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Abstract: The inner-surface damage of water conveyance tunnels is the main hidden danger that
threatens their safety and leads to serious accidents. The method based on the principle of acoustic
reflection is the main means of inspecting damage to water-conveyance tunnels. However, affected
by the tunnel environment and equipment noise, the obtained acoustic point cloud model inevitably
suffers from noise, which can produce erroneous results. Therefore, we proposed a novel filtering
method, called unsharp-mask-guided filtering for 3D point cloud, to reduce the impact of noise on
the acoustic point cloud model of water-conveyance tunnels. The proposed method fuses the ideas
of guided filtering and the unsharp masking technique and extends them to the 3D point cloud
model by considering the position of the point. In addition, edge-aware weighting mean is also
used to retain the edge features of the point cloud model while smoothing the noise points. The
experimental results show that our method can obtain impressive results and a better performance in
both the acoustic point cloud model of the tunnel and the simulated point cloud model than many
state-of-the-art methods.

Keywords: unsharp masking; edge-aware weighting; guided filtering; 3D acoustic point cloud;
water-conveyance tunnel

1. Introduction

Water-conveyance tunnels are the main structures of water-diversion projects. When
water-diversion projects enter the operational period, special attention must be paid to the
health status of water-conveyance tunnels. The regular inspection of water-conveyance
tunnels is an important means of ensuring their safe operation and health management.
In recent years, in terms of the problem of tunnel-damage detection, researchers have
proposed many methods and technologies (e.g., side-scan sonar, multi-beam sonar, and
synthetic-aperture sonar) [1–4]. The detection method of tunnel damage based on the
principle of pulse reflection forms an acoustic point-cloud model by sampling the reflected
echo, and then detects and identifies the damage through acoustic point-cloud data [5].
However, affected by the noise of tunnel environments and inspection systems, as well
as the noise of carrier equipment (robot carriers and submersibles, etc.), the raw acoustic
point-cloud models obtained from these methods inevitably suffer from noise, which makes
it difficult to obtain useful information and increases the fuzziness and randomness of
information features. In this case, the detection methods that rely on information features
produce erroneous results very easily. Therefore, a filtering operation must be performed
on the raw acoustic point-cloud model of the tunnel before further processing (e.g., object
recognition [6,7] or 3D reconstruction [8]).

Inspired by the excellent results of the guided image-filtering algorithm introduced by
He et al. [9], the classical sharpness enhancement technique of unsharp masking [10–12] and
the edge-aware weighted guided image-filtering algorithm [13], this study extends these
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effective methods to the point-cloud model of tunnel and proposes a new filtering method,
called unsharp-mask-guided filtering for acoustic point-cloud of water-conveyance tunnel,
by considering the position of the point instead of the pixel value. The experimental results
show that our method can outperform several competing methods (e.g., bilateral filter [14],
moving least-squares filter [15], and guided 3D point-cloud filter [16]), both on the acoustic
point-cloud tunnel model and the simulated point-cloud model.

The contributions of our work can be summarized as follows: (1) the idea of guided
filtering and the unsharp masking technique are fused to design a novel filtering approach
for an acoustic point cloud for water-conveyance tunnels; (2) the idea of edge-aware
weighting is used to retain the features while smoothing some of the edges of the point
cloud; (3) a comprehensively experimental evaluation between our method and several
competing denoising methods is conducted on the tunnel point-cloud model and simulated
point-cloud model, respectively.

The remainder of this paper is structured as follows. A brief overview of the back-
ground and related work is given in Section 2. Section 3 describes the principle and
implementation process of our proposed algorithm in detail. The experimental process
and experimental results on different point-cloud models are demonstrated in Section 4.
Conclusions and discussions are presented in Section 5.

2. Background and Related Work
2.1. Acoustic Point-Cloud Filtering Method

Due to the complexity of underwater environments, the research on the filtering meth-
ods of acoustic point clouds, especially the acoustic point-cloud data of water-conveyance
tunnels, is limited. Feng et al. [17] proposed a multi-beam point-cloud filtering algorithm
that considers the features of underwater terrain. This method is based on the Random
Sample Consensus (RANSAC) ideal to fit the local plane, and the coplanar vector feature
is used to remove outliers. However, it does not consider that outlier surfaces may be
actual obstacles. Xie et al. [18] used the intensity information and elevation information
of points to filter the underwater acoustic point cloud. First, a rough classification was
carried out according to the intensity information; then, accurate classification and filtering
were realized using the intensity information and the elevation information of the seed
point and its surrounding points. However, its filtering effect depends entirely on the
accuracy of the seed point. Cui et al. [19] studied the combined filtering algorithm of a
multi-beam underwater acoustic point cloud. They divided the noise into large-scale and
small-scale noise, and then used radius filtering and bilateral filtering, respectively, to
achieve point-cloud smoothing. However, this method has the problem of the mistaken
deletion of complex terrain. Wang et al. [20] proposed a filtering method that fuses acoustic
properties and intensity. They used the filtering method in the process of forming the
acoustic point cloud and achieved good results. However, it is not suitable for the filtering
of already formed acoustic point-cloud models. Therefore, these studies are not suitable for
denoising the acoustic point clouds of water-conveyance tunnels.

