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Abstract: High-frequency (HF) radar data, derived from a pair of newly developed radar stations
in the Pearl River Estuary (PRE) of China, were validated through comparison with in situ surface
buoys, ADCP measurements, and model simulations in this study. Since no in situ observations
are available in the radar observing domain, a regional high-resolution ocean model covering the
entire PRE and its adjacent seas was first established and validated with in situ measurements, and
then the HF radar data quality was examined against the model simulations. The results show that
mean flows and tidal ellipses derived from the in situ buoys and ADCP were in very good agreement
with the model. The model–radar data comparison indicated that the radar obtained the best data
quality within the central overlapping area between the two radar stations, with the errors increasing
toward the coast and the open ocean. Near the coast, the radar data quality was affected by coastlines
and islands that prevent HF radar from delivering high-quality information for determining surface
currents. This is one of the major drawbacks of the HF radar technique. Toward the open ocean,
where the wind is the only dominant forcing on the tidal currents, we found that the poor data quality
was most likely contaminated by data inversion algorithms from the Shangchuan radar station. A
hybrid machine-learning-based inversion algorithm including traditional electromagnetic analysis
and physical oceanography factors is needed to develop and improve radar data quality. A new
radar observing network with about 10 radar stations is developing in the PRE and its adjacent shelf,
this work assesses the data quality of the existing radars and identifies the error sources, serving as
the first step toward the full deployment of the entire radar network.

Keywords: Pearl River Estuary; tidal currents; HF radar; FVCOM; ADCP

1. Introduction

The Pearl River Estuary (PRE), located in the south of Guangdong Province, China, is
a trumpet-shaped estuary connecting the delta river network in the north and the South
China Sea (SCS) in the south (Figure 1). Pearl River is the second largest and the third-
longest river in China, with eight major river inlets into the SCS and an annual discharge
of 3.5 × 108 m3 [1]. The river discharges, along with bottom topography, wind, and tides,
complicate the circulations in the PRE and its adjacent seas [2]. Considering the impacts of
PRE circulations on human production and lives, especially under the conditions of climate
change and natural disasters, a better understanding of the flow fields surrounding the
PRE is of great significance to disaster warning and mitigation.
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Figure 1. Map of the HF radar data domain. Blue spots indicate the original data points and orange
spots indicate the data points with a data acquisition rate greater than 90%. The ADCP mooring
station is marked by A1, and the two buoys are marked by B1 and B2. The two HF radar stations are
marked by green squares.

Previous studies on the flow field characteristics of the PRE and its adjacent waters
were mostly based on model simulations [3–6]. Buoys, cruise observations, and tidal
gauges were adopted for comparison with the model. The modeling skill assessment
suggested that the model can satisfactorily simulate the tidal currents, water level, and
salinity structure [2,7]. Outside the PRE, tides propagate into the SCS through the Luzon
Strait, and the lunar semidiurnal (M2; 12.42 h period) tidal constituent dominates the
currents, followed by K1, O1, and S2 [5,8]. Furthermore, the complexity of topography in
the PRE may lead to amphidromic systems in the continental shelf areas [8]. Within the
PRE, the Pearl River outflow presents a plume-like structure and forms a corresponding
salinity frontal zone which is crucial to substance transport [6,9]. The vertical distribution
of the salinity has a seasonal variability (intensified during the summer and relatively
weakened during the spring tide in winter) and is affected by the river discharge, as well
as wind forcing [4,7,10,11].

High-frequency (HF) radar, a relatively new ocean observing tool, has been used to
detect ocean surface currents and waves for decades [12,13]. Bragg scattering, caused by
the interaction of electromagnetic waves (wavelength = tens of meters) with the sea surface,
was discovered in 1955 [14], which makes it possible for the HF radar to detect the state
of the sea beyond the visual range. HF radars are operated in the 3–30 MHz frequency
band, ensuring good penetration of the electromagnetic waves through conducting layer.
The mechanism of the first- and second-order scattering from the sea surface has been
quantitatively explained, providing a solid theoretical basis for the HF radar to detect ocean
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surface states [15,16]. HF radars, like other communication systems, adopted the vertical
polarization mode which aims to avoid the signal loss caused by the influence of the Earth’s
impedance. Compared to traditional in situ surface buoys and acoustic Doppler current
profilers (ADCPs), HF radars can provide a planar view of current states. They have been
widely used in marine environmental monitoring due to their unique advantages such as
wide coverage, strong persistence, and all-weather operation [12,17].

