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Featured Application: This paper introduces factual relation information into Transformer-based
neural machine translation to improve translation quality.

Abstract: Transformer-based neural machine translation (NMT) has achieved state-of-the-art perfor-
mance in the NMT paradigm. This method assumes that the model can automatically learn linguistic
knowledge (e.g., grammar and syntax) from the parallel corpus via an attention network. However,
the attention network cannot capture the deep internal structure of a sentence. Therefore, it is natural
to introduce some prior knowledge to guide the model. In this paper, factual relation information is
introduced into NMT as prior knowledge, and a novel approach named Factual Relation Augmented
(FRA) is proposed to guide the decoder in Transformer-based NMT. In the encoding procedure, a
factual relation mask matrix is constructed to generate the factual relation representation for the
source sentence, while in the decoding procedure an effective method is proposed to incorporate
the factual relation representation and the original representation of the source sentence into the
decoder. Positive results obtained in several different translation tasks indicate the effectiveness of
the proposed approach.

Keywords: factual relation; augmented; neural machine translation; prior knowledge

1. Introduction

In recent years, neural network-based models have consistently delivered better-
quality translations than those generated by phrase-based systems. Transformer-based [1]
neural machine translation has achieved state-of-the-art performance in neural machine
translation, and it outperforms recurrent neural network (RNN)-based models [2–4]. How-
ever, recent work [5–7] has shown that the Transformer may not learn the linguistic infor-
mation to the greatest extent possible due to the characteristics of the model, especially
in low-resource scenarios. On the other hand, prior knowledge has been proved to be an
effective way to improve the quality of statistical machine translation. Therefore, this issue
has become a hot spot in the field of NMT research, with existing linguistic knowledge
being utilized to alleviate the inherent difficulties faced by NMT.

In addition, Sennrich [8] has proved that linguistic information is beneficial to neural
translation models. Many researchers have focused on incorporating prior knowledge
into neural machine translation to improve translation quality, such as character or word
structure [9–11], phrase structure [12,13], syntactic structure [14–16], and so on. However,
previous methods based on linearized or convolutional neural networks often face difficul-
ties in choosing suitable sequences to balance training efficiency and sufficient syntactic
information [17–19]. Moreover, most syntax-aware NMT models are limited to a qualitative
use of syntactic information, while using syntax distance [20] to quantify syntactic rela-
tionships coarsely will bring quantization noise into NMT. Different from previous work,
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this paper proposes a Factual Relation Augmented method which avoids the noise caused
by the quantization of syntactic information to improve Transformer-based NMT. Factual
relations in a sentence depict the relationship of several different entities, which can be
regarded as the core meaning of the sentence.

In fact, factual relation information is the target output of the information extrac-
tion [21] model, which can derive entity, relationship, event, and other factual information
from a given sentence, and the result can be depicted by multiple relational tuples. In
other words, the factual information in relation tuples describes the semantic relationship
between two or more entities in a sentence. The factual relation tuples are given for an
example sentence in Figure 1.

Figure 1. Factual relation tuples extracted from a sentence.

From the perspective of the NMT model, the generation of the current target word
only focuses on target words that have been generated and all source words. Source words
make the same contribution to the model regardless of their importance. In other words,
the model lacks a mechanism to guarantee that it can pay more attention to essential words
in the source sentence. Chen [22] proposed an approach which makes the model pay
more attention to content words than functional words. Inspired by this, we improve
the NMT model by paying more attention to the factual relation information in a source
sentence which captures the core words more than the content words. The method is
simple yet effective, improving translation quality with few additional parameters and less
computational overhead. The main contributions of this paper are as follows:

1. To our best knowledge, it is the first attempt at using factual relation information to
improve Transformer-based neural machine translation.

2. This paper introduces an effective method (Factual Relation Augmented, abbreviated
as FRA) for the NMT model which utilizes factual relation information in source
sentences to improve the translation quality of the NMT model.

3. This FAR method can improve the translation quality of the Transformer-based model,
especially for complex sentences (e.g., complex clause sentences).

