracy score of
89% for internal validation, and [80%, 82%] and [80%, 83%] for external validation, using
two different databases.

On the other hand, Diamant et al., based on SimCLR [45], implemented a system
that automatically acquires information about the ECG signal for a pre-training stage
known as PCLR, trained with around 3.2 million ECGs, using contrastive learning without
the requirement to fine-tune the network [46]. They transform each sample into a lineal
representation, and contrastive learning allows a self-supervised scheme for data without
annotations that focuses on highlighting regions with similarity or distinction to be usable in
new operations. The system focuses on age prediction, sex classification, and left ventricular
hypertrophy (LVH) and atrial fibrillation (AF) detection passed through four steps: selection
module, encoder, projection head, and contrastive loss function. For sex classification, with
more than 5000 samples, it achieves an F1 score of 86%.

It is also noteworthy that the contributions of Attia et al. [2], Siegersma et al. [4], and
Lyle et al. [47] reached accuracies of 90.4%, 92.2%, and [91.3%, 86.3%], respectively. In
Table 1, more indicators can be found regarding the mentioned work in this section.

The advantage of our work in comparison with the related work is the significant
accuracy score, taking into account variables such as: (i.) A minor number of electrodes
on the person represents less complexity in the installation, increasing the user comfort.
(ii.) Fewer signals to study. (iii.) Minor signal window acquisition. (iv.) Proposal of signal
integration (v.) The nature of our analyzed database and our work classifies sex without
taking into account the person’s stance, while the related work mostly works with patients
in resting position.



Appl. Sci. 2022, 12, 6573 5 of 16

Table 1. Related work about ECG sex identification with ML algorithms.

Ref. Acc.
[%]

Lead Sample
Length

[s]

Tech. Fs
[Hz]

Position
Male-

Female
[%]

Tr. | Ts.
Sample Year

[2] 90.4 12 10 CNN 500 Supine 52–48 ∼500 k | ∼275 k 2019

[4] 92.2 12 N/A DNN N/A N/A 50.5–49.5 ∼131 k | ∼68.5 k 2021

[47]

DB1:
91.3
DB2:
86.3

12 10 SPAR
& KNN

DB1:
1000
DB2:
500

Resting

DB1:
60–40
DB2:
46–54

DB1:
N = 0.104 k

DB2:
N = 8.9 k

2021

[43] 84.9 12 10
CNN

xresnet
1d101

100 Resting 52–48
N = ∼22 k

10 fold:
8 | 2

2021

[44]
valid.
int: 89

ext: 81 & 82

12 10 DNN 250 or 500 Resting

Tr: N/A
int. valid.: N/A

ext. valid.
42.6–57.4

Tr: ∼132 k
int. valid.: 68.5 k
ext. valid.: 7.7 k

2022

[46] f-score:
87

12 10 PCLR &
constrastive

learning

250 or
500

Resting N/A
N = ∼3229 k

90% | 10% 2022

Own 94.4 6 3.93 CNN 200 Random 51–49 ∼3 k | ∼1.3 k 2022

3. Materials and Methods
3.1. Database Features

Our data belongs to the medical center of the University of Rochester with the code ref-
erence E-HOL-03-0202-003 [48]. It includes 202 healthy patients using a pseudo-orthogonal
lead configuration (X, Y, and Z) acquired from a 24-h Holter. Only heartbeats labeled as
Normal are used in this research. Complementing the official statistics, we have detected
four things: (1.) All labels, such as R peak location, start after minute 5. (2.) The mean
recording duration is 19.7 ± 6.1 h. (3.) Thew’s website informs us that there are two sex
labels marked as unknown; this information is incorrect, and the University of Rochester
confirms that there are 102 Males and 100 Females. (4.) We decided to ignore volunteer
#1043 due to quality issues.

The pseudo-orthogonal placement intends to capture the heart signal from three
orthogonal vectors, using six electrodes for acquiring the bipolar signals X, Y, and Z,
following Figure 2. The X signal is achieved at the V6 position with its right equivalent
point. The Y signal starts in the left anterior axillary line at the lower rib until the upper
sternum. Finally, the Z signal is at the V3 position, both frontal and on the person’s back.

