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Abstract: In the era of data deluge, Big Data gradually offers numerous opportunities, but also
poses significant challenges to conventional data processing and analysis methods. MapReduce
has become a prominent parallel and distributed programming model for efficiently handling such
massive datasets. One of the most elementary and extensive operations in MapReduce is the join
operation. These joins have become ever more complex and expensive in the context of skewed
data, in which some common join keys appear with a greater frequency than others. Some of the
reduction tasks processing these join keys will finish later than others; thus, the benefits of parallel
computation become meaningless. Some studies on the problem of skew joins have been conducted,
but an adequate and systematic comparison in the Spark environment has not been presented. They
have only provided experimental tests, so there is still a shortage of representations of mathematical
models on which skew-join algorithms can be compared. This study is, therefore, designed to provide
the theoretical and practical basics for evaluating skew-join strategies for large-scale datasets with
MapReduce and Spark—both analytically with cost models and practically with experiments. The
objectives of the study are, first, to present the implementation of prominent skew-join algorithms
in Spark, second, to evaluate the algorithms by using cost models and experiments, and third, to
show the advantages and disadvantages of each one and to recommend strategies for the better use
of skew joins in Spark.

Keywords: big data analytics; skew join; MapReduce; Apache Spark

1. Introduction

Big Data is a term that has been mentioned in many recent studies. People generate ter-
abytes of data every hour, leading to challenges in storing and handling data in traditional
ways. Therefore, Google designed the MapReduce processing model [1] for parallel and dis-
tributed processing of large-scale datasets. One of the major limitations of the MapReduce
model is data-skew processing [2]. A typical case is data skew in join operations, which are
the operation of joining many relationships or datasets that have some common attributes
into a new relationship [3]. The join operation is used in many applications, such as the
construction of search engines and some big data-intensive applications [4]. Taking the
example of joining two datasets R and L, R has the join key column R.id = {1, 1, 1, 1, 1, 1, 2}
and L the has join key column L.id = {1, 2, 3}. In MapReduce, Mappers read input data
from the two datasets and distribute intermediate data to reducers based on join keys. Data
with the same join keys will be sent to the same reducers to create join results. Assuming
that dataset R is skewed at id = 1, the join key with a value of 1 occurs many times. In
this case, the reducers r2 and r3 will finish faster than reducer r1, since reducer r1 receives
more data than the others. If there is a large amount of skewed data with id = 1, then
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overload and congestion will appear at the computing node r1 and lead to inefficiency in
the computational system. This is a real challenge for join operations in MapReduce.

Some algorithms have been proposed for data-skew-join operations in MapReduce,
such as hash-based partition [5], range-based partition [5], multi-dimensional range partition
(MDRP) [6], MRFA-Join [7], and randomized partition [8]. Chen et al. [9] introduced LIBRA,
a sampling and partitioning algorithm for handling high-frequency join keys in reduction
tasks. Bruno et al. [10] discussed challenges in large-scale distributed join operation and
introduced novel execution strategies that robustly handle data skew. They used different
partitioning schemes and join graph topologies for high-frequency key values. Zhou et al. [11]
proposed an efficient key-select algorithm to find skew key tuples and defined a lightweight
tuple migration strategy to solve data-skew problems. Their FastJoin system improved the
performance in terms of latency and throughput. Zhang and Ross [12] presented an index
structure to reorder data so that popular items were concentrated in the cache hierarchy. They
analyzed the cache behavior and efficiently processed database queries in the presence of
skew. Meena et al. [13] presented their approach for handling data skew in a character-based
string-similarity join in MapReduce. They compared the proposed algorithm with three
other algorithms for handling data skew for evaluation. Jenifer and Bharathi [14] gave a
brief survey on the solutions for data skew in MapReduce. Nawale and Deshpande [15]
studied various methodologies and techniques used to mitigate data skew and partition skew.
Myung et al. [6] proposed multi-dimensional range partitioning to overcome the limitations of
traditional algorithms. There have been some studies on data skew in MapReduce. However,
there has not been any study that has shown an adequate and systematic comparison of
data-skew handling for join operations in Spark.

In this paper, we will present and compare three algorithms for partitioning data, i.e,
hash-based partition, range-based partition, and multi-dimensional range partition. This
helps users to choose suitable solutions for processing join operations in large-scale datasets.
We built cost models for the algorithms for evaluation. This provided a scientific basis for
the comparison. Experiments were conducted on a Spark cluster with different skew ratios.
The structure of this paper is organized as follows. Section 2 presents the background
related to the large-scale data processing model and platform. Section 3 provides the
solutions for data skew in join operations on large datasets in detail. Section 4 presents
an evaluation with the cost models and experiments conducted in the Spark cluster. The
conclusion of the paper is presented in Section 5.

2. Background
2.1. Join Operations in the MapReduce Model

MapReduce [1] is a parallel and distributed large-scale data processing model. A
program can be run on clusters with a number of computing nodes that can be up to
thousands. Introduced in 2004, MapReduce has been widely used in the field of Big
Data, since it allows users to simply focus on the design of data processing operations
regardless of the parallel or distributed nature of the model [3]. MapReduce is implemented
through two basic functions, Map and Reduce, which are also two consecutive stages in
data processing. The Map function receives input data to convert them into intermediate
data (key–value pairs), and the Reduce function accepts the intermediate data created to
perform calculations.

