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Abstract: Liquefied hydrogen storage vessels (LHSVs) are vulnerable to surface-crack initiation,
propagation, and fracture on their surfaces because they are under high-pressure, low-temperature
conditions. Defects can also occur in the coatings of the storage containers used to prevent hydrogen
permeation, and these lead to surface defects such as pitting corrosions. Together, these increase
the probability of liquid hydrogen leaks and can cause serious accidents. Therefore, it is impor-
tant to detect surface defects during periodic surface inspections of LHSVs. Among the candidate
non-destructive evaluation (NDE) techniques, testing using guided waves (GWs) is effective for
detecting surface defects. Because of the ability of GWs to travel long distances without significant
acoustic attenuation, GW testing has attracted much attention as a promising structural monitoring
technique for LHSVs. In this study, an ultrasonic NDE method was designed for detecting surface
defects of 304SS plate, which is the main material used for fabricating LHSVs. It involves the use of
linear discriminant analysis (LDA) based on short-time Fourier transform (STFT) pixel information
produced from GW data. To accomplish this, the differences in the number of STFT pixels between
sound and defective specimens were used as a major factor in distinguishing the two groups. Conse-
quently, surface defects could be detected and classified with 97% accuracy by the newly developed
pixel-based mapping method. This indicates that the newly developed NDE method with LDA can
be used to detect defects and classify LHSVs as either sound or defective.

Keywords: non-destructive evaluation (NDE); guided wave (GW); liquefied hydrogen storage vessel
(LHSV); short-time Fourier transform (STFT); 304SS; linear discriminant analysis (LDA)

1. Introduction

Recently, due to environmental problems such as air pollution and global warming
caused by the abuse of fossil energy sources [1], interest in green and eco-friendly energy has
been increasing [2]. Accordingly, research on hydrogen energy, which is an environmentally
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friendly energy source, has been actively conducted [3,4]. Now, hydrogen is being used
in almost all fields, from the basic materials of the steel industry and semiconductors, to
fuel cells and energy systems in such as hydrogen vehicles [4]. In terms of the amount of
storage per weight or volume, the storage of hydrogen in a liquefied state is more effective
than in a metal hydride or pressurized gas state [5,6]. Pressurized storage vessels have been
used to store liquefied hydrogen at temperatures <20 K [7,8] because of its boiling point
(about 20 K), so liquefied hydrogen should be kept in a freezer. Hence, storage vessels for
liquefied hydrogen should have highly effective insulation properties to store or transfer
liquefied hydrogen [9]. In particular, because hydrogen leakage from a storage vessel could
cause a fire or explosion, containment safety is a critical factor.

Hydrogen affects the mechanical properties of materials, so that the quasi cleavage
caused by fractures due to the brittleness of the material surface in a hydrogen environment
can appear on fractured surfaces. This can cause brittleness due to a loss of elongation
due to hydrogen filling [10–12]. Moreover, in cases where steel equipment is exposed
to wet hydrogen sulfide (H2S), internal cracking occurs due to hydrogen-induced crack-
ing (HIC) [12–15]. Accordingly, it is necessary to understand the effect of the container
materials on mechanical properties according to the amount of hydrogen to solve this
problem. In addition, the defects (such as pitting corrosion) that occur in the film coating of
storage vessels, which are used to prevent hydrogen permeation, are one of the causes of
explosion [16–18]. Early detection of defects and the ability to monitor their growth using a
non-destructive evaluation (NDE) method is therefore required.

So far, because related research on the safety of liquefied hydrogen storage vessels
(LHSVs) has been focused on improving storage efficiency, NDE methods suitable for
LHSVs have not yet been sufficiently developed. Beyer et al. [19] reported the feasibility
of measuring hydrogen effusion in austenitic stainless steel (1.4301) using neutron radio-
graphy at a research reactor. Bae et al. [20] non-destructively evaluated the damage and
mechanical properties of hydrogen-filled stainless steel 304 using acoustic emission and
ultrasound. Hwang et al. [21] employed the synthetic aperture focusing technique (SAFT)
to describe HIC images, with location and size information close to the actual defects, and
determined the presence or absence of stepwise cracks using a technique for identification
of flaw signals using deconvolution (TIFD). As shown in these previous studies, radiog-
raphy, acoustic emission, and ultrasound have been used for the NDE of LHSVs. Other
techniques, such as eddy current testing, magnetic particle inspection, and liquid penetrate
testing, can be applied non-destructively to detect defects in LHSVs [22].