3.2. Methodology

Looking to cover the heartbeat dynamism, we adapt the histogram strategy to see the
differences between male and female heartbeats based on their rhythm. Commonly, the RR
interval oscillates from 0.6 to 1.2 s [50]. In this way, we defined the border values of the
histogram. Then, with a bin width of 0.06 seconds, the total number of bins is ten. This
value is calculated from the difference between the maximum and minimum values in the
dataset divided by the width of the bin. Figure 3, with 9 million samples for each sex, helps
to establish that both categories (male and female) possess similar RR tendencies, separated
into 10 bins with seconds as the unit.
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X+X-

YY

X

Z+

 Y+

Y-

Z-

Figure 2. Pseudo-orthogonal lead configuration. Based on [49].

Figure 3. Heart rate histogram by sex—10 bins.

Taking advantage of the previous distribution, we propose to discriminate each bin
into a different classification model (Figure 4). This is to better differentiate the set of
heartbeats. We assume that similar RRs have similar waveforms with the intention of
helping the classifier performance.

With the purpose of evaluating each signal input, we will develop the same experiment
structure seven times but enable the ECG signal leads in different moments. As a result,
the set of experiments will have the following sequence X, Y, Z, XY, XZ, YZ, XYZ.

RR measure

Model 
for B1

Model 
for B2

Model 
for B3

Model 
for B4

Model 
for B5

Model 
for B6

Model 
for B7

Model 
for B8

Model 
for B9

Model 
for B10

Sex classifier model selection

Figure 4. Heartbeat study methodology.

4. Architecture

An overview of the scheme proposed in this work consists of six blocks described
in Figure 5. (i.) The database module contains the set of ECG data to analyze with the
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attributes described in Section 3.1. (ii.) The noise filtering component implements both
high- and stop-band filtering over the X, Y, and Z signals. (iii.) The heartbeat selector
block collects each heartbeat separately oriented by the ten bins in Figure 3 and randomly
selects two of them, each composed of four beats. (iv.) The signal transformation module
uses each four-beat sample composed of the X, Y, and Z signals and turns each into the
time-frequency domain to build the RGB image. (v.) The samples storage element collects
each image, saving it in the folder male or female, as appropriate. (vi.) The classification
section generates the computational model; for this, it distributes and processes the storage
samples’ data for the training and testing of the model.

Database
Noise 

filtering
Heartbeat 
selector

Signal TF
Samples 
storage

Classification

Figure 5. System block diagram.

Delving into the scheme of Figure 5, we propose that the architecture described in
Figure 6 is composed of two general moments: signal preprocessing and data classification.
The next procedure is applied to each person in the database.

The preprocessing stage contains five moments, taking into account that the signals
X, Y, and Z are involved in each step. To start, the complete recording goes through a
high-pass filter of 0.7 Hz and a notch filter of 50/60 Hz to remove noises such as baseline
wander and powerline. Then, taking advantage of the database annotations in the Holter
recording (Section 3.1), we collected the vector indices of common RR values according to
their working bin (Figure 3). Consequently, by RR value, we randomly take two of them,
including their next three R peaks, to complete one sample.

For the next step, the X, Y, and Z samples are transformed into the wavelet space. This
transformation helps to exploit the entire ECG waveform, highlighting jointly both time
and frequency data in a two-dimensional space without data loss. We have implemented
a continuous wavelet filter-bank that follows an analytic Morse wavelet with a time-
bandwidth product of 60, a symmetry characterization of 3, and a voice per octave of 12.

Each matrix transformation magnitude (Wvt-X, Wvt-Y, Wvt-Z) is used as a part of an
RGB image. That is to say, the matrices Wvt-X, Wvt-Y, and Wvt-Z each correspond to the
colors red, green, and blue, in strict order; if required, a zero matrix is used as a replacement
when the X, Y, or Z leads are disabled. Finally, each image is stored in a different folder,
depending on the person’s sex.

ECG Filtering.
HPF -> 0.7 Hz

SBF -> 50/60 Hz

(2.) Data Classification 

(1.) Signal Preprocessing                     
ECG_X

ECG_Y

ECG_Z +
Wvt-X
Wvt-Y
Wvt-Z

Transfer Learning Approach

Training Images
(~3000)

Validation Images
(~1300)

Performance
evaluation 

Dataset by bin

Wavelet 
transformation

Two random 
index selection & 
4 beat extraction

Common 
RR index 
collection

Wvt-Z

Wvt-Y

Wvt-X

RGB 
Image

Figure 6. Research architecture.