The HF radar system can currently perform relatively reliable inversion of ocean
currents due to the accurate identification of first-order peaks [15,18]. Many previous
studies compared different types of HF radars with mooring observations, proving that the
data quality can be affected by environmental factors such as surface wave directions and
sea states [19–21]. HF radar measurements can also be examined by cross-validation with
model simulations and moorings (e.g., in the New York Bight and Block Island Sound [22–24]).

Usually, a pair of radar stations cover a 200–300 km2 area, therefore a radar observing
network with 6–10 radar stations can cover the entire PRE and its adjacent shelf. Our team
is building another six radar stations within the PRE. Given that most in situ measurements
are mainly deployed within the PRE, the HF radar data on the continental shelf cannot be
validated directly against in situ data. In this study, a regional high-resolution ocean model
covering the PRE and its adjacent seas was first established and validated with the in situ
measurements in the PRE, and the HF radar-derived tidal currents were then examined
through comparison with the model results. Furthermore, a set of sensitivity experiments
were conducted to explain the role of physical factors in affecting the tidal currents. This
study serves as a first step toward the full deployment of the entire radar network, aiming
to assess the currently available radar measurements, the model’s development, and in
situ observations. We note that both radar and model are not perfect, but this work will
provide us and readers with very useful information to proceed with the construction and
improvement of the entire PRE radar network.

2. Materials and Methods
2.1. High-Frequency Radar

The array of HF radars has been applied in our study, with an operating frequency
of 9.305–9.355 MHz. The number of transmitting antennas at each station is ≥3, and the
number of receiving antennas is ≥8 to form an antenna array. This array is capable of
detecting the flow field over a large area of the sea in real time. Moreover, it is feasible
to build a synchronous network between the different radar stations. The two HF radars
adopted in this study were deployed at Wanshan Island and Shangchuan Island (Figure 1),
both of which were OSMAR-071G high-frequency surface wave radars operating at a
nominal frequency of 9 MHz developed by Wuhan University. The software we used for
radar data processing is the SeaMonitor for single-station radial flow. The data processing is
divided into a pre-processing module, current extraction module, and radial flow merging
module [25,26]. The pre-processing module is mainly to perform channel data validity
checks, interference suppression, and channel correction on the basic distance metadata
read from the FT1 file, so as to ensure the validity of the processed data and the directional
response of the antenna channel to maintain the ideal characteristics. The function of the
current extraction module is range-by-distance metadata processing, through spectrum
analysis, first-order spectrum separation, azimuth estimation based on the Music algorithm,
and other steps, to realize the extraction of radial current velocity. The radial flow merging
module aims to combine the results of short-time radial velocity, wind direction, and
wave parameters of multiple fields with the median method according to the specified
time interval.

The radar coverage ranged from 112.40◦ to 114.70◦ E and from 20.20◦ to 22.00◦ N,
covering an area of approximately 40,000 km2. In the overlapping area observed by the
two radars, the longitude and latitude spatial resolution was 0.05◦ × 0.05◦, and the time
range was from 12:00 a.m. on 1 March 2020 to 11:50 p.m. on 31 March 2020, with a time
resolution of 10 min. Due to the interference of environmental factors, there were missing
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values in the synthesized current fields. To ensure the reliability of the data, points with a
data acquisition rate of more than 90% were selected (Figure 1).

2.2. Mooring Data

The instruments applied to collect the in situ data were one ADCP and two surface
buoys. The ADCP was placed at A1 to the northeast of the Pearl River Estuary (113.77◦ E,
22.56◦ N), with a time resolution of 10 min and a vertical interval of 1 m between each layer.
Due to the existence of blind areas on the surface and the interference of bottom echoes, the
ADCP effective measurement depth was 5–11 m. The two buoys were placed at B1 and B2
(113.67◦ E, 22.44◦ N, and 113.61◦ E, 22.09◦ N) on the west bank of the Pearl River Estuary
(Figure 1), with a temporal resolution of 15 min.