The main steps of FRA are as follows: First, the factual relation tuples are extracted
by Stanford CoreNLP [23] from the source sentence in a parallel corpus. Secondly, a
factual relation mask matrix is constructed by factual relation tuples. Next, the factual
relation representation is generated in the encoding procedure. Finally, when predicting
the translation, factual relation-decoder attention is introduced to guide the decoder.

This paper is structured as follows: Section 2 introduces Transformer-based neural
machine translation. Section 3 describes the Factual Relation Augmented approach (FRA).
Section 4 gives an overview of the experiments and results, and Section 5 introduces related
work. Section 6 concludes and offers prospects for future work.
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2. Transformer-Based Neural Machine Translation

In Transformer-based NMT [1], the encoder is composed of a stack of N identical
layers, and each layer is composed of a multi-headed self-attention network (ATT) and a
fully connected feed-forward network (FFN). A residual connection [24] is applied between
the sub-layers, and layer normalization (LayNorm) [25] is performed. Formally, the i-th
identical layer of this stack is as follows:

H̃i = LayNorm
(

ATTi−1
(

Qi−1, Ki−1, Vi−1
)
+ Hi−1

)
(1)

Ci = LayNorm
(

FFNi
(

H̃i
)
+ Hi

)
(2)

where Qi−1, Ki−1 and Vi−1 represent the query, key and value vectors transformed from
the (i − 1)-th layer. Similar to the encoder, the decoder shares a similar architecture, having
an additional encoder–decoder attention block sandwiched between the self-attention and
FFN blocks.

S̃i
t = LayNorm

(
ATTi

d

(
Qi−1

t , Ki−1
t , Vi−1

t

)
+ Si−1

t

)
(3)

Ci
t = LayNorm

(
ATTi

c

(
S̃i

t, KL
e , KVL

e

)
+ S̃i

t

)
(4)

Si
t = LayNorm

(
FFNi

d

(
Ci

t

)
+ Ci

t

)
(5)

where Qi−1
t , Ki−1

t and Vi−1
t are transformed from the (i − 1)-th layer Si−1 into time-step t.

KL and VL are transformed from the L-th layer of the encoder. The top layer of the decoder
Si

t is used to predict the next target word:

P(yi|y<i) ∝ exp
(

Wotan h
(

WwSi
t

))
(6)

where Wo and Ww are weight matrices which can be learned during the training procedure.

3. Factual Relation Augmented Approach

In the open information extraction task, factual relation tuples are extracted from
structured and unstructured data. In this paper, this information is extracted from source
sentences in the parallel corpus by Stanford CoreNLP. In order to design a neural machine
translation model that is efficient in training and exploits factual relation tuples while pro-
ducing high-quality translations, we based our model on the Transformer architecture [1].

The architecture of the Factual Relation Augmented method is shown in Figure 2. First
of all, a factual relation mask matrix is conducted by the factual relation tuples extracted by
Stanford CoreNLP. Next, the encoder utilizes the factual relation mask matrix to generate
a factual relation representation which can be seen as an enhanced representation of
the original representation in the encoding procedure. Finally, both the factual relation
representation and the original representation of the source sentence are fused into the
integrated layer, and four methods are proposed for the integrated layer.
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Figure 2. The architecture of the Factual Relation Augmented Transformer.

3.1. Generating the Factual Relation Mask Matrix (FRMM)

When the source-side factual relation tuples are generated by Stanford CoreNLP, the
challenge is how to incorporate the factual relation tuples into the Transformer-based
NMT. Inspired by masked multi-headed attention, this paper introduces a factual relation
perception module in the encoder. Specifically, a factual relation mask matrix (FRMM) is
constructed by the factual relation tuples extracted by Stanford CoreNLP, and the generation
steps of the FRMM are as follows:

Step 1: Obtain all the factual relation tuples set from the source sentence which
contains words;