The classification is performed with a data distribution of 70–30%. We decided to use
a pre-trained network called GoogLeNet, which is a convolutional neural network of 144
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layers provided by Google. The network dropout implemented is 60%, a minibatch size of
15 samples, and a maximum number of epochs of 20.

5. Results

We show seven different and independent experiments following the architecture of
Figure 6. We started from single leads (X, Y, Z), then with the possible set of combina-
tions (XY, XZ, YZ, XYZ). The results are separated into two parts, single lead and mixed
lead analysis.

From the accuracy perspective, X lead reaches an 87.3% ± 4.4%, Y lead 84.6% ± 4.0%,
and Z lead 86.6% ± 4.0%. Figure 7 consolidates the results set, and by bin, the biggest score
is marked with a red dot. Under bipolar configuration, X lead provides better performance,
being positioned in 7 of all 10 bins, compared to Y and Z leads with 1/10 and 2/10,
respectively.

Taking only the best results by bin, the general sensitivity climbs to 89.6% ± 4.5%,
specificity to 86.2% ± 8.1%, precision to 86.8% ± 6.3%, and the accuracy to 87.9% ± 4.1 %.
Figure 8 consolidates the confusion matrix derivation results of the classification.

Figure 7. Single lead accuracy results. (•means maximum value per set).

On the other hand, the combination of the leads XYZ achieved an accuracy of 94.4%± 2.0%,
which is an improvement of 7.1 points over the bipolar X lead. The XY leads combination
achieved an accuracy of 90.3% ± 3.6%, XZ leads 92.8% ± 2.2%, and YZ leads 89.3% ± 2.8%.
In 9 of 10 bins, the XYZ signals were the best scheme (Figure 9).

With the best values by bin, the classification rate contains the following results:
sensitivity of 94.4% ± 3.6%, specificity of 94.5% ± 3.8%, precision of 94.4% ± 3.4%, and
accuracy 94.4% ± 2.0%. The results in Figures 8 and 10 are subtracted from each other
and compared in Figure 11. As a result, the sensitivity achieved an advance of [12.7%,
3.5%, 9.7%, 3.6%, 12.0%, 5.6%, 5.5%] in [B1, B3, B4, B6, B7, B9, B10] but a decrement of [1.8%,
2.5%, 0.4% ] in [B2, B5, B8]. The specificity achieved an increment of [7.3%, 17.9%, 14.4%,
5.9%, 9.4%, 18.8%, 8.2%, 4.0%] in [B1, B2, B3, B4, B5, B6, B8, B9] but a decrement of [2.1%,
0.9%] in [B7, B10]. The precision achieved an improvement of [7.2%, 14.4%, 12.0%, 6.5%,
9.4%, 15.5%, 8.0%, 4.8 %] in [B1, B2, B3, B4, B5, B6, B8, B9] but a decrement of [1.3%, 0.8%]
in [B7, B10]. The accuracy in all segments achieved an improvement of [9.9%, 8.2%, 9.0%,
7.8%, 3.5%, 11.3%, 4.8%, 4.1%, 4.7%, 1.9%] in [B1, B2, B3, B4, B5, B6, B7, B8, B9, B10].



Appl. Sci. 2022, 12, 6573 9 of 16

Figure 8. Single lead confusion matrix derivation results.

Figure 9. Combined leads accuracy results. (•means maximum value per set).

Figure 10. Combined leads classification results.
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Figure 11. Combined leads vs. single lead: Score comparison.

In synthesis, [B1, B3, B4, B6, B9] received a direct improvement in all their derivation
values. The cases of B2 and B5 are similar; both received a decrement in sensitivity of
1.8% and 2.5%, with a score of 91.0% and 86.3%; in contrast, both achieved a significant
improvement in specificity and precision with values of B2:[93.4%, 93.1%] and B5:[98.9%,
98.8%], respectively. On the other hand, B7 received a decrease in specificity and precision
of 2.1% and 1.3% with an equal value of 92.5% and was supported with an increase of
12% in the sensitivity with a reach of 98%. B8 achieved 94.3% in their sensitivity, which
represents a decrement of 0.4%, but an increase of 8.2%, 8.0%, and 4.1% in their specificity,
precision, and accuracy with final values of 94.7%, 93.2%, and 96.6%. Finally, B10 increased
by 5.5% and 1.9% in the sensitivity and accuracy values to 96.5% and 95.5% and reduced
by 0.9% and 0.8% in the specificity and precision with final values of 94.7% and 93.7%. We
present the general classification metrics of the experiment in Table 2.