2.3. Model

The ocean model utilized in this study was the FVCOM model originally developed
by the University of Massachusetts Dartmouth (UMASSD) and improved by the efforts
of the Woods Hole Oceanographic Institution (WHOI) [27–29]. This model adopts an
unstructured triangular mesh to solve the primitive equation through the finite-volume
discrete method, which not only retains the high efficiency of finite difference calculation
but also incorporates the flexibility of the finite element method to fit the shoreline (http://
www.fvcom.smast.umassd.edu/, accessed on 8 March 2022). In addition, time integration
of either a mode-split solver or a semi-implicit solver is provided to be chosen. The
vertical eddy viscosity and thermal diffusion coefficients are calculated using the General
Turbulence Model (GOTM) in the vertical and the Smagorinsky turbulent parameterization
in the horizontal [30].

The model grid established in this study, the same as that in [31,32], covered the Pearl
River Delta network, the Pearl River Estuary, and the northern South China Sea within a
100 m isobath range, with a minimum grid size of 10 m within the PRE and 2 km resolution
in the radar observing area over the continental shelf (Figure 2). The topography data
are extracted by Google Earth. The bathymetry data used in the model is acquired from
Nautical Chart and bed sweeping data provided by CCCC (China Communications Con-
struction Company) first harbor engineering company limited. In the vertical dimension,
a terrain tracking coordinate system combining σ and S coordinates was divided into
20 layers, with resolutions up to 0.25 m. The model bottom friction stress is controlled by(

tbx, tby

)
= Cd

√
u2 + v2(u, v), where tbx, tby are the x and y components of bottom stresses.

The drag coefficient Cd is determined by matching a logarithmic bottom layer to the model
at a height zab above the bottom, i.e.,

Cd = max
(

k2/ ln (
zab
zo

)
2
, 0.0025

)
(1)

where k = 0.4 is the von Karman constant and zo is the bottom roughness parameter. The
length scale of zo set in our model is 0.001.

The river discharges of seven rivers, namely, Xijiang, Tanjiang, Beijiang, Liuxi, Zengjiang,
Dongjiang, and Hanjiang, were considered in the model. The climatic river discharge
data in the model were based on the daily discharges at the Gaoyao, Shijiao, and Boluo
hydrological stations during the 2003–2007 dry season (November to April) provided by
the Guangdong Hydrological Bureau. The TPXO8 tidal model, developed by Oregon
State University, was utilized as the tidal-driven force at the open boundary [33]. The
elevations along the open boundary were calculated by the Tide Model Driver (TMD) using
the TPXO8 tidal model. Eight major tidal constituents (M2, N2, S2, K2, K1, O1, P1, and
Q1) were included in the tidal drive, which was proven to be reasonable for simulating
tidal currents around the PRE [2,8]. Hourly wind fields, as the wind drive, were obtained
from Climate Forecast System Version 2 (CFSV2) of the National Centers for Environmental
Prediction (NCEP) [34]. The initial fields of temperature and salinity were generated by the

http://www.fvcom.smast.umassd.edu/
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climatology from Simple Ocean Data Assimilation (SODA) (https://climatedataguide.ucar.
edu/climate-data/soda-simple-ocean-data-assimilation/, accessed on 1 January 2022).
The model was run for 2 months to stabilize the river discharges and model states.
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In the observation–model comparisons, the control experiment was performed by
applying tidal drive, river discharge, and wind forces. In related sensitivity experiments,
one or more external forces listed in Table 1 were removed to assess the effect of several
physical factors, including topography, on tidal currents.

Table 1. Model setup for the sensitivity experiments.

Experiment Wind Tide River Discharge

CTR
√ √ √

No_wind
√ √

No_river
√ √

No_tide
√ √

Tide_only
√

2.4. Model Validation

As in [35], several statistical metrics were included to perform the model–observation
comparisons. The mean bias (MB) measures the mean difference between the mooring

https://climatedataguide.ucar.edu/climate-data/soda-simple-ocean-data-assimilation/
https://climatedataguide.ucar.edu/climate-data/soda-simple-ocean-data-assimilation/
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observation data and the FVCOM results. The correlation coefficient (CC) estimates the
collinearity between their time series. The root mean-squared difference (RMSD) is an
absolute measure of the distance between the observational data and the model results.
The coefficient of determination (R2) represents the proportion of variance in the response
variable explained by the predictor variable. Theskill (WS [36,37]) is a diagnostic index for
quantifying the extent to which the model results agree with the observational data, where
the WS varies from 0 to 1: WS = 1 indicates perfect consistency between the observational
data and the model results, whereas WS = 0 represents no agreement at all. These statistics
are defined as follows:

MB = 〈m− o〉 (2)

CC =
1
n

n

∑
i=1

(mi − 〈m〉)(oi − 〈o〉)/(σmσo) (3)

RMSD =

[
1
n

n

∑
i=1

(mi − oi)
2

]1/2

(4)

R2 = SSR/SST = 1− SSE/SST (5)

WS = 1− 〈(m− o)2〉
〈(|m− 〈o〉|+ |o− 〈o〉|)2〉

(6)

where m and o are the time series (n) for the modeled and observed variables, respectively,
and σm and σo are their respective standard deviations. Angled brackets 〈 〉 denote a mean
operator and n is the number of observational samples. SST represents the total sum of
squares. SSR represents the regression sum of squares and SSE represents the error sum
of squares.