Among the NDE techniques, ultrasonic testing has been widely used because of its
advantages of being fast, safe, cost-effective, and easy to use [23]. However, the pulse-
echo method, which uses one ultrasonic sensor, is unsuitable for LHSVs unless high-
frequency ultrasound is used. This is because the shape of LHSVs is cylindrical, and the
walls are usually ~3 mm thick, depending on the working pressure [18,24], so there is a
technical limit to applying the conventional ultrasonic pulse reflection method using a
longitudinal or transverse wave. In addition, at high frequency, it is difficult to evaluate
the defects suggested in the received signal obtained by the pulse-echo method because
of its high acoustic impedance (about 50 kg/m2 s). Guided waves (GWs) propagated
within a geometric structure have been applied to a wide range of items in industrial fields
(e.g., pipes, steam generator tubes, and thin plates) because of the superior characteristics
of this approach for inspecting long-range specimens [25–29]. Unlike other ultrasonic
testing methods, ultrasonic GWs can be used on all types of specimens without removing
insulation or coatings [30–32]. In addition, because the acoustic attenuation is relatively
small, it is not necessary to scan every part of the vessel, even when detecting defects in
large vessels. Because there are several solutions to the propagation equation of ultrasonic
GWs, various propagation modes can be found. Therefore, high-performance and high-
efficiency results can be obtained by selecting the propagation mode most suitable for the
test object.
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To improve the defect detection ability of the technique using guided ultrasound,
short-time Fourier transform (STFT) was employed to analyze the guided ultrasound
mode and linear discriminant analysis (LDA) for classification according to the presence or
absence of defects. Signals in the time–frequency domain obtained using STFT displayed
information on arrival times according to frequencies, and the dispersion patterns of
each mode could be clearly displayed [33]. LDA is a pattern-classification method that is
suitable for two-group classification, such as the presence or absence of defects [34–36].
Various signal processing methods, such as wavelet transform, Hilbert transform, and
empirical mode decomposition, have been widely used in the field of ultrasonic NDT
technologies. In this study, a new machine learning method based on LDA with GW
data for classifying defective specimens from sound specimens was developed because
the LDA-based classifier is a well-known pattern classifier, and LDA is able to discover a
linear combination of features that distinguish or classify two or more classes of events
or objects [35]. Therefore, by analyzing the signal properties implemented in the time–
frequency domain, features were extracted from the pixel information in the described
images. These were used to find a linear combination of features better able to separate the
two classes.

In this study, to develop an NDE method for LHSVs, ultrasonic GW techniques
based on LDA and STFT were employed. First, artificial defects of various sizes were
fabricated in specimens of 304SS plate such as those used for LHSVs. Second, the STFT was
applied to the received ultrasonic GW signals that passed through defects; the differences
in the STFT results between specimens with and without defects were analyzed. Finally,
a model capable of detecting the defects based on STFT and LDA was developed, and
its performance was evaluated. By verifying the results, we confirmed the feasibility of
detecting defects in a liquid hydrogen container by applying the experimental techniques
and analysis methods used in this study.

2. Materials and Methods
2.1. Generation of Ultrasonic GWs

Unlike bulk ultrasonic waves, an ultrasonic GW is generated by the summation of
various propagating waves within an interface or thin plate, as shown in Figure 1 [27].
There are many propagating modes of ultrasonic GWs that vary according to the structural
shapes of objects. Ultrasonic GWs can be generated by various methods, such as using a
longitudinal ultrasonic transducer with a wedge, an electromagnetic acoustic transducer,
and array transducers [37]. In this study, to generate ultrasonic GWs, we used a wedge that
enables conversion of the incident longitudinal wave to a plate wave or Rayleigh wave at
the interface between the wedge and the specimen. The optimal angle of the wedge for
generating the GW can be determined using Snell’s law.

Figure 1. Ultrasonic transducer with wedge to generate ultrasonic GW [37].
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Ultrasonic waves have three propagation modes: longitudinal, torsional, and flexu-
ral [38]. Moreover, these modes can be classified by their degree of circumferential direction.
Longitudinal and torsional modes show symmetric propagation, and the flexural mode
shows asymmetric propagation. The longitudinal mode can occur under the condition that
n = 0, where n is the degree of the circumferential direction. By solving the characteristic
equation for longitudinal mode, the dispersion of the phase velocity can be calculated [39].