Toward ECG Sex Recognition for Smartphone Authentication?

The previous sections have depicted our architecture proposal and results, getting a
significant classification score for ECG sex recognition, and consolidating the ECG soft-
biometric sex attribute extraction. Nonetheless, there is a valid inquiry, can the ECG
acquisition be exploitable and deployable to the market? The short answer is: Yes. Different
companies have developed different products oriented at portable ECG analytics. All of
them use Lead-I configuration and offer comfortable signal acquisition suitable to their final
application. However, none of them focus on sex recognition but facilitate identification,
driving risks, and health monitoring. We will make a brief of our selected products offered
by AliveCor, CardioID, and NYMI (Figure 12).

In the case of heart monitoring, KardiaMobile from AliveCor generated a comfortable
attachable smartphone device that helps to detect six different types of arrhythmias. Further,
the functionality can be expanded with the app KardiaCare for cloud services such as
periodic cardiologist revision, and secure storage, among others. This device has FDA
approval, has been applied for user verification [51], and in 2020 received investments of
USD 65 million from tier-1 companies, such as Qualcomm, among others [52].

CardioID, which is in the heart monitoring trade, has a deep research background and
partners such as CEiiA and the multinational Bosh. Their heartbeat traceability is applied
in the transportation business, embedding the leads in the truck wheel with the intention
of tracking driver identity, drowsiness or fatigue detection, and cardiac pathologies [53].
In this way, upon some heart abnormality, an alert is enabled, being all linked with their
central platforms. CardioID belongs to the project VALU3S (Verification and Validation of
Automated Systems’ Safety and Security) sponsored by the European Union with partners
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from 10 countries, Portugal, France, Germany, Czech Republic, Ireland, Italy, Spain, Sweden,
and Turkey. Importantly, the CardioID acquisition technique can be applied to any other
object and context, including a smartphone.

NYMI is part of the Innominds consortium; they are a startup from the University
of Toronto and have developed a fully integrated workspace wearable that includes 100+
well-ranked companies such as Microsoft and Honeywell, among others [54]. NYMI is a
band that validates a user into an organization for accessing control. This band has on-body
detection supported by two biometrics measures: heartbeat and fingerprint. The validation
works as a user identifier for company places, object manipulation, and computer session
login through NFC. Depending on the user ACL, the company authorizes specific triggered
options that are enabled under user presence, for example, machine ignition option or
distance measuring through their Bluetooth radio.

Table 2. Experiment classification metrics. (Maximum values per item are in bold).

CMD Lead B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Acc.

X 0.809 0.841 0.853 0.864 0.892 0.813 0.904 0.927 0.915 0.936

Y 0.743 0.802 0.811 0.811 0.852 0.851 0.890 0.892 0.883 0.924

Z 0.803 0.826 0.830 0.869 0.889 0.821 0.866 0.926 0.910 0.924

XY 0.870 0.893 0.871 0.889 0.896 0.920 0.856 0.943 0.955 0.937

YZ 0.771 0.878 0.876 0.925 0.895 0.891 0.878 0.932 0.939 0.947

XZ 0.777 0.864 0.856 0.875 0.878 0.903 0.924 0.916 0.890 0.894

XYZ 0.908 0.922 0.943 0.947 0.926 0.964 0.952 0.966 0.962 0.951

AUC

X 0.892 0.937 0.940 0.943 0.957 0.955 0.970 0.972 0.966 0.978

Y 0.848 0.877 0.887 0.896 0.925 0.936 0.960 0.957 0.950 0.976

Z 0.914 0.921 0.935 0.939 0.947 0.953 0.966 0.984 0.977 0.978

XY 0.939 0.959 0.966 0.973 0.977 0.975 0.944 0.985 0.993 0.988

YZ 0.917 0.948 0.963 0.975 0.976 0.983 0.986 0.983 0.984 0.988

XZ 0.923 0.939 0.939 0.951 0.960 0.956 0.978 0.964 0.955 0.950

XYZ 0.973 0.981 0.986 0.988 0.989 0.992 0.991 0.995 0.994 0.990

Prec.