3. Results
3.1. Comparison between Model Simulations and Mooring Observations

To validate the model performance, the model surface velocity (~1 m) was first com-
pared with the buoys. Figure 3 shows the monthly averaged velocities at stations A1, B1,
and B2. We see that the mean flows at A1 and B1 are relatively small, compared to B2.
Actually, the tidal currents within the PRE are greater than 1 m/s, with the largest tidal
constituent M2 accounting for more than 50% of the total amplitude (see Table 2). By
conducting a simple monthly average, the tidal flows are almost filtered out. At B2, the
buoy-derived and model mean velocities are consistent, in terms of the amplitude and
direction. Station B2 is located right on the main fairway and the exit of the Pearl River,
and therefore the mean flow velocity is up to 0.25 m/s.

Table 2. Statistics of buoy-derived and model tidal ellipses for M2, S2, O1, and K1 constituents.

Constituents Site Model Buoys

Semi-Major
(cm/s)

Semi-Minor
(cm/s)

Orientation
(◦)

Semi-Major
(cm/s)

Semi-Minor
(cm/s)

Orientation
(◦)

M2 B1 55.83 2.66 124.21 45.60 1.21 122.24
B2 37.45 7.10 85.64 35.47 5.84 88.86

S2 B1 29.94 0.66 125.42 24.25 0.63 122.97
B2 19.75 5.23 87.03 17.12 3.29 91.68

K1 B1 13.16 2.38 138.41 10.89 3.74 123.88
B2 12.16 2.86 86.13 13.33 2.62 85.66

O1 B1 17.50 0.81 128.68 12.12 0.61 120.28
B2 16.41 5.18 78.13 13.02 4.10 92.54
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Figure 4 compares the tidal ellipses of M2, S2, O1, and K1 constituents from the model
and buoys. Overall, the model results are in good agreement with the buoy data for all tidal
constituents, indicating that the model was able to satisfactorily resolve the tidal currents
in the PRE. The largest error appeared at station B1 for the M2 component, with the model
semi-major axis (55.83 cm/s) greater than that of the buoy (45.60 cm/s). For S2, O1, and
K1 constituents, the averaged errors of the semi-major axis, the semi-minor axis, and the
ellipse orientation were 3.2 cm/s, 3.4 cm/s, and 6.9◦. The detailed information of the tidal
ellipses is listed in Table 2, as well as the statistical metrics in Table 3, showing a very good
agreement between the model and the mooring observations.
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Table 3. Statistics of tidal currents (M2, S2, O1, and K1 constituents) for A1, B1, and B2.

Site Statistical Matrices

MB CC RMSD R2 WS
A1 (1st level) U 0.0002 0.927 0.026 0.848 0.952

V −0.0003 0.998 0.071 0.971 0.991
B1 U 0.0002 0.941 0.106 0.848 0.949

V −0.0002 0.958 0.12 0.902 0.971
B2 U −0.0001 0.951 0.03 0.856 0.951

V −0.0001 0.940 0.112 0.883 0.967

In this study, the vertical velocity profile was measured only at station A1 by the ADCP.
Figure 5 compares the tidal ellipses with depth derived from the ADCP and the model for
the M2, K1, O1, and S2 constituents. We can see that the model also satisfactorily simulated
the vertical profile of the tidal ellipses for all constituents. It can be noted that the ellipse
orientations matched well in the upper layer (e.g., at 5 m depth), but the model ellipses
were gradually deflected counterclockwise with depth compared to the ADCP. The largest
error was 8.14◦ for the M2 component at 11 m depth. The orientation errors might be due
to the inaccurate topography near station A1, located within the main fairway of the PRE.
Moreover, the modeled M2 flow has more tendency of left-land-side rotation toward the
bottom, which is from the bottom Ekman effects. This signal is less apparent in the ADCP
data, which implies too strong bottom friction for the model at this position. Both surface
buoys and ADCP measurements indicated that the M2 tidal constituent is the dominant
component of the tidal currents in the PRE. The model was able to reasonably simulate the
observed tidal currents and therefore can be used to validate the HF radar tidal currents
over the continental shelf, where no in situ observations are available.
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3.2. Comparison between Model Simulations and HF Radar Data