Step 2: Construct a matrix Ms, which has l rows and l columns;
Step 3: For each word in a factual relation tuple, retain the relevant part (value is set

as one) and discard the irrelevant part (value is set as zero) in Ms.
A factual relation mask matrix derived from the example in Figure 1 is shown in

Figure 3a. Different from the attention matrix in Figure 3b, which is derived by the self-
attention mechanism in the Transformer, the factual relation mask only focuses on the
words which exist in the factual relation tuples, while the attention matrix pays attention
to all words in this sentence. In the attention matrix, the darker the color in the matrix,
the higher the correlation is, and the correlation is represented by a value which ranges
from 0 to 1.
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Figure 3. An example of factual relation mask matrix (a) in left and attention matrix (b) in right.

3.2. Factual Relation Augmented Encoder

After the FRMM is ready, it works on the attention weight matrix MA, which has l
rows and l columns, and then a new factual relation attention matrix M′ is generated:

M′ = Ms �MA (7)

where � denotes a point-wise multiplication operation. M′ can be seen as an attention
matrix which incorporates factual relation information from the source sentence into the
encoder for the Transformer. The formula is as follows:

Attention(Q, K, V) = so f tmax

(
FR
(
QKT)
√

d

)
V (8)

where FR denotes the factual relation mask operation. The output of the encoder consists of
two parts, the representation of the source sentence h = h1, h2 . . . hn and the representation
of the factual relation of the source sentence h′ = h′1, h′2 . . . h′n. In practice, some details
should be noticed. First of all, multiple factual relation tuples may be extracted from one
sentence. Naturally, an entity may exist in different factual relation tuples; for instance,
in the example in Figure 1, the entity “she” exists multiple times in three factual relation
tuples. However, the proposed method only considers whether the word appears when
generating the factual relation mask matrix and does not consider the number of times it
appears. Second, for the calculation of the factual relation representation embedding h′, no
additional parameters are introduced during the training procedure for the Transformer.
All parameters in the encoder are shared with the original encoder in the Transformer.

3.3. Factual Relation Augmented Decoder

The factual relation decoder has a similar structure to the decoder in the Transformer,
except for the introduction of an integrated layer between the masked multi-headed atten-
tion mechanism and the feed-forward network layers. The integrated layer consists of two
parts: FR-Dec attention and Enc–Dec attention, and the structure of the integrated layer
is shown in Figure 2. The factual relation-decoding interaction attention is introduced to
guide the decoder. In other words, the decoder utilizes the representation of factual relation
augmented in the source sentence to optimize the generation of the target translation dur-
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ing the decoding procedure. Give the source sentence and the target translation sentence
t = t1, t2 . . . tn, the factual relation augmented decoding procedure can be summarized
as follows:

S = Attentionsel f

(
EtWQ, EtWK, EtWV

)
(9)

Ŝ = Attentioned(h, h, S) (10)

S̃ = Attention f r
(
h′, h′, S

)
(11)

where Et denotes the word embedding of the target input, Attentionsel f denotes self-
attention, Attentioned denotes encoding–decoding attention and Attention f r denotes fac-
tual relation-decoding attention. The challenge we encounter is how to incorporate S̃ and
Ŝ in the integrated layer. To be specific, four interpolation approaches are proposed to
address the issue.

Linear Interpolation. S̃ can be seen as an enhancement representation derived from
prior knowledge for Ŝ. In this manner, the interpolation can be calculated as follows:

H = Ŝ + λ ∗ S̃ (12)

where λ is a hyper-parameter whose value is [0, 1]. Note that no additional parameters are
introduced during the training procedure in this method.

Gate Learning. Compared with linear interpolation, we propose a general method
which can adjust the hyper-parameter dynamically during the training procedure rather
than in empirical settings.

g = sigmoid
(

WŜ

(
Ŝ; S̃
)
+ bŜ

)
(13)

H = g ∗ Ŝ + (1− g) ∗ S̃ (14)

where
(

Ŝ; S̃
)

denotes the operation of concatenation, and WŜ and bŜ are the introduced
parameters which can be learned during the training procedure.