By contrast, several studies have been conducted on filtering methods for ground-laser
point clouds. Bilateral filtering, originally introduced by Tomasi et al. [21], is a robust
edge-preserving filtering method, which has been applied to 3D mesh filtering [22–24].
However, these methods need to form mesh models, whose generation process inevitably
suffers from noise [25]. Moreover, these methods are always imperfect at retaining the
detailed features of point-based data models [26]. In order to overcome this problem, Han
et al. [16] proposed an effective point-cloud denoising method by considering the position
information of the point. However, in order to reduce the calculation cost, they ignore
the fact that the point may be included in different neighborhoods when calculating the
conversion coefficient. Therefore, the filtering effect in the acoustic point-cloud model
is not ideal and the edge features of the point-cloud model are not well maintained in
the smoothing process. Alexa et al. [15] proposed an approach that relies on the idea
of implicitly defining a surface for a given set of points. The main idea is to define a
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projection procedure that projects any point near the point set onto a surface. Next, the MLS
(moving least-squares) surface is defined as the set of points projecting onto itself. This
method achieves a good smoothing effect, but it smooths the edge features of the point set
because of the multiple projection process. Therefore, it is not suitable for surface-feature
reconstruction based on the tunnel point cloud.

Currently, most point-cloud filtering methods are based on laser-point cloud data.
Owing to the particularity and complexity of the water conveyance tunnel project, the
research on acoustic point-cloud filtering methods is limited. Therefore, the acoustic point-
cloud filtering methods of water-conveyance tunnels have important practical research
value.

2.2. Classical Guided Filtering

Guided image filtering is a well-known time-efficient feature-preserving smoothing
operator [9]. The filtered results are obtained by considering the content of the guidance
image, and the guidance image can be the input image itself or a different image. This
assumes that the filtered output image is a linear transformation of the guidance image in a
window. It can transfer the structure of the guidance image to the filtered output, enabling
new filtering applications, such as dehazing and feathering. Therefore, guided filtering is
essential to the rapid production of edge-feature-preserving denoising applications.

The guided image filtering is given by

Îi = akGi + bk, ∀i ∈ ωk. (1)

where Î and G are the filtered output image and the guidance image, respectively. i is
the index number of the pixel within window ωk centered at pixel k. ak and bk are two
constants confined to the window ωk. Their values can be calculated by solving

E(ak, bk) = ∑
i∈ωk

((akGi + bk − Ii)
2 + εa2

k). (2)

where ε is a regularization parameter that penalizes large values of ak and I is the original
input image. The optimal values of ak and bk are calculated by

ak =

1
|ω| ∑

i∈ωk

IiGi − IkGk

σ2
k + ε

, bk = Ik − akGk. (3)

Here, Gk and σ2
k are the mean and variance of G in ωk, respectively. |ω| is the number

of pixels in ωk and Ik is the mean of I in ωk. To simplify the computation, we assume the
guidance image to be the same as the input image [9]. Therefore, we can obtain

ak = σ2
k /(σ2

k + ε), bk = (1− ak)Gk. (4)

According to Equations (1) and (4), the regions with variance (σ2
k ) much larger than

ε are preserved, and the regions with variance (σ2
k ) much smaller than ε are smoothed.

However, because ε is a constant in all the neighborhood windows, halos are unavoidable
when the filter is forced to smooth some edge features.

2.3. Edge-Aware Weighted Guided Filtering

When the value of a certain pixel at a sharp edge is large, the pixel value in the
neighborhood centered on this pixel is affected. The original pixel with a small value
becomes larger, and the phenomenon of expansion occurs at the edge. Therefore, the
filtered image appears as halo artifacts. If the halo artifacts are not processed, problems
such as color distortion and blurred details in the filtered image occur. To overcome the
halo artifacts, edge-aware weighted guided image filtering is proposed [13]. It inherits
the advantages of both global and local filtering methods in terms that: (1) its complexity
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is same as that of guided image filtering, and (2) it can avoid halo artifacts such as the
currently used global smoothing filters.

Let σ2
G(p′) be the variance of G in the 3× 3 window, Ω(p′). An edge-aware weighting

ΓG(p′) is defined by utilizing the local variances of all pixels within a 3× 3 windows. It is
given by

ΓG(p′) =
σ2

G(p′) + ς

1
M

M
∑

p=1
σ2

G(p) + ς

. (5)

Here, M is the number of the pixels and ς is a small constant value to prevent the
denominator from being 0. Consequently, they use ε = λ/ΓG(p′) to perform edge enhance-
ment. The weighting ΓG(p′) measures the importance of pixel p′ in the overall guidance
image. If the pixel p′ is at an edge, the value of ΓG(p′) is usually larger than 1. Therefore,
ε becomes smaller and ak in Equation (4) becomes larger. This implies that the sharp edges
of G in ωk are enhanced.

Unlike the original guided filtering, the value of ε in edge-aware weighted guided
filtering is no longer fixed, but adapts according to the different edge characteristics.
Therefore, the edge features can be maintained well while smoothing the image.