X 0.798 0.787 0.808 0.855 0.893 0.737 0.938 0.929 0.926 0.943

Y 0.822 0.798 0.788 0.785 0.862 0.797 0.859 0.860 0.866 0.955

Z 0.756 0.769 0.767 0.900 0.861 0.742 0.944 0.893 0.946 0.881

XY 0.842 0.930 0.949 0.933 0.962 0.902 0.960 0.936 0.971 0.958

YZ 0.705 0.873 0.816 0.896 0.842 0.828 0.805 0.934 0.949 0.957

XZ 0.912 0.887 0.857 0.822 0.839 0.938 0.914 0.887 0.907 0.871

XYZ 0.870 0.931 0.928 0.965 0.988 0.952 0.925 0.973 0.974 0.933

Sens.

X 0.832 0.928 0.925 0.876 0.888 0.968 0.859 0.917 0.889 0.910

Y 0.626 0.803 0.850 0.855 0.836 0.940 0.928 0.925 0.887 0.869

Z 0.895 0.925 0.946 0.829 0.926 0.979 0.771 0.960 0.857 0.958

XY 0.913 0.848 0.782 0.836 0.824 0.943 0.736 0.948 0.930 0.896

YZ 0.937 0.882 0.970 0.961 0.972 0.986 0.990 0.922 0.919 0.921

XZ 0.619 0.831 0.852 0.955 0.935 0.863 0.932 0.947 0.854 0.894

XYZ 0.959 0.910 0.960 0.926 0.863 0.976 0.980 0.957 0.945 0.958

Progressively, the comfort variable has been decreasing in complexity. AliveCor,
CardioID, and NYMI are spearheading examples of innovative ways for capturing the
ECG signals in their products. It would prepare the market for future implementations to
evaluate the ECG sex classification algorithm implementation on their related devices as a
soft-biometric input feature for medical decisions or user authentication.
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Figure 12. Alivecor, CardioID, and NYMI product examples.

6. Discussion

From the perspective of our experiment, the average classification accuracy obtained
was 94.4%, with peak values greater than 96% in different bins by using the Rochester
database and classified with GoogLeNet, although these results are influenced by the signal
quality and attributes of the database population.

The method proposed in this work congregates the time-frequency inputs of the XYZ
signals in one RGB image. The literature close to this work commonly uses 12 leads and a
time window of 10 s. In contrast, our approach uses a pseudo-orthogonal configuration
and less signal time capture (approx. 4 s), allowing the use of fewer electrodes and fewer
data. In addition, we propose to establish the heart rate dynamism as an atomic variable
before any classification approach, respecting its physiological nature. Furthermore, this
experiment does not control the person’s position compared to close investigations that use
only the resting position.

Our work and current research in this area confirm that the classification of sex with
ECG signals is realizable. As a consequence, we observe that the sex property of this
signal is a hidden soft biometric feature that could enrich the feature vector of an ECG
identification system or areas related to health, expanding this area of study.

The projection for further research is to analyze the classification accuracy of the archi-
tecture due to the change in the heartbeat number collected. In addition, our proposal must
be analyzed with a new database to evaluate the cross-validation of our model. This study
invites future investigators to include the architecture proposed in their related studies and
to include sex differentiation in their models. As future work for new investigations, we
propose expanding the current model to apply it to a smartphone authentication context.

7. Conclusions

This work proposes a novel architecture that looks for the ECG sex recognition based
on the pseudo-orthogonal electrode configuration using a pre-trained convolutional neural
network, reaching an accuracy of 94.4% ± 2.0%. This result helps the design of our future
work focused on the use of the sex soft-biometric attribute, evaluating its contribution in a
user authentication context by ECG.
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MFF Multimodal Feature Fusion
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RBBB Right Bundle Branch Block
SBP Stop Band Filter
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SimCLR Simple Framework for Contrastive Learning
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29. İzci, E.; Değirmenci, M.; Özdemir, M.A.; Akan, A. ECG Arrhythmia Detection with Deep Learning. In Proceedings of the 28th
IEEE Signal Processing and Communications Applications (SIU), Gaziantep, Turkey, 5–7 October 2020; pp. 1541–1544.