Hadoop (http://hadoop.apache.org (accessed on 8 May 2022)) has become one of the
popular Big Data processing platforms of the last decade [16]. Hadoop is an open-source
implementation of the MapReduce model. Hadoop breaks data down into many small
chunks and runs an application on the data of the computing nodes in the system. Each
time it performs a task, Hadoop has to reload the data from the disk, which is costly and is
considered a “penalty” [17]. Therefore, Hadoop has not fully supported join operations
with high I/O and communication costs [2]. In recent years, with the advent of Apache
Spark [17], many outstanding features of this platform have helped this to become the next
generation of Big Data processing platforms [6].

http://hadoop.apache.org
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The join operation is a basic operation that consumes much processing time, and it is
an intensive data operation in data processing [3]. This section discusses the process and
gives a concrete example of a join operation using the MapReduce model. Considering
the two datasets R (user data) and L (log data), to list a username and the corresponding
event that the user accesses, we have the query R(uname, uid) ./uid=uid L(uid, event). In
large-scale data applications, such as social networks, this query can enforce the joining of
trillions of records. Therefore, the parallel and distributed processing model in MapReduce
is a good solution to this problem. As shown in Figure 1, the JobTracker of MapReduce
creates three Mappers to process three partitions of the input data simultaneously. The first
Mapper computes the first partition, consisting of three records of dataset R. The second
Mapper processes one record of R, and the third Mapper processes two records of L. The
Mappers transform the datasets R and L based on the join key uid.

• {(A, B), (C, B), (A, F)} → {(B, A), (B, C), (F, A)}
• {(C, D)} → {(D, C)}
• {(B, C), (D, F)} → {(B, C), (D, F)}

The data after transformation are called intermediate data, and those are sent to the
Reducers. Intermediate datasets with the same join key are sent to the same Reducer. Here,
the reduction function is called for every single key with a list of values. Finally, each record
of R finds the records of L that have the same join key to produce the join results. Figure 1
shows that there are three join results from the Reducers.

• Reducer 1 for join key B: (B, [R : A, R : C, L : C])→ {(A, C), (C, C)}
• Reducer 2 for join key F: (F, [R : A])→ {empty}
• Reducer 3 for key join D: (D, [R : C, L : F])→ {(C, F)}

Figure 1. Join operation in MapReduce.

2.2. Apache Spark

Apache Spark (http://spark.apache.org (accessed on 8 May 2022)) is an open-source
cluster computing framework that was originally developed in 2009 by AMPLab at the
University of California, Berkeley. Spark has continued to be developed by the Apache
Software Foundation since 2013. Given a task that is too large to be handled on a server,
Spark allows us to divide this task into more manageable tasks. Then, Spark will run

http://spark.apache.org
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these small tasks in memory on a cluster of computing nodes. Apache Spark has three
salient features.

• Speed: Spark is 100 times faster when running in memory and 10 times faster when
running on a disk than Hadoop [17].

• Support for multiple programming languages: Spark provides built-in APIs in the
Java, Scala, and Python languages.

• Advanced analysis: Spark not only supports MapReduce models, but also supports
SQL queries, streaming data, machine learning, and graph algorithms.

2.2.1. Resilient Distributed Datasets

Resilient distributed datasets (RDDs) are the underlying data structure and outstand-
ing feature of Spark. They are a type of distributed collection that can be temporarily stored
in RAM with a high fault tolerance and the capability of parallel computation. Each RDD is
divided into multiple logical partitions and can be computed on different nodes of a cluster.
In this research, we use the Scala language, since Apache Spark is built mainly on Scala,
so it has the best speed and support for this language. RDDs basically support two main
types of operations.

• Transformation: Through a transformation, a new RDD is created from an existing
RDD. All transformations are “lazy” operations, meaning that these transformation
operations will not be performed immediately, but the steps taken are only memorized
and saved as pending scripts. This process can be understood as a job-planning
process. Those operations can only be performed when an Action is called.

• Action: An Action performs all transformations related to it. By default, each RDD
will be recalculated if an Action calls it. However, RDDs can also be cached in RAM or
on a disk using the persist command for later use. The Action will return the results
to the driver after performing a series of computations on the RDDs.

It would be time-consuming if we encountered an RDD being reused many times
because each RDD will be recalculated by default. Therefore, Spark supports a mechanism
called persist or cache. When we ask Spark to persist with an RDD, the nodes that contain
those RDDs will store those RDDs in memory, and that node will only compute once. If the
persist fails, Spark will recalculate the missing parts if necessary.

2.2.2. Examples of Spark Functions

Map (a transformation) returns a new RDD by passing each input element through a
function. An example of a map function is presented in Figure 2, in which each element in
x is a map with 1 and creates a new RDD y.

Code
val x = sc.parallelize(Array(“b”, “a”, “c”))
val y = x.map(z⇒ (z,1))
println(x.collect().mkString(“, "))
println(y.collect().mkString(“, "))
Result
x: [‘b’, ‘a’, ‘c’]
y: [(‘b’, 1),(‘a’, 1),(‘c’, 1)]

Figure 2. Map function.
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Reduction (an action) aggregates all elements of the original RDD by applying a user
function in pairs with the elements and returns the results to the driver. An example of a
reduction function is presented in Figure 3, in which the RDD x is reduced to the sum of all
its elements.