2.4. Unsharp Masking

Unsharp masking is a classical sharpness-enhancement technique [12]. The enhance-
ment framework can be summarized as follows. The original image is decomposed into
two layers by applying a linear shift-invariant low-pass filter (e.g., the Gaussian filter) [27].
The resulting image is called the base layer, containing the main structure of the original
image. The difference produced between the base layer and the original image is called the
detail layer, revealing the fine details of the original image. It can be described by

Î = λ(I −ΦL(I)) + I, (6)

where Î represents the enhanced image and I is the original input image. (I − ΦL(I))
denotes an unsharp mask, where ΦL represents a low-pass filter. λ controls the effect of
enhancement achieved at the output and is the only coefficient to be estimated. Essen-
tially, guided filtering has the same edge enhancement function as unsharp masking by
transferring structure from an additional guidance image.

Based on the information above, we derived a novel guided point-cloud denoising
formulation from the original guided filter, with the estimation of only one coefficient,
akin to the formulation of unsharp masking. To overcome the halo artifacts caused by
ε being a constant value, as described in Section 2.3, an edge-aware weighted method is
also proposed to perform edge enhancement while smoothing the edge of the point cloud.

3. Method

Our approach is motivated by the classical sharpness-enhancement techniques of
unsharp masking, guided image filtering, and edge-aware weighted guided image filtering.
However, these methods cannot be directly applied to 3D point clouds because some
point cloud models have only spatial information, and no intensity-attribute information.
Therefore, we construct a new widely applicated filtering method by using the position
information of points to replace the pixel value in three classical image-filtering methods
above. The block diagram of proposed method is shown in Figure 1.
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Given target point-cloud set P =
{

pi ∈ R3} and guidance point-cloud set G =
{

gi ∈ R3},

the neighborhood N(pi) =
{

pij ∈ P
}

and N(gi) =
{

gij ∈ G
}

are searched by using the
k-nearest neighbor (KNN) method, where pij and gij represent the jth neighboring point
of pi and gi, respectively. As mentioned before, we also assume that the filtered output
point cloud has a linear model with the guidance point cloud in a particular neighborhood,
that is,

p′ij = aigij + bi. (7)

Here, p′ij represents the filtered output point of pij. ai and bi are the conversion
coefficients in the neighborhood N(gi). As with Equation (2) and its optimization solution,
we can obtain the values of ai and bi by

ai =

1
|N(gi)|

∑
gij∈N(gi)

pij·gij − pi·gi

σ2
gi
+ ε

, (8)

bi = pi − aigi. (9)

where |N(gi)| represents the number of points in N(gi). ε is a regularization parameter
penalizing large ai. gi and σ2

gi
are the mean and variance of guidance point gi in N(gi). pi is

the mean of pi in N(pi). Taking the calculation of pi in N(pi) as an example, it is given by

pi =
1

|N(pi)|
∑

pij∈N(pi)

pij. (10)

The filtered output point can be obtained by Equation (7). However, the output point
p′ij has different values because gij may be contained in different neighborhoods. Therefore,
we calculate the filtered point p̂′ij by averaging all possible values of p′ij with

p̂′ij =
1
N ∑ (aigij + bi). (11)

where N represents the number of neighborhoods which containing point gi.
Motivated by unsharp masking, summarized in Equation (6), we insert Equation (9)

into Equation (11) to eliminate bi, and obtain

p̂′ij = ai(gij − g̃i) + p̃i, (12)

where ai =
1
N ∑ ai, g̃i =

1
N ∑ gi, and p̃i =

1
N ∑ pi.

According to Equation (12), we can more intuitively understand how the unsharp mask
guiled filtering achieves edge-preservation and structure-transferring effects. Specifically,
the point pi is smoothed to remove noise and the result is denoted by p̃i. Next, to retain the
fine details, an unsharp mask (gij − g̃i) with fine features generated from the guide point
cloud is added to p̃i under the control of the coefficient ai, enabling the transfer of edge
details from the guide point cloud to the filtered-output point cloud.
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However, it is clearly visible from Equation (12) that the denoising effect is greatly
affected by the number of k-neighborhood points, which determines the values of ai, g̃i,
and p̃i. If the value of k is too large, the resulting point cloud usually loses sharp edges,
resulting in over-smoothing problem. Furthermore, if the value of k is too small, it cannot
achieve the desired denoising effect.

Inspired by the edge-aware weighted guided image-filtering method [13], we intro-
duce the edge-aware mechanism to reduce the impact of edge loss. We use ξ = λ/Γg to
replace ε in Equation (8), and Γg is given by

Γg =
σ2

g(p′) + ς

1
n

n
∑

p=1
σ2

g(p) + ς
, (13)

where λ is a regularization parameter that penalizes large ai. ς is a small constant and its
value is empirically set as (0.001× d)2, while d is the farthest Euclidean distance between
two points in the point-cloud model. n is the number of points in the point-cloud model.
σ2

g(p′) represents the variance of the point in its k-nearest neighbors and the value of k′

here is selected as 10. When the point is located at a sharp edge, the value of Γg is usually
lager than 1 and ξ becomes small. That is, the punishment for ai in Equation (8) is small
and ai in Equation (12), it is large. Therefore, the fine edge features generated from the
guidance point cloud can be maintained well while smoothing noise points.