30. Essa, E.; Xie, X. An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification. IEEE Access
2021, 9, 103452–103464. [CrossRef]

31. Ahmad, Z.; Tabassum, A.; Guan, L.; Khan, N.M. ECG Heartbeat Classification Using Multimodal Fusion. IEEE Access 2021,
9, 100615–100626. [CrossRef]

32. Niu, J.; Tang, Y.; Sun, Z.; Zhang, W. Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective
Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2020, 24, 1321–1332. [CrossRef]

33. Ebrahimi, Z.; Loni, M.; Daneshtalab, M.; Gharehbaghi, A. A review on deep learning methods for ECG arrhythmia classification.
EXpert Syst. Appl. X 2020, 7, 100033. [CrossRef]

34. Bahrami, M.; Forouzanfar, M. Sleep Apnea Detection From Single-Lead ECG: A Comprehensive Analysis of Machine Learning
and Deep Learning Algorithms. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [CrossRef]

35. Lee, K.J.; Lee, B. End-to-End Deep Learning Architecture for Separating Maternal and Fetal ECGs Using W-Net. IEEE Access
2022, 10, 39782–39788. [CrossRef]

36. Li, H.; Deng, J.; Feng, P.; Pu, C.; Arachchige, D.D.K.; Cheng, Q. Short-Term Nacelle Orientation Forecasting Using Bilinear
Transformation and ICEEMDAN Framework. Front. Energy Res. 2021, 9, 780928. [CrossRef]

37. Li, H.; Deng, J.; Yuan, S.; Feng, P.; Arachchige, D.D.K. Monitoring and Identifying Wind Turbine Generator Bearing Faults Using
Deep Belief Network and EWMA Control Charts. Front. Energy Res. 2021, 9, 799039. [CrossRef]

38. Gajare, A.; Dey, H. MATLAB-based ECG R-peak Detection and Signal Classification using Deep Learning Approach. In
Proceedings of the 3rd IEEE Bombay Section Signature Conference (IBSSC), Gwalior, India, 18–20 November 2021; pp. 157–162.

39. Cai, W.; Hu, D. QRS Complex Detection Using Novel Deep Learning Neural Networks. IEEE Access 2020, 8, 97082–97089.
[CrossRef]

40. Pokaprakarn, T.; Kitzmiller, R.R.; Moorman, R.; Lake, D.E.; Krishnamurthy, A.K.; Kosorok, M.R. Sequence to Sequence ECG
Cardiac Rhythm Classification Using Convolutional Recurrent Neural Networks. IEEE J. Biomed. Health Inform. 2022, 26, 572–580.
[CrossRef] [PubMed]

41. Abdeldayem, S.S.; Bourlai, T. A Novel Approach for ECG-Based Human Identification Using Spectral Correlation and Deep
Learning. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 1–14. [CrossRef]

42. Uwaechia, A.N.; Ramli, D.A. A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication:
Recent Advances and Future Challenges. IEEE Access 2021, 9, 2169–3536. [CrossRef]

43. Strodthoff, N.; Wagner, P.; Schaeffter, T.; Samek, W. Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL.
IEEE J. Biomed. Health Inform. 2021, 25, 1519–1528. [CrossRef]

44. Siegersma, K.R.; van de Leur, R.R.; Onland-Moret, N.C.; Leon, D.A.; Diez-Benavente, E.; Rozendaal, L.; Bots, M.L.; Coronel,
R.; Appelman, Y.; Hofstra, L.; et al. Deep neural networks reveal novel sex-specific electrocardiographic features relevant for
mortality risk. Eur. Heart J.-Digit. Health 2022, 3, 1–10. [CrossRef]

45. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning (ICML’20), Vienna, Austria, 12–18 July 2020; pp. 1597–1607.