The optimal frequency can be determined by analysis of the dispersion curve de-
scribing the relation between the phase or group velocities and the frequency at a certain
thickness of the object of concern. In this study, the test object considered was a 3 mm thick
304SS plate.

2.2. Short-Time Fourier Transform

Ultrasonic wave signals can be analyzed in the time and frequency domains. Time-of-
flight and amplitude can be determined in time-domain analysis, and the components of
frequencies and their magnitudes can be found from the frequency-domain analysis. The
frequency spectrum of the original signal ( f (t)) can be obtained by a Fourier transform as
defined by [33]

F(ω) =
∫ +∞

−∞
f (t)e−iwtdt (1)

where F(ω) is the amplitude of the component of frequency, ω is the angular frequency, and
t is time. The original signal, f (t), can be reconstructed by the summation of all frequency
components. One of the drawbacks of the Fourier transform is that it does not offer any
information about the original signal; hence, it is not useful for analyzing time-variant
and non-stationary signals. From the Fourier transform of a continuous signal, only the
frequency information at several time intervals can be acquired. In this study, to overcome
this limitation, the STFT was applied to the received ultrasonic GW signals propagated
through specimens. The STFT for a window function (h) is defined [33] as:

STFT(ω, τ) =
∫ +∞

−∞
f (t)h(τ − t)e−iwtdt (2)

where the term, f (t)h(τ − t), has some information about the original signal f (t) at time τ.
The result of STFT(ω, τ) presents information about the original signal f (t) at time τ and
frequency ω. Furthermore, the original signal f (t) can be reconstructed from a combination
of localized information in the time and frequency domains [33], as indicated below.

f (τ) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
STFT(ω, τ)ψ(τ − u)e−iwtdwdt (3)

The resulting image of the STFT of the received ultrasonic GW signal propagated
through the 304SS plate represents the relationship between time and frequency; it is
possible to express the time information according to frequency. Furthermore, dispersion
characteristics can be seen clearly in each wave propagation mode. The dispersion rate
depends on the propagation distance of the ultrasonic GW, but the dispersion trend is
preserved. Hence, it is possible to classify the defects by analyzing the mode changes in
the resulting image of the STFT of the ultrasonic GW signals from specimens with and
without defects.

By analyzing the result in the time–frequency domain, it can be depicted as an image
diagram to confirm the mode conversion difference. In a time–frequency image map, the
color of each pixel represents an amplitude value for that time and frequency. Therefore,
by comparing the difference in the number of pixels in the respective image diagrams,
it can be confirmed that the color of the pixels in the image diagram varies according to
the difference in the presence or absence of defects. Through this process, samples can
be classified according to the presence or absence of defects from the STFT result of the
received guided ultrasound.
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2.3. Linear Discriminant Analysis

An attempt was made to classify the defects of specimens by means of the pixel
numbers of an image map presenting the modes of ultrasonic GWs resulting from the
STFT. For this purpose, LDA (a technique used for data classification and dimensionality
reduction) was employed to find a linear combination of features [34]. This is a statistical
method that reduces the dimensions of the feature vector by projecting the input data
to a subspace consisting of the most discriminant directions maximizing the ratio of the
variance between the classes to the variance within the classes in any particular data set. In
this study, the experimental data of specimens with and without defects were classified
using the discriminant line maximizing the separability of variance between two classes:
with and without defects. To find the line that best separates the two groups for with-defect
and no-defect signals, the variance between groups should be large, and the variance
within a group should be small. Therefore, LDA (a method of reducing the dimensions by
orthogonal projection to the principal axis to maximize the efficiency of separation into two
groups) was used to analyze and classify ultrasonic signals for the presence or absence of
defects [35,36].

3. Ultrasonic GW System

The experimental setup we used for measuring the ultrasonic GW is shown in Figure 2a.
It consisted of a pulser/receiver (HIS2, Krautkramer Japan Co., Ltd., Tokyo, Japan) to excite
ultrasonic transducers (GAMMA series, KB-Aerotech, Lewistown, Pennsylvania, USA) and an
oscilloscope (WaveRunner 62Xi, Teledyne LeCroy GmbH, Heidelberg, Germany) to display
and acquire the receiving signals. The angle of incidence for generating the guided ultrasonic
waves can be obtained using Snell’s law. To minimize the noise received, ultrasonic simulation
was performed, so that reception of the noise signal reflected inside the wedge was avoided as
much as possible. As a result, Plexiglas wedges with an incident angle of 53◦ were fabricated
and attached to the front side of ultrasonic transducers, of which the nominal frequency was
2.25 MHz. The width, length, and thickness of the 304SS plates were 1200, 1200, and 3 mm,
respectively.