The results of unsharp mask guided filtering are directly related to the selection of
the guidance point-cloud model. Ideally, the ground-truth model without noise should
be chosen as the guidance point-cloud model, but this may not be obtained in practical
applications. Therefore, we use the raw noisy point cloud as the guidance point cloud.
Compared with classical guided filtering, which needs to calculate two parameters (a, b),
our novel filtering method needs to estimate only one coefficient a. At the same time, it can
maintain the edge features while smoothing the point-cloud model.

4. Results

Our approach was implemented using MATLAB 2019 on a PC with AMD R5-3500U
CPU and 8 GB of memory. We show the results of our method tested on the point-
cloud model of a water-conveyance tunnel, and conduct a comparative evaluation with
other advanced algorithms. To verify the practicability of the proposed method, we also
compared and evaluated the performance of our approach tested on various simulated 3D
point-cloud models corrupted with Gaussian noise ranges from 1% to 3% of the diagonal
length of the model bounding box. The datasets of the water-conveyance tunnel were
derived from the simulated tunnel in the laboratory and the real tunnel on the site. The
simulated 3D point-cloud datasets were derived from Large Geometric Models datasets,
ModelNet datasets, and ShapeNet datasets [28], respectively.

4.1. Parameters

As introduced in Section 3, the proposed algorithm has two key parameters in addition
to the constant parameter ς and the neighborhood parameter k′ for edge perception. One
is the parameter k of KNN, which is used to calculate the geometrical neighborhood. For
point-cloud models with different numbers of points, the choice of k has a great influence
on the filtering effect. Another key parameter is λ, which is a regularization parameter
penalizing large ai. It can simply control the filtering quality. Therefore, we selected a
point-cloud model with a different number of points to analyze the impact on the results
under different k and λ. The models and parameters used in this experiment are shown
in Table 1. Figures 2–4 illustrate the results of our method using different values of k
and λ, respectively. Tables 2 and 3 illustrate the quantitative evaluation of the results
using the error metric Dmean in [29]. When verifying the influence of one parameter on the
experimental results, we kept the other parameter constant.
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Table 1. The models and parameters used in experiment.

Models Points Parameters

Horse 48,485
k

4 10 50 100

Cactus 3280
k

4 10 50 100

Bunny 35,947
λ

0.01 0.1 0.9
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noise; (b) filtering result with λ = 0.01; (c) filtering result with λ = 0.1; (d) filtering result with
λ = 0.9; (e) the ground-truth model of bunny.

Table 2. Analysis of the results with different k values on horse and cactus model. The best results
are displayed in bold.

Models
Dmean

(k = 4) (k = 10) (k = 50) (k = 100)

Horse 1.399 1.172 0.638 0.790

Cactus 0.574 0.512 0.953 1.633

Table 3. Analysis of the results with different λ values on bunny model. The best results are displayed
in bold.

Models
Dmean

(λ = 0.01) (λ = 0.1) (λ = 0.9)

Bunny 0.587 0.476 1.111

It can be clearly seen from Figure 2b,c that some noise points may not be removed
when k is too small. Furthermore, if k is too large, as shown in Figure 2e, the point-cloud
model shrinks obviously. It is clearly demonstrated in Table 2 that k = 50 provides the
best error-metrics values for the horse model. However, it reveals the different views in
Figure 3. The cactus model shrinks obviously when k is 50, and the desirable result appears
when k is 10. It is also demonstrated in Table 2 that k = 10 provides the best error-metrics
values for the cactus model. The reason for the phenomenon of the different k values is that
the number of points contained in the model and the shape of the model are all different.
Furthermore, the choice of k is also different under different noise levels.

The second key parameter is λ, which is a regularization parameter penalizing large
ai. It simply controls the filtering quality. As shown in Figure 4d, if the value of λ is too
large, the filtered results of the bunny model are overly smoothing. Furthermore, if the
value of λ is too small, the excessively large filtering coefficient ai creates negative effects.
It is demonstrated in Figure 4 and Table 3 that λ = 0.1 provides a desirable result for the
point-cloud model of bunny.

Therefore, the parameters of the point-cloud model (e.g., the number of points, the
size of the model and shape features, etc.) should be fully considered in order to obtain
the desired filtering results. Both of these two parameters need to be adjusted by users
according to the experimental requirements and the structural characteristics of the point-
cloud model to obtain the best filtering effect.

4.2. Results and Comparison

After a comprehensive analysis of the effect of the parameters in our method, we
proceeded to carry out experiments on the point-cloud model of the water-conveyance
tunnel and simulated 3D models to compare our algorithm with some state-of-the-art
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methods, with the aim of exhibiting its performance. In our experiments, we chose three
different filtering algorithms, namely, bilateral filter [14], moving least-squares filter [15],
and guided 3D point-cloud Filter [16]. Moreover, the results of these algorithms were
reproduced on the same computer according to the optimal parameters provided by
their authors.