46. Diamant, N.; Reinertsen, E.; Song, S.; Aguirre, A.D.; Stultz, C.M.; Batra, P. Patient contrastive learning: A performant, expressive,
and practical approach to electrocardiogram modeling. PLoS Comput. Biol. 2022, 18, e1009862. [CrossRef]

47. Lyle, J.V.; Nandi, M.; Aston, P.J. Symmetric Projection Attractor Reconstruction: Sex Differences in the ECG. Front. Cardiovasc.
Med. 2021, 8, 1–17. [CrossRef]

48. brgfx. Telemetric and ECG Holter Warehouse Project. Available online: http://thew-project.org/Database/E-HOL-03-0202-003.
html (accessed on 18 June 2022).

49. brgfx. Vector de Cuerpo Humano Creado por Brgfx - www.freepik.es. 2021. Available online: https://www.freepik.es/vectores/
cuerpo-humano (accessed on 18 June 2022).

50. Padsalgikar, A. Plastics in Medical Devices for Cardiovascular Applications. A Volume in Plastics Design Library, 1st ed.; Elsevier:
Kidlington, UK, 2017; p. 115.

51. Arteaga-Falconi, J.S.; Osman, H.A.; Saddik, A.E. ECG Authentication for Mobile Devices. IEEE Trans. Instrum. Meas. 2016,
65, 591–600. [CrossRef]

52. Wiggers, K. AliveCor Raises $65 Million to Detect Heart Problems with AI. 2020. Available online: https://venturebeat.com/20
20/11/16/alivecor-raises-65-million-to-detect-heart-problems-with-ai/ (accessed on 28 October 2021).

https://www.pcmag.com/news/hacking-fingerprints-is-actually-pretty-easy-and-cheap
https://www.pcmag.com/news/hacking-fingerprints-is-actually-pretty-easy-and-cheap
https://www.forbes.com/sites/daveywinder/2019/08/10/apples-iphone-faceid-hacked-in-less-than-120-seconds/?sh=349627621bc3
https://www.forbes.com/sites/daveywinder/2019/08/10/apples-iphone-faceid-hacked-in-less-than-120-seconds/?sh=349627621bc3
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels-es.svg
http://dx.doi.org/10.1109/ACCESS.2021.3098986
http://dx.doi.org/10.1109/ACCESS.2021.3097614
http://dx.doi.org/10.1109/JBHI.2019.2942938
http://dx.doi.org/10.1016/j.eswax.2020.100033
http://dx.doi.org/10.1109/TIM.2022.3151947
http://dx.doi.org/10.1109/ACCESS.2022.3166925
http://dx.doi.org/10.3389/fenrg.2021.780928
http://dx.doi.org/10.3389/fenrg.2021.799039
http://dx.doi.org/10.1109/ACCESS.2020.2997473
http://dx.doi.org/10.1109/JBHI.2021.3098662
http://www.ncbi.nlm.nih.gov/pubmed/34288883
http://dx.doi.org/10.1109/TBIOM.2019.2947434
http://dx.doi.org/10.1109/ACCESS.2021.3095248
http://dx.doi.org/10.1109/JBHI.2020.3022989
http://dx.doi.org/10.1093/ehjdh/ztac010
http://dx.doi.org/10.1371/journal.pcbi.1009862
http://dx.doi.org/10.3389/fcvm.2021.709457
http://thew-project.org/Database/E-HOL-03-0202-003.html
http://thew-project.org/Database/E-HOL-03-0202-003.html
https://www.freepik.es/vectores/cuerpo-humano
https://www.freepik.es/vectores/cuerpo-humano
http://dx.doi.org/10.1109/TIM.2015.2503863
https://venturebeat.com/2020/11/16/alivecor-raises-65-million-to-detect-heart-problems-with-ai/
https://venturebeat.com/2020/11/16/alivecor-raises-65-million-to-detect-heart-problems-with-ai/


Appl. Sci. 2022, 12, 6573 16 of 16

53. CardioID. Every Heart Has a Beat, But the Way We Use it is Unique! 2016. Available online: https://www.cardio-id.com/
(accessed on 28 October 2021).

54. Nymi. Nymi Workplace Wearables. 2021. Available online: https://www.nymi.com/nymi-band (accessed on 28 October 2021).

https://www.cardio-id.com/
https://www.nymi.com/nymi-band

	Introduction
	Related Work
	Materials and Methods
	Database Features
	Methodology

	Architecture
	Results
	Discussion
	Conclusions
	References