Code Result
val x = sc.parallelize(Array(1,2,3,4)) x: [1, 2, 3, 4]
val y = x.reduce((a,b)⇒ a+b) y: 10
println(x.collect.mkString(", "))
println(y)

Figure 3. Reduction function.

3. Data-Skew-Handling Algorithms
3.1. Skew Join

Data skew is a problem in which the data distribution is uneven or asymmetric. In a
database, cases where some attributes appear with a greater frequency than other attributes
usually occur [18], and this is called data skew. In distributed parallel computation systems,
the join operations using these attributes will take a longer time than with data with a
normal distribution. A join operation consists of several steps, including data upload-
ing, projection and selection based on the query, partitioning of the data into partitions,
and joining of datasets. Therefore, data skew limits the efficiency of join operations in
parallel computation.

There are several types of data skew based on the stage in which skew problems occur,
such as tuple placement skew, selectivity skew, redistribution skew, and join skew [19].
The initial placement of the datasets in the partitions may cause a tuple placement skew.
Selectivity skew occurs when the selectivity of selection predicates is different between
nodes. Redistribution skew is caused by a large amount of data on the partitions after the
redistribution scheme is applied. Joining product skew is the result of join selectivity on
each node. In this paper, we will not consider tuple placement skew, since MapReduce
creates split files regardless of the size of the original file. Selectivity skew is also ignored
because it does not have any significant impact on the performance, and we do not use
projections and selections in our program. Joining product skew cannot be avoided, since
it is created after joining two datasets together. Redistribution skew is the main and most
important type of data skew, and it affects the distribution of the workload between nodes.
This situation is caused by an improper redistribution mechanism. Hence, we will cover
redistribution skew in our research.

Join computations based on the MapReduce model go through two phases, Map and
Reduce. Mappers read the data and convert them into intermediate data in the form of
key–value pairs, with the key being the join key and the value being the row containing
the join key. After generating key–value pairs, Mappers will shuffle the intermediate data
to Reducers according to the rule that pairs of the same key will go to the same Reducers.
Data skew may appear at this stage if the input data contain one or more frequent join keys
(Figure 4a). This will inevitably lead to data imbalances between computing nodes. Data
containing these frequent join keys are processed by only one or a handful of computing
nodes, while the rest of the computing nodes are idle. Thus, skewed data occur when one
or more computing nodes have to process a much larger number of join keys than other
computing nodes in a system [20]. As a result, some nodes encounter bottlenecks or delays,
and the remaining nodes are a waste of resources. In parallel computing, the join operation
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execution time is determined by the longest-running task. Therefore, if the data are skewed,
the benefits of parallel computation become meaningless [2].

(a) (b)

Figure 4. Data partitioning example. (a) Skew partitioning. (b) Not skewed.

A solution is to clearly point out skew data and to allow it to be distributed in different
ways to avoid or reduce the skew effect before calculations begin. In a data-skew problem,
heavily weighted partitions will appear. Spark assigns one task per partition, and each
worker processes one task at a time; thus, heavy partitions will affect the performance.
The main idea now is to avoid heavily weighted partitions. As an example, we add more
information on the skew-join key so that it can be distributed into different partitions
(Figure 4b).

In Spark, data are divided into partitions on many different nodes in a cluster. Thus, it is
difficult to avoid data shuffling between nodes with join operations in Spark. This shuffling
process will slow down the processing speed and program performance. Therefore, reasonable
partitioning of data before the join computation can improve the performance and reduce the
effect of shuffling of data. Figure 5 presents the data flow of the three algorithms.

Figure 5. Data flow of the three join algorithms.
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3.2. Hash-Based Partition

In hash-based partition (HBP) [5], after mapping the input data, the partition process-
ing will redistribute the workload to the nodes based on the join keys. Hash-based partition
is not ideal for handling skewed data, since the data skew will go to the same computing
nodes. Therefore, hash-based partition is not a good solution for skewed data [21].

Suppose that we have two datasets R(k, v1) and L(k, v2), where the attribute k is a
join key. The data flow of hash-based partition algorithm is presented in Figure 6. The
join operation between two datasets R and L using a hash-based partition algorithm goes
through two phases.

Figure 6. Data flow of a hash-based partition algorithm.

• Partitioning phase: The k attribute in each record of the dataset R is passed to a hash
function by the formula (R.k mod p), where p is the number of partitions. The result
of the hash function is also the partition number to which this record was sent. The
same thing is done with dataset L.

• Join phase: The partitions will receive a list of data with the same join key k. Here, we
can use any join algorithms, such as join, rightOuterJoin, or leftOuterJoin.