Concat Gate Learning. Inspired by LSTMM [26], we propose an output gate and a
forget gate to learn the final representation of the source context. It can be summarized as:

f = sigmoid
(

W f

(
Ŝ; S̃
)
+ b f

)
(15)

o = Wo

(
Ŝ; S̃
)
+ bo (16)

H = o ∗ f + W f

(
Ŝ; S̃
)
∗ (1− f ) (17)

where W f and Wo are weight matrixes, b f and bo are biases, and all parameters can be
learned during the training procedure.

Linear Transformation Linear Transformation can be described as follows:

H = WŜ

(
Ŝ; S̃
)
+ bŜ (18)

where WŜ and bŜ can be learned during the training procedure. Note that H, Ŝ and S̃ have
the same dimensions.

4. Experiment

In order to demonstrate the effectiveness of the approach proposed in this paper,
several experiments were carried out for different translation tasks. The proposed models
were implemented using the fairseq toolkit [27]. All models were run on a machine with
GeForce GTX 3080.
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4.1. Datasets and Settings

Datasets The proposed methods were evaluated on IWSLT15 English–Vietnamese
(En–Vi), WMT18 English–Turkish (En–Tr) and IWSLT14 German–English (De–En). For
IWSLT15 En–Vi, we used the pre-processed datasets provided by Luong [28] and used
tst2012 as the dev set and test on tst2013. For NC11 (News Commentary v11) En–De, De–En
and WMT18 En–Tr, the settings of the experiment were consistent with [29]. For IWSLT14
De–En, we followed the pre-processing steps described in [30]. The number of sentences in
each dataset is shown in Table 1.

Table 1. Number of sentences in each dataset.

Corpus IWSLT14 IWSLT15 WMT18

Training Set 160,239 133,158 207,678
Valid Set 7283 1553 3000
Test Set 6750 1268 3007

Settings The byte pair encoding algorithm [31] was applied to encode all sentences to
limit the size of the vocabulary to 40 K. In order to alleviate the problem of large vocabulary
and sparse vocabulary, this paper adopts the factual relation to the sub-words, and it
defines the relationship between sub-words as related when the corresponding original
word is related. In terms of the parameters for the Transformer, we choose the Adam
optimizer, with β1 = 0.9, β1 = 0.98, ε = 10−9 and the learning rates setting strategy,
which are all the same as [1]; the configurations were identical to those in [32]. We used a
beam search decoder for all translation tasks with a beam width of 5. For all translation
tasks, we used the checkpoint that had the best valid performance on the valid set and
the case-insensitive 4-g BLEU (Bilingual Evaluation Understudy) score as the primary
evaluation metric, adopting the script multi-bleu.perl in the Mose toolkit.

This paper compares the proposed approach with some related work, e.g., the Mixed
Enc and Multi-Task systems proposed by Currey [33], PASCAL [29] (Parent-Scaled Self-
Attention) proposed by Bugliarello and Okazaki, parameter optimization for Multi-Task,
incorporating the syntactic information as label-dependent into the Transformer encoder
word-embedding matrix proposed by Sennrich and Haddow [8], and LISA (combining
self-attention with syntactic parsing), proposed by Strubell [34].

In addition, this paper compares some other machine translation methods on the
IWSLT task, e.g., ELMo (Embeddings from Language Models), CVT (Cross-View Train-
ing) [32], SAWR (Syntax-Aware Word Representations) [35] and Dynamic Conv [30]; Tied-
Transform [36] and Macaron [37]; C-MLM (Conditional-Masked Language Modeling) [38]
and the BERT (Bidirectional Encoder Representations from Transformers)-fused model [39].