4.2.1. Scene Experiment

The purpose of developing the proposed algorithm is to filter the acoustic point-cloud
model of water-conveyance tunnels. Therefore, we conducted an experiment on a real test
site to verify the performance of our algorithm. The test site is a small water-conveyance
tunnel with a diameter of 80 cm. The ground-truth shape of the tunnel is known. An
underwater robot was used as the carrier to collect data [20]. The point-cloud model of the
tunnel was corrected by the carrier-attitude information. The raw point-cloud model and
the ground-truth model are shown in Figure 5; there are many noise points around the inner
surface of the tunnel. In this experiment, we compared the results obtained by the proposed
method with the results of the three different filtering algorithms mentioned above.
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Compared with Figure 5a, it is demonstrated in Figure 6a,c,e,g that the four denoising
algorithms all achieved the purpose of filtering. This can be more clearly observed in
Figure 6b,d,f,h. For the small-scale noise points near the inner surface of the tunnel, it is
clearly visible in Figure 6b that the guided 3D point-cloud filter achieved poor effects in
smoothing the small-scale noise points. As shown in the blue circular dotted-line area
in Figure 6d,f, the bilateral filter and the moving least-squares filter had the problem of
over-smoothing while filtering the noise points. Figure 6h demonstrates that the proposed
method can prevent over-smoothing while filtering out small-scale noise points. For
large-scale noise far away from the inner surface of the tunnel, none of the three methods
achieved a good result. By contrast, the results of the proposed method are better than
other those of the other three algorithms.
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Figure 6. The results of different algorithms tested on the point-cloud model of water-conveyance
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To quantitatively evaluate the denoising results, four error-metrics, Dmean, σ, rave,
and rerror, were used in our experiment. Dmean represents the average distance between
the points in the resulted point-cloud and the corresponding points in the ground-truth
model [29]. σ represents the variance of the distance. rave is the average radius of the
filtered point-cloud model of the tunnel. rerror represents the reconstruction accuracy of
the point-cloud model of the water-conveyance tunnel. The calculation results of the error
metrics are shown in Table 4.
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Table 4. Analysis of the results of different algorithms tested on the point-cloud model of water-
conveyance tunnel (the best results are displayed in bold).

Method Dmean (cm) σ (cm) rave (cm) rerror (cm)

Guided 3D Point-Cloud Filter 4.73 1.77 41.48 1.48
Moving Least-Squares Filter 4.64 1.75 41.58 1.58

Bilateral Filter 4.79 1.78 40.67 0.67
Proposed algorithm 4.49 1.67 40.45 0.45

In Table 4, the best results are displayed in bold. It is clearly demonstrated that the
results of our method were the best in Dmean and σ. In other words, the filtered points were
close to the inner surface of the tunnel and had good aggregation properties. The results of
the proposed method also have high accuracy in rave and rerror. Moreover, it is clearly seen
from rerror that the point-cloud model of the real tunnel obtained by the proposed method
has a high reconstruction accuracy, which provides important support for defects detection
on the tunnel surface.

4.2.2. Simulation Experiment

To verify the applicability of the proposed method, we also executed our algorithm
on a simulated model of the water-conveyance tunnel and nine simulated 3D point-cloud
models with different shapes and sizes to highlight the advantages. Affected by the noise
of the electronic components of the acquisition equipment, the acquired point-cloud model
is easily polluted by noise that obeys the Gaussian distribution. Therefore, the Gaussian
noise generated using a zero-mean Gaussian function with a standard deviation was added
to the simulated 3D point cloud models. The Gaussian noise ranges were from 1% to 3% of
the diagonal length of the model bounding box.

As shown in Figure 7, the results of the guided 3D point-cloud filter, moving least-
squares filter, and bilateral filter are poor, and there are many noise points around the
tunnel. The bilateral filtering results were relatively smooth, but the denoising effect was
not perfect, and the tunnel outline experienced distortion. Comparing the inner part
of the red rectangle in Figure 7b–e, the denoising effects of the model obtained by the
proposed algorithm were much better than those obtained by the other three methods,
and the denoising effect of the outliers was obvious. The filtered point-cloud model was
closer to the real cylindrical container. The method proposed in this study has an obvious
suppressive effect on the outliers while preserving the contour.

We also used the error metrics Dmean, σ, rave, and rerror to quantitatively evaluate
the denoising results. As shown in Table 5, the metrics of the moving least-squares filter
and bilateral filter were similar. Furthermore, the metrics of the guided 3D point-cloud
filter were all poor. The four error metrics of the other three methods were all larger
than those of the proposed algorithm. This means that the reconstruction accuracy of the
point-cloud model obtained using these methods is poor. By contrast, our method is better
than the other three methods in terms of the error metrics, which reflects the superiority of
our algorithm.