Given an example of two datasets R(k, v1) and L(k, v2) with R.k = {1, 1, 2, 2, 2, 2, 4, 4},
L.k = {1, 1, 2, 2, 2, 3, 4, 4}, and there are p = 4 partitions, in hash-based partition, one parti-
tion can receive more records than other partitions. The join computation with hash-based
partition is shown in Figure 7. In this example, partition P2 has four records {r3, r4, r5, r6}
from dataset R and three records {l3, l4, l5} from dataset L. Thus, partition P2 produces 12
join results {(r3, l3), (r3, l4), (r3, l5), (r4, l3), (r4, l4), (r4, l5), (r5, l3), (r5, l4), (r5, l5), (r6, l3),
(r6, l4), (r6, l5)}, which is a larger number than in other partitions. Specifically, partition
P3 only receives one record {l6} and does not generate any join results. The execution
time of a join computation depends on the completion of the last reducer. If the number
of identical join keys is too large, then, even if the number of partitions is large, the data
with the same join key will only gather on a few certain partitions. This results in some
partitions being too big and the others having no data. This easily causes out-of-memory
errors or slows down the processing speed. Therefore, processing skewed data is a very
important issue for join operations.
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Figure 7. Join computation with hash-based partition.

3.3. Range-Based Partition

Range-based partition (RBP) is proposed as a solution for skewed data instead of
hash-based partition [5]. The idea of the algorithm is to divide the mapped data into
sub-ranges. Therefore, each computing node will process a sub-range instead of a join
key value in order to reduce the burden on the computing nodes when data are skewed.
The data flow of range-based partition algorithm is presented in Figure 8. A split vector
is created to limit the range of sub-ranges. If there are n partitions, the split vector will
contain n− 1 elements {e1, e2, e3, . . . , en−1}. Thus, data with join keys ≤ e1 will come to
partition 1, data with join keys in the range e1 < keys ≤ e2 will come to partition 2, and
data with join keys > en−1 will come to partition n. However, the algorithm still produces
skewed results after the partition period.

Figure 8. Data flow of a range-based partition algorithm.

In this method, the first thing to do is to create a split vector from the two input
datasets by calculating the appearance of the join keys in each dataset. The dataset that
has the most skewed join keys will be selected as the split vector. We use the “fragment–
replicate” technique [22] before the join computation. When a mapper reads input records
and maps into RDD key–value pairs, if the join key belongs to more than one partition, this
key–value pair is a fragment or replicated. We will use a fragment of the key–value pairs
on the dataset with the most skewed join key and use a replicate of the key–value pairs on
the other dataset.
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The following steps need to be performed to partition key–value pairs in the dataset
with more skewed join keys (a build relation):

• A split vector is created from the input dataset and this vector is stored in the HDFS;
• Each node in the cluster will read the split vector from the HDFS and create a range

map, and each sub-range will be assigned to the corresponding partition;
• Based on this range map, when a mapper reads input records and maps into RDD key–

value pairs, if the join key belongs to only one sub-range, the data will be partitioned
into the corresponding partition; if the join key belongs to more than one sub-range,
the data will be randomly assigned to one of the partitions corresponding to the
sub-ranges (fragment).

For a dataset with fewer skewed join keys, we use the split vector created above to
partition key–value pairs (a probing relation). If the join key belongs to only one sub-range,
the data will be assigned to the corresponding partition. Conversely, if the join key belongs
to more than one sub-range, the data will be distributed to all partitions corresponding
to the sub-range (replicate). The algorithm used to partition the datasets is presented in
Algorithms 1 and 2.

Algorithm 1 Range-based partition algorithm for dataset R—a build relation
Input: An input record r ∈ R
Input: Split vector
Input: A list of partitions P
Begin

1: Create Sub-range
2: for each r ∈ R do
3: SR = r.listSubRange()
4: if |SR| == 1 then
5: Output (P(SR(1)), r)
6: else
7: i = random() % |SR|
8: Output (P(SR(i)), r)
9: end if

10: end for
End.

Algorithm 2 Range-based partition algorithm for dataset L—a probing relation
Input: An input record l ∈ L
Input: Split vector
Input: A list of partitions P
Begin

1: Create Sub-range
2: for each l ∈ L do
3: SR = l.listSubRange()
4: if |SR| == 1 then
5: Output (P(SR(1)), l)
6: else
7: for i = 1 to | SR | do
8: Output (P(SR(i)), l)
9: end for

10: end if
11: end for
End.

The partitions will have a list of data with a join key k belonging to the same sub-range.
Here, we use a join algorithm to create the join results (presented in Algorithm 3).
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Algorithm 3 Join two datasets R ./ L
Input: (partitionID, {r1, r2, . . . , l1, l2, . . . })
Begin

1: tupleR = {}
2: for each ri in input list do
3: tupleR = tupleR ∪ {ri}
4: end for
5: for each lj in input list do
6: for each ri in tupleR do
7: Output ri ./ lj
8: end for
9: end for

End.

Given an example of two datasets R(k, v1) and L(k, v2), as presented above, we create
a split vector from dataset R. The elements in the split vector will be chosen from R.k with
the formula b |R|p−1c, in which |R| is the number of records of dataset R. In the example
(Figure 9), we have |R| = 8 and p = 4; thus, the 2nd, 4th, and 6th elements in R.k will be
chosen to have the split vector {1, 2, 2}. From the split vector, we create four sub-ranges,
i.e., [−∞, 1], (1, 2], [2, 2], (2, ∞].

Figure 9. Join computation with range-based partition.