4.2. Main Results and Analysis
4.2.1. Performance on Different Datasets

As shown in Table 2, incorporating the dependent labels (+S&H) and the multi-task
approach (+Multi-Task) in the word-embedding representation did not issue in significant
improvements to the baseline model. However, the methods (+LISA and +PASCAL)
utilized the syntactic information to improve the attention and showed better results. This
paper utilizes the factual relation tuples that can be seen as prior knowledge to improve
the NMT model. Compared with the strong baseline, the experiments showed surprising
results and achieved BLEU improvements of +1.6, +0.91, and +1.5 on WMT18 (En–Tr) and
NC11 (En–De and De–En) translation tasks, respectively. The reason for this was that the
factual relation information includes the core meaning of the sentence and it is integrated
into the decoder during the decoding procedure directly. With the help of this valuable
prior knowledge, the decoder generates better translation results.
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Table 2. Performance of different machine translation approaches on various datasets.

Model

WMT18 NC11

Model

IWSLT14 (De–En) IWSLT15 (En–Vi)

En–Tr
(Test Set)

En–De
(Test Set)

De–En
(Test Set)

Valid
Set Test Set Valid

(Test 2012)
Test

(Test 2013)

/ / / / ELMo [32] / / / 29.30

/ / / / SWAR [35] / / / 29.09

Mixed Enc [33] 9.60 / / CVT [32] / / / 29.60

Multi-Task [33] 10.60 / / C-MLM [38] 36.93 35.63 27.85 31.51

Transformer [1] 13.13 25.00 26.60 Transformer [1] 35.27 34.41 27.45 30.76

+Multi-Task [8] 14.00 24.80 26.70 Tied-Transform [36] / 35.53 / /

+S&H [8] 13.00 25.50 26.80 Dynamic Conv [30] / 35.20 / /

+LISA [24] 13.60 25.30 27.10 Macaron [37] / 35.40 / /

+PASCAL [29] 14.00 25.90 27.40 BERT-fused [39] / 36.11 / /

Our Approach 14. 73↑ 25.91↑ 28.10↑ Our Approach 36.89↑ 36.10 27.90↑ 31.53↑

In terms of the IWSLT translation task, the approach proposed in this paper also
performed well, achieving competitive results compared to other machine translation
models that are well designed. Tied-Transformer conducts a slight model by sharing the
encoder, while it takes a long time for the model to converge. In contrast, the FRA approach
proposed in this paper achieved comparable performance without additional training time.
For Macaron, adding a feed-forward network before the attention of each layer resulted
in a large number of parameters being introduced for this model, increasing the cost of
calculation. In contrast, FRA showed better performance while only a few parameters were
introduced, but it achieved the best BLEU score of 31.53 on the IWSLT15 En–Vi translation
task. Compared with FRA proposed in this paper, C-MLM and BERT-fused incorporated
the pre-training language model (BERT) into the Transformer, resulting in a long period of
training being required for the model.

4.2.2. Evaluating Hyper-Parameters for Linear Interpolation

For the Linear Interpolation method, we studied the effect on WMT18 (En–Tr) and
NC11 (En–De and De–En) by varying the value of λ. The results of three test sets with
different hyper-parameter values for λ are shown in Figure 4. When λ increased from 0 to
0.4, the BLEU scores improved by +1.23, +0.57 and 1.11 over the baseline model, respectively.
This means that the proposed method is effective for the NMT model. Subsequently, larger
values of λ reduced the BLEU scores, which indicated that excessive biased factual relation
information may be weak when translating the target sentence.

Figure 4. BLEU scores of the Linear Interpolation method on the WMT18 (EN-Tr), NC11 (En–De) and
NC11 (De–En) test sets with different values of λ. The dashed line denotes the result of the baseline.
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4.2.3. Comparison of Different Interpolation Methods

The linear interpolation method is effective, but whether this method is the best cannot
be guaranteed. Therefore, four methods were proposed to incorporate factual relation-
decoding interaction attention and encoder–decoder attention into the integrated layer. As
shown in Table 3, CGL damaged the model’s performance both in the valid set and test
set, but LI, GL and LT improved translation quality. LT showed outstanding performance
compared to the other methods. A possible reason for this is as follows: the LI method
improved the blue score slightly. The simple interpolation method may have resulted
in losing the diversity of the source sentence representation and did not improve the
model obviously. CGL may not distinguish the representation of concatenation between
two representations, and it does not learn which parts of the representation need to be
activated and which parts need to remain unchanged. In contrast, GL and LT succeeded
in incorporating factual relation information into the integrated layer and achieved the
goal of guiding the decoder by means of factual relation. In short, these two methods
optimized the representation of the model and improved translation quality. Therefore, LT
was selected to perform other experiments in this paper.