Figures 8–10 are the filtering results of the unsharp-mask-guided filtering and several
competing methods. Here, we only present pictures of the block, chair, and elephant
models. Moreover, the results of these comparison algorithms were obtained according
to the optimal parameters provided by their authors. It is clearly visible in Figure 8e that
our algorithm can preserve the edge features well without shrinkage or deformation in the
block model, while the results of the moving least-squares filter were deformed. For the 3D
point-cloud model of the chair, it is shown in Figure 9b,d that the results of the guided 3D
point-cloud filter and moving least-squares filter were poor. Moreover, the results of the
bilateral filter were deformed. As shown in Figure 9e, the proposed method achieves more
satisfactory results with the chair model. For the 3D point-cloud model of the elephant,
it is shown in Figure 10 that the comparison methods all achieved satisfactorily smooth
results, except for the blurring problem at the mouth of the elephant. It is clearly shown in



Appl. Sci. 2022, 12, 6516 12 of 17

the enlarged map in Figure 10e that our method can preserve the local feature information
of the elephant’s mouth while smoothing the noise points. Furthermore, our method also
achieved satisfactory results in six other, different, 3D point-cloud models, according to the
values of the error metrics shown in Table 6.
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Figure 7. The results of different algorithms tested on the point-cloud model of simulated water-
conveyance tunnel. (a) The original point-cloud model of the simulated tunnel; (b) the guided 3D
point-cloud filter results; (c) the bilateral filter results; (d) the moving least-squares filter results;
(e) the results of proposed algorithm (k = 300 and λ = 0.5).

Table 5. Analysis of the results of different algorithms tested on the point-cloud model of simulated
water-conveyance tunnel (the best results are displayed in bold).

Method Dmean (mm) σ (mm) rave (mm) rerror (mm)

Guided 3D Point-Cloud Filter 16.53 10.74 520.71 40.71
Moving Least-Squares Filter 15.36 9.27 510.46 30.46

Bilateral Filter 15.35 9.17 510.43 30.43
Proposed algorithm 14.20 7.89 500.27 20.27

We also used the error metrics Dmean and σ to quantitatively evaluate the filtering
results of the different methods. The error metrics for nine different models are shown in
Table 6, and the best error-metrics values are highlighted in bold. According to these values,
as expected, it is evident that the proposed method obtain better denoising results on most
simulated 3D point-cloud models, with the exception of the elephant model. Although
the best error-metric values were not obtained on the point cloud-model of the elephant,
it can be seen in Figure 10e that our method achieved satisfactory results in maintaining
the feature details of the elephant’s mouth. The denoising effect of the bilateral filter
in the point-based model was mainly reflected in the smooth effect of the point-cloud
model. Furthermore, the error metrics Dmean and σ reflect the overall performance of the
resulting model rather than the local detailed properties. Therefore, in our study, there was
better error measurement and poor detail-feature retention, such as the elephant’s mouth
shape. This also reflects the compromise strategy adopted by the proposed method, which
preserves the details as much as possible while maintaining the denoising effect. Overall,
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the experimental results show that our method is effective on simulated 3D point models,
and can ensure the features are more accurate while obtaining smoother filtering results.
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Figure 8. The results of different algorithms tested on block model. (a) Block model with noise;
(b) the guided 3D point-cloud filter results; (c) the bilateral filter results; (d) the moving least-squares
filter results; (e) the results of proposed algorithm (k = 20 and λ = 0.5); (f) the ground-truth model
of block.
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Figure 9. The results of different algorithms tested on chair model. (a) Chair model with noise; (b) the
guided 3D point-cloud filter results; (c) the bilateral filter results; (d) the moving least-squares filter
results; (e) the results of the proposed algorithm (k = 100 and λ = 0.1); (f) the ground-truth model
of chair.
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Table 6. Error metrics for different methods and the best results are displayed in bold.

Model Error
Metrics

Guided 3D
Point-Cloud

Filter

Bilateral
Filter

Moving
Least-Squares

Filter
Our Method

Block
Dmean 0.57 0.58 0.56 0.45

σ 0.21 0.22 0.23 0.18

Cactus
Dmean 0.66 0.67 0.76 0.71

σ 0.28 0.30 0.34 0.26

Chair
Dmean 2.55 2.10 2.69 2.23

σ 1.50 1.24 1.55 1.21

Elephant Dmean 0.57 0.49 0.63 0.72
σ 0.31 0.28 0.41 0.36

Hippo Dmean 0.78 0.34 0.37 0.34
σ 0.34 0.22 0.29 0.22

Horse
Dmean 0.81 0.94 0.74 0.58

σ 0.48 0.56 0.55 0.28

Monster
Dmean 0.78 0.80 0.92 0.64

σ 0.34 0.34 0.49 0.26

Skull
Dmean 0.14 0.14 0.12 0.13

σ 0.08 0.09 0.07 0.05

Bunny Dmean 0.60 0.59 0.62 0.52
σ 0.24 0.23 0.45 0.20



Appl. Sci. 2022, 12, 6516 16 of 17

The proposed method can achieve more satisfactory results on real site models and
simulated models than many other competing methods. And the model obtained by our
method is more suitable for the subsequent object recognition or 3D reconstruction tasks of
water-conveyance tunnel.

5. Conclusions and Discussion

To address the safety-monitoring problem of a water-conveyance tunnel during the
operation stage, we proposed a novel filtering method, called unsharp-mask-guided fil-
tering for 3D point cloud, to reduce the impact of noise on the point-cloud model of the
water-conveyance tunnel. The proposed method fuses the ideas of classical guided filtering
and the unsharp masking technique and extends them to the 3D point-cloud model by
considering the position of the point. In addition, an edge-aware weighting idea was also
used to retain the edge features of the point-cloud model while smoothing the noise points.