According to the “fragment–replicate” technique, {r3, r4, r5, r6} are classified into two
partitions and {l3, l4, l5} are replicated in two partitions (P2 and P3). As a result, we have
two partitions, each of which produces a join result of six records instead of 12, as in the
hash-based partition algorithm. The range-based partition algorithm allows data to be
partitioned into more than two partitions. With the “fragment–replicate” technique used,
we can divide the workload of the partitions when generating the join results.

3.4. Multi-Dimensional Range Partition

Multi-dimensional range partition (MDRP) is an algorithm that combines a range
partition and a random partition [6]. Mappers read input data from the datasets and create
split vectors to divide the data into sub-ranges. The data will be put into a partitioning
matrix corresponding to the sub-range values of the two datasets. Input data are distributed
to the reducers based on this partitioning matrix, in which cells containing more data in
the matrix will be subdivided and assigned to two or more reducers. The data flow of
multi-dimensional range partition algorithm is presented in Figure 10.
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Figure 10. Data flow of multi-dimensional range partition algorithm.

3.4.1. Partitioning Matrix

The algorithm considers two datasets R and L with a join key of k. Suppose that
there are p partitions, and the input datasets will be divided into p sub-ranges, i.e.,
{R1, R2, . . . , Rp} and {L1, L2, . . . , Lp}. Creating sub-ranges of the two datasets is simi-
lar to creating sub-ranges with the range-based partition algorithm. For dataset R, the
sub-range will include the entire domain of the join key k from α to β, α < R.k < β. Two
special cases R1 and Rp will include sub-ranges [−∞, α] and (β, ∞], respectively.

As in the previous example, we have R.k = {1, 1, 2, 2, 2, 2, 4, 4} and
L.jk = {1, 1, 2, 2, 2, 3, 4, 4} with p = 4 partitions. We get two split vectors {1, 2, 2} and
{1, 2, 3} from the two datasets R and L. In the partitioning matrix M, as shown in Figure 11,
the ith row represents the sub-range Ri and the jth column represents the sub-range Lj. The
cell (Ri, Lj) is classified into one of the following two groups: candidate and non-candidate.
Candidates are cells that produce join results and non-candidates are cells that do not
generate join results.

Figure 11. Mapping between cells and partitions.
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M(i, j) is the value representing the workload of a candidate cell (Ri, Lj) to be pro-
cessed. In the MDRP algorithm, M(i, j) = |Ri ./ Lj|, where Ri and Lj are records that
belong to the same sub-range. In the partitioning matrix M, M(2, 2) = 12 because we
have four records whose join key is 2 in dataset R and three records with a join key of 2 in
dataset L, which belong to the same sub-range (R2, L2). Similarly, M(1, 1) = 4 because we
have two records {r1, r2} in dataset R and two records {l1, l2} in dataset L that have join
keys belonging to the same sub-range (R1, L1). M(4, 4) = 4, since we have two records in
dataset R and two records in dataset L that have join keys belonging to the same sub-range
(R4, L4). The partition matrix will help to ensure that the total number of cells (Ri, Lj) and
the total workload in each partition are relatively equal.

3.4.2. Identifying and Dividing Heavy Cells

Heavy cells in the partitioning matrix M are cells (Ri, Lj) that satisfy the conditions in
Equation (1). That is, if the ratio of the workload of the cell (Ri, Lj) to the total workload of
the partitioning matrix M is greater than or equal to 1

p , this cell is called a heavy cell. The

ratio 1
p is the optimal workload ratio for each partition. Therefore, if the partitioning matrix

contains heavy cells, it will not be possible to balance the workload between the partitions.

M(i, j)
Σp

r=1Σp
l=1M(r, l)

≥ 1
p

(1)

As in the example, we have one heavy cell (R2, L2). The total workload in the example
is 20 and the optimal workload ratio is 1

p = 1
4 = 0.25. The cell (R2, L2) has workload

M(2, 2) = 12; thus, it is a heavy cell (12/20 = 0.6 ≥ 0.25). To ensure load balancing
between the partitions, the heavy cell has to be divided into cells with smaller workloads.
A quantity ω is defined as the optimal workload, as in Equation (2). After this value is
defined, the heavy cells are split into d cells, with the conditions shown in Equation (3).

ω =
Σp

r=1Σp
l=1M(r, l)

p
(2)

M(i, j)
d

≤ ω (3)

We have ω = 20/4 = 5. Therefore, the heavy cell (R2, L2) will be split into three
non-heavy cells, since (12/3 ≤ 5). The heavy cells are split into several non-heavy cells that
are partitioned into different partitions.

3.4.3. Partitioning the Non-Heavy Cells

• We have a list of non-heavy cells denoted by C = {c1, c2, . . . , c|C|}.
• Each ci ∈ C consists of a sub-range (Ri, Lj), and its workload is denoted by w(ci). For

example, a non-heavy cell c1 is denoted by (Ri, Lj, w(c1)).
• These non-heavy cells are partitioned into different partitions P = {P1, P2, . . . , Pp}.
• A list of non-heavy cells assigned to partition Pi is denoted as Ci.
• The number of non-heavy cells of Ci is denoted as |Ci|.
• The total workload of partition Pi is defined by Wi = Σcl∈Ci w(cl).