Table 3. BLEU values for different interpolation methods on the IWSLT15 (En–Vi) task.

Method Valid Set
(tst2012)

Test Set
(tst2013)

1 Transformer (baseline) 27.45 30.76
2 Linear Interpolation (LI) 27.49 30.79
3 Gate Learning (GL) 27.13↑ 31.34↑

4 Concat Gate Learning (CGL) 27.19 30.43
5 Linear Transformation (LT) 27.91↑ 31.53↑

6 Compare Fusion 27.57 31.12

4.2.4. Performance by Sentence Length

As shown in Figure 5, the FRA proposed in this paper is more useful when translating
long sentences; it obtained more than +1.5 BLEU points when translating long sentences in
all the experiments and achieved +2.51 BLEU points on the En–Tr pair, although, admittedly,
only a few sentences (1.9% 3.2%) in the evaluation datasets were long. This phenomenon
is consistent with our expectations. Generally speaking, the structure of long sentences
is more complicated, and factual relation information can guide the model so that it pays
more attention to the important clues about sentence relations between several entities,
thereby improving performance.

Figure 5. Percentage data (above) and ∆BLEU scores (below) for the Transformer.
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4.2.5. Effect of Factual Relation Augmented

Although the proposed method shows good performance, it cannot be proved that
the improvement is contributed by factual relation information. A possible candidate is
the Linear Transformation operation in the decoder. To address this issue, we replaced
the factual relation representation with the original representation of the source sentence
(let h′ = h in Figure 2) and tested the performance of the proposed method. The experi-
mental result is shown in Table 3 (line 6: Compare Fusion). Linear Transformation shows
better performance than baseline and poorer performance than the Factual Relation Aug-
mented method. There is a large gap between the two methods. Consequently, it has been
demonstrated that the Factual Relation Augmented method is effective for the NMT model.

4.2.6. Performance on Different Layers

Previous studies have pointed out that different features can be captured by different
layers [40]. As a result, some experiments were carried out on the IWSLT15 (En–Vi)
translation task to test the performance on different layers, and the results are shown in
Table 4. Note that 1~6 denotes incorporating factual relation information into all layers in
the decoder.

Some details should be noticed. Compared with the baseline, all methods showed
improved performance to different degrees. The best performance for all methods was
achieved by incorporating factual relation knowledge into the sixth layer (top layer). The
improvement in BLEU score achieved was +0.77, which demonstrates the effectiveness
of the proposed method. In addition, the integration of the top layer is of greater benefit
more than that of the bottom layer. This is mainly because knowledge of factual relations
can provide more context, which can be regarded as an effective enhancement to the
representation of the source language. This is consistent with the discovery that the lower
layer is biased toward paying attention to semantics, while the higher layer is biased toward
paying attention to contextual information [40].

Table 4. Performance of different integration layers on the IWSLT15 En–Vi task.

Layer Tst2013 Layer Tst2013

Baseline 30.76 1~6 31.02
1 (bottom) 31.02 1~2 31.13

2 31.22 1~3 31.00
3 31.17 1~4 31.07
4 31.29 1~5 31.08
5 31.51 4~6 31.40

6 (upper) 31.53↑ 5~6 31.47

The effect of single-layer interpolation is more obvious than that of multi-layer inter-
polation. With the increase in the layers from bottom to top, the performance of the model
does not change obviously, but there is a decreasing contrast. The phenomenon shows that
the integration of multi-layers cannot improve the performance of the model. However,
this introduces more parameters, which leads to redundancy in the model, and this is not
conducive to learning the information contained in training data. Therefore, in the other
experiments in this paper, the top layer (the sixth) was selected to incorporate the factual
relation knowledge into the integrated layer. In contrast, the other layers in the decoder
were consistent with the original decoder in the Transformer.