In the experiment, we examined the influence of two key parameters on the experimen-
tal results. We also carried out experiments on real-world 3D models of the tunnel and nine
simulated 3D models to compare our algorithm with some state-of-the-art methods. The
experimental results show that the proposed method can outperform several competing
methods, both on the real-tunnel point-cloud model and simulated point-cloud models.
The model provides greater accuracy for the further processing of point clouds. However,
we did not consider the efficiency of our algorithm in the experiment. Because our method
needs to search the neighborhood twice for each point and to judge the inclusion relation-
ship between the neighborhoods of different points, it does not have an obvious advantage
in efficiency. The running time of point-cloud models with different number of points is
different. Taking the Stanford rabbit model as an example, the time cost of our algorithm
on the hardware device based on this study is 7.2 s, while the time costs of bilateral filtering,
MLS filtering, and guidance filtering are 4.5 s, 4.8 s, and 3.7 s, respectively. These time costs
are all higher than those in the references because of the weak processing power of the
computer equipment used in this study. Therefore, we need to optimize the calculation
method to improve the efficiency of the proposed algorithm in future work.

Author Contributions: Conceptualization, J.W. and X.Z.; methodology, J.W.; software, J.W.; vali-
dation, J.W., X.Z. and Z.Z.; formal analysis, J.W.; investigation, J.W.; resources, X.Z.; data curation,
J.W.; writing—original draft preparation, J.W.; writing—review and editing, J.W.; visualization, J.W.;
supervision, X.Z.; project administration, X.X.; funding acquisition, X.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China, grant number
2018YFC0407101, and National Natural Science Foundation of China, grant number 61671202.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon request.

Acknowledgments: The authors would like to thank all the reviewers for their valuable comments.
We would like to thank Georgia Tech for their Large Geometric Models. We are grateful to Princeton
ModelNet project for sharing the ModelNet datasets. We also thank the researchers at Princeton,
Stanford, and TTIC for sharing the ShapeNet datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, X.; Wang, T.; Liu, Y.; Huang, T. A new defect detection technology for long-distance water conference tunnel. Water Resour.

Hydropower Eng. 2010, 41, 78–81. [CrossRef]
2. Liao, J.; Yue, Y.; Zhang, D.; Tu, W.; Cao, R.; Zou, Q.; Li, Q. Automatic Tunnel Crack Inspection Using an Efficient Mobile Imaging

Module and a Lightweight CNN. IEEE Trans. Intell. Transp. Syst. 2022, 1–14. [CrossRef]

http://doi.org/10.13928/j.cnki.wrahe.2010.12.013
http://doi.org/10.1109/TITS.2021.3138428


Appl. Sci. 2022, 12, 6516 17 of 17

3. Jitao, L.; Gande, L. Study on long-term operation safety detection technical system of large and long diversion tunnel. Water
Resour. Hydropower Eng. 2021, 52, 162–170. [CrossRef]

4. Jin, H.; Yuan, D.; Zhou, S.; Zhao, D. Short-Term and Long-Term Displacement of Surface and Shield Tunnel in Soft Soil: Field
Observations and Numerical Modeling. Appl. Sci. 2022, 12, 3564. [CrossRef]

5. Wang, J.; Wang, C.; Han, Z.; Jiao, Y.; Zou, J. Study of hidden structure detection for tunnel surrounding rock with pulse reflection
method. Measurement 2020, 159, 107791. [CrossRef]

6. Park, J.; Kim, H.; Tai, Y.-W.; Brown, M.S.; Kweon, I. High quality depth map upsampling for 3D-TOF cameras. In Proceedings of
the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1623–1630.

7. Zheng, W.; Xie, H.; Chen, Y.; Roh, J.; Shin, H. PIFNet: 3D Object Detection Using Joint Image and Point Cloud Features for
Autonomous Driving. Appl. Sci. 2022, 12, 3686. [CrossRef]

8. Rangel, J.C.; Morell, V.; Cazorla, M.; Orts-Escolano, S.; García-Rodríguez, J. Object recognition in noisy RGB-D data using GNG.
Pattern Anal. Applic. 2017, 20, 1061–1076. [CrossRef]

9. He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [CrossRef]
10. Ye, W.; Ma, K.-K. Blurriness-Guided Unsharp Masking. IEEE Trans. Image Processing 2018, 27, 4465–4477. [CrossRef]
11. Deng, G. A Generalized Unsharp Masking Algorithm. IEEE Trans. Image Processing 2011, 20, 1249–1261. [CrossRef]
12. Polesel, A.; Ramponi, G.; Mathews, V.J. Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 2000, 9,

505–510. [CrossRef] [PubMed]
13. Li, Z.; Zheng, J.; Zhu, Z.; Yao, W.; Wu, S. Weighted Guided Image Filtering. In IEEE Transactions on Image Processing; IEEE:

Toulouse, France, 2015; Volume 24, pp. 120–129. [CrossRef]
14. Digne, J.; de Franchis, C. The Bilateral Filter for Point Clouds. Image Processing Line 2017, 7, 278–287. [CrossRef]
15. Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C.T. Computing and rendering point set surfaces. IEEE Trans. Vis.