We use the assign algorithm to distribute the non-heavy cells to the partitions. First,
the non-heavy cells in C are sorted in descending order of workload w(ci). For each non-
heavy cell ci ∈ C, we choose partition Pi so that Pi has the minimum number of non-heavy
cells and minimum total workload. The algorithm is shown in Algorithm 4.
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Algorithm 4 Assignment algorithm
Input: C = {c1, c2, . . . , c|C|}, list of non-heavy cells sorted in descending order of w(c)
Output: {C1, C2, . . . , Cp}, partitions of the non-heavy cells

1: for each cell ci ∈ C do
2: Pi = getNextPartition()
3: Ci = Ci ∪ {ci}
4: end for
5: return C1, C2, . . . , Cp

getNextPartition
Output: Pid, the partition selected for the non-heavy cells

1: minCell = ∞, minLoad = ∞, id = 0
2: for each partition Pi do
3: if minCell > |Ci| then
4: minCell = |Ci|
5: end if
6: end for
7: for each partition Pi do
8: if minCell = |Ci| and minLoad < Wi then
9: id = i

10: minLoad = Wi
11: end if
12: end for
13: return Pid

For example, we have a list of non-heavy cells sorted in descending order of workload,
C = {(R1, L1, 4), (R2, L2, 4), (R2, L2, 4), (R2, L2, 4), (R4, L4, 4), (R4, L3, 0)}, and four parti-
tions P = {P0, P1, P2, P3}. The three cells (R2, L2, 4) are because the original cell is chopped
into three cells. Initializing with Ci = {} and Wi = 0, we have:

• P1 = {(R1, L1, 4)}, |C1| = 1, W1 = 4
• P2 = {(R2, L2, 4)}, |C2| = 1, W2 = 4
• P3 = {(R2, L2, 4)}, |C3| = 1, W3 = 4
• P4 = {(R2, L2, 4)}, |C4| = 1, W4 = 4
• P1 = {(R1, L1, 4), (R4, L4, 4)}, |C1| = 2, W1 = 8
• P2 = {(R2, L2, 4), (R4, L3, 0)}, |C2| = 2, W2 = 4

The result of assigning the non-heavy cells into partitions is shown in Figure 11.

3.4.4. Multi-Dimensional Range Partition

The MDRP algorithm is shown in Algorithm 5. The “fragment–replicate” technique is
used for the join operation. Assume that a mapper receives a record r3 with the join key
r3.k = 2 of dataset R; then, this record will belong to a cell (R2, L2). However, this cell
is divided into three partitions P2, P3, and P4, since (R2, L2, 4) ∈ C2, (R2, L2, 4) ∈ C3, and
(R2, L2, 4) ∈ C4. So, we should use a fragment or a replicate for record r3. By counting the
number of records in R2, L2 with join key k = 2, if the number of records of for dataset R is
greater than that for dataset L, then r3 will be fragmented (randomly selected partition),
and the records in dataset L will be replicated (replicated to both partitions).
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Algorithm 5 Multi-dimensional range partition algorithm
Input: an input tuple r ∈ R
Input: a partitioning matrix M
Begin

1: listCell = M.listCell(r.k)
2: for each cell c in listCell do
3: P = c.listPartition()
4: if M.fragment(r.k) == true then
5: i = random() % |P|
6: Output (P[i], r)
7: else
8: for i = 1 to |P| do
9: Output (P[i], r)

10: end for
11: end if
12: end for
End.

4. Evaluation
4.1. Cost Model

Join computation cost is the total cost of several stages, including pre-processing, data
reading, map processing, communication between nodes, reduction processing, and data
storage. The parameters used in the cost model are shown in Table 1. The general cost
model for the join computation of two datasets is described in Equation (4).

C(J) = Cpre + Cread + Cmap + Ctran + Creduce + Cwrite (4)

where:

• Cpre = 0 (there is no preprocessing task of the three algorithms)
• Cread = (|R|+ |L|) · cr
• Cmap = (|R|+ |L|) · cm
• Ctran = |D| · ct
• Creduce = MAX(Creduce(1), Creduce(2), . . . , Creduce(n))

• Cwrite = Cwrite(1) + Cwrite(2) + · · ·+ Cwrite(n)

Some values (|D|, Creduce, and Cwrite) are different in the three algorithms.

Table 1. Parameters used in the cost model.

Parameters Meaning

n Number of partitions
cr Cost of reading/writing distributed data (units of time)
cm Cost of processing map in memory
cd Cost of processing reduction in memory
ct Cost of communication between nodes
αi Ratio of skew-join key i
k Number of skew-join keys
|R| Number of records in dataset R
|L| Number of records in dataset L
|D| Number of records in intermediate dataset D
|R′| Number of records in R after the mapping process
|L′| Number of records in L after the mapping process
|R′′| Number of skew records in R after the mapping process
|L′′| Number of skew records in L after the mapping process
|O| Number of join result records in each partition
|O′| Number of join result records of |R′′|+ |L′′|
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Table 1. Cont.