Unlike the in situ pointwise measurements at stations A1, B1, and B2, the HF radar
data covered a wide observing area, derived from remotely sensed electromagnetic echoes.
Therefore, it is well known that HF radar data may contain uncertain inversion errors due
to the environment, noise, inversion algorithms, etc. A comparison between the model
and HF radar data can provide a synoptical view of the radar data quality. Figure 6 shows
monthly averaged flows from radar measurements and the model. In general, the two
flow patterns are similar. A strong along-coast flow appears on the left-hand side of the
PRE mouth, with the largest velocity of more than 15 cm/s. This is caused by the Ekman
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effects that the northeasterly winds push the flow shoreward, forming the coastal jet. The
coastal jet is trapped within ~20 m isobath. Beyond 40 m isobaths, the velocities decrease
to ~5 cm/s, flowing toward the coast and merging into the coastal jet. Note that the
radar-derived coastal jet does not agree with the model, which will be analyzed in the next
section.
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Figure 7a compares the M2 ellipses calculated from the model and the HF radar data.
In the model results, the M2 ellipses were overall oriented northwestward. Along the coast
to the west shore of the PRE, the ellipses were deformed on different scales, affecting the
coastlines and islands. In contrast, the ellipses derived from the HF radar were quite differ-
ent from the model, indicating that the reflection from the complex coastline prevents HF
radar from delivering high-quality information for determining surface currents. Moving
seaward, the HF radar and model ellipses were quite consistent between latitudes 21◦ and
21.5◦ N, where the averaged water depth was 30–50 m with no islands embedded; thus,
the bathymetry effect became insignificant. Below latitude 21 ◦N, the HF radar ellipses
gradually turned northeastward and mismatched the model ellipses.

To explain the discrepancy between the HF radar and model ellipses, we defined an
ellipse error as

√
major_axis2 + minor_axis2 (Figure 7b). The HF radar observing domain

could be divided into three areas. In area A, the error was overall significant along the
coast, with the largest error of 0.06 m/s. In area B, the HF radar ellipses showed excellent
agreement with the model, except for one red spot that was obviously affected by a chain
of islands. In area C, the errors increased to 0.04–0.05 m/s, due to the orientation mismatch
shown in Figure 7a.

To further diagnose the source of errors, the radar, and model velocities were projected
radially according to the two radar stations at Shangchuan and Wanshan Islands (Figure 8).
The results show that both Shangchuan and Wanshan stations contained large errors in
area A, indicating that coastal islands and bathymetry significantly affected the data quality
in both stations. In area B, both stations had relatively small errors, which is reasonable as
the overall ellipse errors were small. It is noteworthy that the Shangchuan station showed
large errors in area C, whereas the Wanshan station did not. This confirms that the errors in
area C (Figure 7b) were mainly from the Shangchuan station.
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lines. The current anomaly was derived as Vradar − Vmodel.
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Figure 9 shows the scatter plots of the radial velocities derived from the model and
the two radar stations. Compared to the model results, the data quality of the Wanshan
station was systematically better than that of the Shangchuan station for all three areas.
Especially in area C, the radar velocities were underestimated by half compared to the
model (Figure 9a). In area A, the tidal currents were dynamically affected by coastlines,
topography, and river discharges. We know that the HF radar data were derived from elec-
tromagnetic echoes, which were apparently unable to resolve these physical and dynamical
factors. In area C, the currents were mainly determined by tides and winds, which can be
adequately captured by Doppler spectra; therefore, the HF radar should have been able to
resolve the currents in this region. Thus, on the basis of Figure 9a, we infer that the errors
of the Shangchuan station were likely caused by inversion algorithms.
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3.3. Sensitivity Model Experiments