Comput. Graph. 2003, 9, 3–15. [CrossRef]
16. Han, X.-F.; Jin, J.S.; Wang, M.-J.; Jiang, W. Guided 3D point cloud filtering. Multimed Tools Appl. 2018, 77, 17397–17411. [CrossRef]
17. Feng, D.; Shi, B.; Xiushan, L.U.; Guoyu, L.I. A Multi-Beam Point Cloud Denoising Algorithm Considering Underwater Topo-

graphic Features. J. Geomat. Sci. Technol. 2017, 34, 364–369.
18. Xie, Q.; Tian, M.; Feng, C.; Yu, J.; Pang, Y. Study on Filtering Algorithm Combining Multibeam Point Cloud Intensity and

Elevation Information. Hydrogr. Surv. Charting 2021, 1, 65–69. [CrossRef]
19. Cui, X.; Shen, W.; Shuai, C.; Hui, X. Preliminary research and application analysis ofmulti-beam point cloud filtering algorithm.

Hydrogr. Surv. Charting 2021, 5, 12–16. [CrossRef]
20. Wang, J.; Zhang, X.; Xu, X.; Zhang, Z.; Song, K. Remote inspection method for water conveyance tunnel based on single-beam

scanning sonar. JARS 2022, 16, 024522. [CrossRef]
21. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on

Computer Vision (IEEE Cat. No.98CH36271), Bombay, India, 7 January 1998; pp. 839–846.
22. Fleishman, S.; Drori, I.; Cohen-Or, D. Bilateral mesh denoising. ACM Trans. Graph. 2003, 22, 950–953. [CrossRef]
23. Lee, K.-W.; Wang, W.-P. Feature-preserving mesh denoising via bilateral normal filtering. In Proceedings of the Ninth International

Conference on Computer Aided Design and Computer Graphics (CAD-CG’05), Hong Kong, China, 7–10 December 2005.
24. Jones, T.; Durand, F.; Desbrun, M. Non-Iterative, Feature-Preserving Mesh Smoothing. ACM Trans. Graph. 2003, 22, 943–949.

[CrossRef]
25. Manzo, M.; Rozza, A. DOPSIE: Deep-Order Proximity and Structural Information Embedding. Mach. Learn. Knowl. Extr. 2019, 1,

684–697. [CrossRef]
26. Zaman, F.; Wong, Y.P.; Ng, B.Y. Density-Based Denoising of Point Cloud. In Lecture Notes in Electrical Engineering, 9th International

Conference on Robotic, Vision, Signal Processing and Power Applications; Springer: Singapore, 2017; pp. 287–295. [CrossRef]
27. Shi, Z.; Chen, Y.; Gavves, E.; Mettes, P.; Snoek, C.G.M. Unsharp Mask Guided Filtering. IEEE Trans. Image Process. 2021, 30,

7472–7485. [CrossRef] [PubMed]
28. The Stanford 3D Scanning Repository. Available online: http://www.graphics.stanford.edu/data/3Dscanrep/ (accessed on 17

June 2022).
29. Han, X.-F. Research on Denoising Processing and Feature Description for 3D Point Cloud. Ph.D. Thesis, Tianjin University, Tianjin,

China, 2019.

http://doi.org/10.13928/j.cnki.wrahe.2021.06.017
http://doi.org/10.3390/app12073564
http://doi.org/10.1016/j.measurement.2020.107791
http://doi.org/10.3390/app12073686
http://doi.org/10.1007/s10044-016-0546-y
http://doi.org/10.1109/TPAMI.2012.213
http://doi.org/10.1109/TIP.2018.2838660
http://doi.org/10.1109/TIP.2010.2092441
http://doi.org/10.1109/83.826787
http://www.ncbi.nlm.nih.gov/pubmed/18255421
http://doi.org/10.1109/TIP.2014.2371234
http://doi.org/10.5201/ipol.2017.179
http://doi.org/10.1109/TVCG.2003.1175093
http://doi.org/10.1007/s11042-017-5310-9
http://doi.org/10.3969/j.issn.1671-3044.2021.01.014
http://doi.org/10.3969/j.issn.1671-3044.2021.05.003
http://doi.org/10.1117/1.JRS.16.024522
http://doi.org/10.1145/882262.882368
http://doi.org/10.1145/882262.882367
http://doi.org/10.3390/make1020040
http://doi.org/10.1007/978-981-10-1721-6_31
http://doi.org/10.1109/TIP.2021.3106812
http://www.ncbi.nlm.nih.gov/pubmed/34449363
http://www.graphics.stanford.edu/data/3Dscanrep/

	Introduction 
	Background and Related Work 
	Acoustic Point-Cloud Filtering Method 
	Classical Guided Filtering 
	Edge-Aware Weighted Guided Filtering 
	Unsharp Masking 

	Method 
	Results 
	Parameters 
	Results and Comparison 
	Scene Experiment 
	Simulation Experiment 


	Conclusions and Discussion 
	References