Parameters Meaning

C(J) Total cost of join computation (units of time)
Cpre Cost of the preprocessing task
Cread Cost of data reading
Cmap Cost of processing the map
Ctran Cost of communication between nodes
Creduce Cost of processing the reduction
Cwrite Cost of data writing
Creduce(i) Cost of processing in reducer i
Cwrite(i) Cost of reading/writing data in reducer i

4.1.1. Hash-Based Partition

In this algorithm, records with the same key will come to the same reducer due to the
hash function. Therefore, in this study, the skewed data are the records with a join key of 1,
which will be processed by reducer 1.

• |D| = |R|+ |L|
• Creduce(1) = ( |R

′ |
n + |L′ |

n ).cd + (|R′′|+ |L′′|) · cd

• Creduce(2) = · · · = Creduce(n) = ( |R
′ |

n + |L′ |
n ) · cd

• ⇒ Creduce = ( |R
′ |

n + |L′ |
n ) · cd + (|R′′|+ |L′′|) · cd (*)

• ⇒ Cwrite = ( |O|n + |O′|).cr + (n− 1)( |O|n ) · cr

4.1.2. Range-Based Partition

A range-based partition processes skewed data by randomly distributing skew records
to the reducers and duplicating records with the same key in the remaining dataset.

• |D| = |R|+ |L| − Σk
i=1(|L|+ αi) + Σk

i=1(|L| · α2
i · n)

• Creduce(1) = Creduce(2) = · · · = Creduce(n)

• ⇒ Creduce ≈ (
|R′ |+|L′ |−Σk

i=1(|L|+αi)+Σk
i=1(|L|·α

2
i ·n)

n ) · cd (**)

• ⇒ Cwrite = n · ( |O|n ) · cr = |O| · cr

The value of αi · n is equal to the number of segments with duplicate keys.

• If α = 0, then |D| = |R|+ |L|;
• If α = 10% and α = 20%, the amount of intermediate data |D| generated is negligible;
• If α = 50%, the intermediate data generated are significant, but the hash-based

partition algorithm cannot be performed because the nodes processing the skewed
data will be overloaded or even stop working. That is, in this case, a range-based
partition is more efficient than a hash-based partition. Therefore, we only need
to consider the cases of moderately skewed ratios and to compare the costs of the
algorithms based on the performance of the reducers.

4.1.3. Multi-Dimensional Range Partition

A multi-dimensional range partition tends to divide data evenly, including the skew
records in the datasets for the reducers.

• We compared the three algorithms based on the performance of the reducers as follows:
|D| ≈ |R|+ |L|

• Creduce(1) = Creduce(2) = · · · = Creduce(n)

• ⇒ Creduce ≈ ( |R
′ |+|L′ |

n ) · cd (***)

• Cwrite = n · ( |O|n ) · cr = |O| · cr
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4.1.4. Analysis

Since skew-join records occur often in reducer 1 and other skew keys are insignificant,
reducer 1 determines the execution time of the algorithms. We compared the costs of join
computation between the three algorithms.

• From (*) and (**),
⇒ Creduce(HBP) > Creduce(RBP).

• From (*) and (***),
⇒ Creduce(HBP) > Creduce(MDRP).

• From (**) and (***),
⇒ Creduce(RBP) > Creduce(MDRP).

Therefore, we have Equation (5).

C(J)HBP > C(J)RBP > C(J)MDRP (5)

A range-based partition performs join operations with skewed data more efficiently than
a hash-based partition thanks to the fragment–replicate mechanism. A multi-dimensional
range partition is more efficient than a range-based partition thanks to the thorough skew
processing of both datasets.

4.2. Experiments
4.2.1. Cluster Description

We conducted experiments on a computer cluster with 14 nodes (one master and
13 slaves) at the Mobile Network and Big Data Laboratory of the College of Information
and Communication Technology, Can Tho University. The configuration of each computer
was with four Intel Core i5 3.2 GHz CPUs, 4 GB of RAM, 500 GB of HDD, and the Ubuntu
operating system 14.04 LTS with 64 bits. The following versions of applications were used:
Java 1.8, Hadoop 2.7.1, and Spark 2.0.

4.2.2. Data Description

We generated experimental datasets with scalar skew distribution. The term “scalar
skew” was introduced by Christopher Walton and his colleagues [19] when developing
a taxonomy of skew effects. Scalar skew distribution was later used by other researchers
for skew handling [6,23–25]. In this work, we generated six datasets, in which each had
100,000,000 records. The idea of scalar skew distribution is that, in 100,000,000 records, the
skew-join key with a value of 1 appears in some fixed number of records. The remaining
records contain randomly appearing join key values from 2 to 100,000,000. This will help
us to easily understand which experiments are performed while keeping the output size
constant over varying amounts of skew. The format of the datasets was plain text consisting
of three fields separated by commas, the primary key, the join key, and other text (pk, jk,
others). The six created datasets had different skew ratios for the experiments. The details
of the datasets are presented in Table 2.

Table 2. Dataset description.