To further analyze the characteristics of the tidal currents, we conducted a set of
sensitivity experiments to assess the effects of dynamical factors, such as winds, tides,
and river discharges. Figure 10 shows the monthly averaged flow fields for the sensitivity
experiments. In the control experiment (CTR), there was a strong alongshore current
flowing southwestward, driven by all forcings: river discharges, northeast winds, and tides.
Apparently, the northeast wind was the dominant forcing, pushing the currents toward
the coast. In the no_wind case, the river runoff was dominant, turning to the west of the
PRE and forming a plume flow pattern. Compared to the CTR, the alongshore current
in the no_wind case was further offshore. In the no_tide case, the flow pattern was very
similar to the CTR experiment, because the tide effect was mostly filtered out by monthly
averaging. In the no_river case, the wind effect also dominated, except that the river runoff
disappeared within the PRE (Figure 10h). To identify the effects of winds, tides, and river
discharges, the differences between the CTR and the three sensitivity experiments are
shown in the right panel of Figure 8. Obviously, the wind effect was dominant. It produced
northwestward currents in the offshore region, an alongshore current in the nearshore
region, and an inflow within the PRE, inhibiting river runoff (Figure 10c). As expected, the
tide had an insignificant effect on the monthly mean flow. The river discharge showed an
outflow from the PRE, turning toward the west shore. It can be noted that both no_wind
and no_river cases indicated the effects of river discharge, but their patterns were indeed
different. Figure 10b,i present the flow pattern without and with the nonlinear interactions
between the winds and river plume, respectively.

The standard deviations are calculated for each sensitivity experiment and the differ-
ence between the control and sensitivity experiments are presented in Figure 11. In the
control experiment, the standard deviation is high within the PRE related to the strong
tidal flow reversal. To the left-hand side of the PRE mouth, the coastal jet also shows a
relatively high standard deviation compared to the shelf. Over the shelf, the standard devi-
ation caused by tides and winds becomes weak and uniform, with an amplitude of about
0.3 cm/s. The differences between the control and sensitivity experiments demonstrate the
effect of the corresponding factors. We see that the effect of tides is mainly within the PRE
and coastal zones, while the river can affect the PRE and the coastal jet. In contrast, the
wind effect is dominated on the continental shelf.
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4. Conclusions

Since no in situ observations are available in the radar observing domain, a regional
high-resolution ocean model covering the entire PRE and its adjacent seas was first es-
tablished and validated with in situ measurements. The HF radar data quality was then
examined against the model simulations. Many previous studies on the flow field charac-
teristics of the PRE and its adjacent waters were based on model simulations [3–6]. In this
study, the FVCOM modeling skill assessment suggested that the model can satisfactorily
simulate the tidal currents in the PRE, and therefore it is used as a benchmark to assess the
HF radar data quality.

With a set of sensitivity experiments, we can diagnose the roles of tides, winds, river
discharges, and topography on the radar data quality. Although the radar measurements
are derived from the inversion algorithm of electromagnetic echoes, the radar data quality
apparently is affected by the above-mentioned physical factors. Based on the sensitivity
experiments, the coastal zone to the left-hand side of the PRE mouth is affected primarily
by river discharges and tides. These two factors, together with complex coastlines and
islands, prevent HF radar from delivering high-quality information for determining surface
currents. Over the shelf, the effects of river discharges and tides weakened, and the winds
become the major physical factors. The HF radars obtain very high-quality data in area
B, but poor data in area C. This does not make sense, as the physical processes in the two
areas are almost the same. The radial projection of model–radar comparisons indicates
that the main errors in area C are very likely from the Shangchuan radar. We note that the
model results are not perfect, but it provides useful information to identify the radar error
sources, which can be done by pointwise in situ observations.

In summary, the HF radar provided wide-range measurements of ocean surface cur-
rents and waves, while the radar data quality is subject to many potential errors [38],
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for example, the environmental noises, the inversion algorithms, the ocean physical fac-
tors, local topography, and so on. Given that the radar data were derived from airborne
electromagnetic echoes, the local bathymetry, and island effects apparently could not be
resolved. Therefore, a machine-learning-based inversion algorithm including traditional
electromagnetic analysis and a variety of physical processes is needed to develop and
improve radar data quality. So far, different types of machine-learning methods (clustering
neural network, convolution neural network, etc.) have been included in the extraction of
physical variables from the electromagnetic spectrum [39–43]. In this regard, this study is
a first step toward the full deployment of the PRE radar network. It provides a physical
analysis of tides, river discharges, winds, and topography, assesses the data quality of
the existing radars, and identifies the error sources, all of which is useful information to
proceed with the improvement of the radar network.
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