4.2.7. Analysis and Thinking

The Transformer is based on a standard end-to-end structure and only relies on the
parallel corpus. It assumes that all the information can be learned by the self-attention
mechanism automatically. From the perspective of self-attention, we hold that self-attention
can be seen as wide and soft attention, which ensures the generalization ability of the
model. On this bias, the explicit addition of factual relation information can be regarded as
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restricting and hard attention to focus on the sentence itself. The experiments show that
integrating factual relations and the original soft attention optimizes the representation of
sentences without compromising the model’s generalization.

5. Related Work

The incorporation of prior knowledge into the NMT model is a hot topic in the
field of neural machine translation research. Chatterjee [41] introduced the possibility to
guide the translation procedure, with constraints provided as XML annotations of the
source words with the corresponding translations. For RNN-based models, Sennrich
and Haddow [8] utilized linguistic information (lemmas, morphological features, POS
tags, syntactic dependency labels) to enrich the embedding layer of the encoder in the
attentional encoder–decoder architecture. Cohn [42] incorporated structural alignment bias
information (absolute positional bias, fertility, relative positions bias, alignment consistency)
into the attention model. Eriguchi [14] proposed an end-to-end syntactic NMT model to
explicitly take the syntactic structure into consideration in a tree-based encoder. Chen [20]
created a dependency unit for each source word to capture long-distance dependency
constraints and then designed an encoder with a convolutional architecture to jointly learn
SDRs and source dependency annotations. Different from the studies mentioned above,
in our system, prior knowledge was introduced as a feature into the translation model,
while factual relation information was vectorized and integrated into the Transformer,
and the performance of the proposed approach outperformed that described in [8] (+S&H
and +Multi-Task).

Some methods have introduced syntactic information concisely without changing
the structures of models. Saunders [43] interleaved words with syntax representation,
resulting in longer sequences. Currey and Heafield [33] introduced constituency parsing
information into the Transformer NMT model, then proposed a multi-task model for low-
resource data and a mixed encoder model for rich-resource data. Zhang [35] vectorized the
source-side syntax to embedding and concatenated it with the intermediate representations.
Bugliarello and Okazaki [29] optimized the attention weight when encoding the source
sentences according to the syntactic distance between words (+PASCAL) and achieved
state-of-the-art results. Wu [19] proposed an approach to incorporate syntax into NMT with
a Transformer model which utilized source-side and target-side dependency relations to
improve NMT. Peng [44] introduced external syntax knowledge to guide the learning of the
attention network. Experimental comparisons with the approach proposed here are shown
in Table 2. Our approach showed better performance than Mixed Enc and Multi-Task,
especially in the translation of longer sentences.

Chen [22] proposed a content word-aware model which utilizes word frequency
information to distinguish between content and function words. Similar to this work,
both methods pay attention to essential words in the encoding procedure. The content
word-aware model estimates the importance of words by the TF-IDF algorithm, while our
approach pays more attention to the words that exist in factual relation information in
sentences, which is simple and effective.

6. Conclusions

This paper has proposed a Factual Relation Augmented (FRA) approach to improve
Transformer-based machine translation. Furthermore, we have proposed a method to
integrate factual relation information (prior knowledge) in the Transformer and utilize
factual relations to guide the decoder to generate target translations during the decoding
procedure. Experiments were carried out to prove the usefulness of the Factual Relation
Augmented method in several translation tasks, and the results showed good performance
in several datasets, especially for longer sentences. Although the proposed approach is
simple, it is efficient.

In future work, much valuable research could be undertaken, e.g., comparisons could
be made with other models and approaches, the training time and efficiency of translation
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using the FRA approach could be further assessed, and questions of how factual relation
information affects the translation procedure and how factual relation information in
target sentences can be utilized to improve translation quality with the NMT model can
be explored.
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