Dataset Number of Records Number of Skewed Records Skew Ratio

DSkew100 100,000,000 100 0.000001
DSkew1K 100,000,000 1000 0.00001
DSkew10K 100,000,000 10,000 0.0001
DSkew100K 100,000,000 100,000 0.001
DSkew1M 100,000,000 1,000,000 0.01
DSkew10M 100,000,000 10,000,000 0.1
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4.2.3. Evaluation Method

We used three algorithms—hash-based partition, range-based partition, and multi-
dimensional range partition—in the three test cases. In each case of running the algorithms,
we ran them three times to get the average execution time and evaluated the three al-
gorithms based on their execution times. The join selectivity was the number of output
records divided by the number of records in the cross product of the input relations. In this
work, we kept the output size of 109 for all three test cases.

• Test 1 (high skew ratio): DSkew100 ./ DSkew10M = 100 ∗ 10,000,000 = 109

• Test 2 (average skew ratio): DSkew1K ./ DSkew1M = 1000 ∗ 1,000,000 = 109

• Test 3 (low skew ratio): DSkew10K ./ DSkew100K = 10,000 ∗ 100,000 = 109

JoinSelectivity =
|(R ./c L)|
|(RxL)| =

|(R ./c L)|
(|R| ∗ |L|) =

109

1016 (6)

4.2.4. Analysis of the Results

We examined the performance of the algorithms in the join tests with different ratios
of skewed join keys. The differences in the execution times of the join tests are shown
in Figure 12. In the first join test with a high skew ratio (Test 1), the multi-dimensional
range partition performed better than the others. The hash-based partition algorithm was
the worst, as it was 1.59 times slower than the multi-dimensional range partition and
1.44 times slower than the range-based partition. In the second join test (Test 2), the multi-
dimensional range partition was slightly better than the other two algorithms. Nevertheless,
the performance of the three algorithms was almost equivalent in the case of the average
skew ratio. In the last join test with a low skew ratio (Test 3), the hash-based partition
gave a better performance than the others. The multi-dimensional range partition was the
worst in this case, as it was 1.7 times slower than the hash-based partition. The range-based
partition appeared to have an average performance in comparison with the other two
algorithms in the three test cases. Regarding Formula (5), the experimental results were
appropriate for the cost models presented above.

Figure 12. Execution time of the three algorithms (seconds).

Considering the advantages and disadvantages of the algorithms, with the hash-based
partition, the advantage of this algorithm is that it is easy to implement and commonly
used in join computation. However, it is not ideal for handling join operations with a high
skew ratio. Tuples with the same join keys are hashed to the same reducers, leading to
seriously imbalanced tasks. As can be seen, datasets with more skew-join keys had a worse
performance; on the contrary, datasets with fewer skew-join keys had a better performance.

In the case of the range-based partition, the tuples with more skew data were selected
for range determination. It is quite easy to determine sub-ranges with a small cost with this
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method; thus, it has been widely used to deal with data-skew problems. This method is
more efficient than the hash-based partition algorithm, but it is not a good choice in the case
of datasets with a low skew ratio. A limitation of this algorithm is that the determination of
the sub-ranges does not take into account the size of the join results; thus, a joining product
skew can arise.

The multi-dimensional range partition overcomes the limitation of the range-based
partition by using a partitioning matrix instead of a split vector. The cross products of the
sub-ranges represented by cells in the partitioning matrix can be estimated to avoid the
oversizing of the join results. With this algorithm, the greater skew ratio of the datasets, the
more the performance is improved. Conversely, datasets with fewer skew-join keys incur
a higher cost of creating a partitioning matrix, recalculating heavy cells in the partition
matrix, and assigning cells to reducers.

5. Conclusions

Implementations of MapReduce are used to perform many operations on very large
datasets, including join operations. It has become a prominent parallel and distributed
programming model for efficiently handling massive datasets. The major obstacle of the
model for join processing is data skew. If the data are significantly skewed, with some
common join keys appearing to have a greater frequency than the others, the reduction
tasks of these join keys will finish later than those of the others. Thus, any benefits from
parallelism become meaningless. There are some algorithms that have been proposed to
solve the problem of skew joins. Several surveys on solutions for skew joins have been
made, but an adequate and systematic comparison in the Spark environment has still not
been presented. Thus, this work was designed to provide a comprehensive comparison
of several skew-join algorithms with mathematical models and experiments. We fully
evaluated the hash-based partition, range-based partition, and multi-dimensional range
partition algorithms in MapReduce on the Spark framework. We provided an analysis
of the advantages and disadvantages of each algorithm. The cost model built was an
important theoretical basis for the evaluation and comparison of the skew-join algorithms.
Lastly, the experiments were conducted in Spark, the new generation of Big Data processing.
Through the cost models and experimental results, this research presented a comparison
of the three algorithms. This is a highly scientific contribution, since join operations are
commonly used in Big Data environments. In the scope of this work, we only provided
an evaluation of the three algorithms. It is necessary to conduct an investigation and
evaluation of more skew-join algorithms to have an overview of the problem of skewed
data processing. In addition, Apache Spark 3 was introduced to dynamically handle skew
in sort–merge join operations by splitting and replicating skewed partitions. It would be
interesting to compare the data-skew handling provided by Spark and the user-defined
data-skew handling with other algorithms.
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Abbreviations
The following abbreviations are used in this manuscript:

RDD Resilient Distributed Dataset
HDFS Hadoop Distributed File System
HBP Hash-Based Partition
RBP Range-Based Partition
MDRP Multi-Dimensional Range Partition
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