Five kinds of artificial defects were fabricated on the surface of the metal specimens by
the electrical discharge machining (EDM) method, as shown in Table 1. The defects were
placed between the ultrasonic transmitter (Tx) and the receiver (Rx), and three directions of
propagation of the ultrasound GW were selected: 0◦ (vertical), 45◦, and 90◦ (horizontal) for
the longest side of the defects, as shown in Figure 2b. All the ultrasonic GW signals were
analyzed by the STFT algorithm according to their propagation angles.

Two types of data sets were acquired: one for calibrating the linear discriminant model
and the other for validating the newly developed model. The number of data for each
group were 200 and 100, respectively. The calibrating data set consisted of 100 data from
no-defect specimens and 100 data from with-defect specimens. The validation data set
consisted of 50 data from no-defect specimens and 50 from with-defect specimens.

Table 1. Dimensions of the five types of artificial defects.

Defect Number Length ×Width × Depth (mm)

#1 10 × 0.2 × 0.3
#2 10 × 0.4 × 0.3
#3 10 × 0.6 × 0.3
#4 10 × 0.2 × 0.05
#5 10 × 0.2 × 0.5



Appl. Sci. 2022, 12, 6502 6 of 12

Figure 2. (a) Photograph of the experimental setup and (b) measuring angles between each ultrasonic
transducer and a defect.

4. Results and Discussion
4.1. Discriminant Factor for Defects

Commercial software, “Disperse Version 2.0” (Imperial College NDT Lab, London,
UK), was used to obtain the dispersion curve for the 3 mm thick 304SS plate, as shown in
Figure 3. Because group velocities of S and A modes show constant values above 2.25 MHz,
as the optimal frequency of the ultrasonic GW for the 3 mm thick 304SS plate, a pair of 2.25
MHz ultrasonic transducers was selected.

The ultrasonic GW signals generated using the ultrasonic transducers, and then re-
ceived from test specimens with and without defects, were compared. The STFT algorithm
was applied to all the measured data with a window length of 50. To consider the feasibility
of the STFT for detecting defects, the signals measured from specimens with and without
defects were compared. The results are shown in Figure 4a,b, which show the received
ultrasonic GW signals for the specimens without and with defects in the time domain,
respectively. It was difficult to recognize the significant differences between sound and
defective specimens with the naked eye because of the small defect size. Figure 4c,d show
the results of the STFT for the ultrasonic GW signals received from specimens with and
without defects, respectively. The window length for the STFT was 500. In Figure 4c, the
symmetric (red part in the upper left, S0) and asymmetric (red part in the upper right, A0)
modes appear, and both modes are mixed in Figure 4d. Nevertheless, it was difficult to
distinguish the two conditions from these results.
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Figure 3. Calculation result of dispersion curve for 3 mm thick 304SS plate.

Figure 4. (a) Received ultrasonic GW signals from specimens without and (b) with defects in the time
domain, and (c) STFT results for specimens without and (d) with defects.

To find a factor for discriminating defects, the number of pixels in the area of each
mode was counted in the resulting image after the STFT. Given that the area of modes (S0
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and A0) in a specimen without defects is larger than that of a specimen with defects, as
a discriminant factor, the differences in the number of pixels (R) of mode areas from the
resulting images of STFT were defined by Equation (4):

R(i, j) = |B(i, j)− S(i, j)| (4)

where R(i, j) is the difference in the number of pixels of the mode area in the resulting
image of the STFT between that without defects (B(i, j)) and that with defects (S(i, j)).
Figure 5 shows the results of applying Equation (4) to the specimens with and without
defects, and some differences in the number of pixels between specimens with and without
defects were found. If Equation (4) was applied to the same specimens, the differences in
the number of pixels would be zero or very small.

Figure 5. Results of applying Equation (4) to the images resulting from the STFT from test specimens
without and with defects.

4.2. Discriminant Analysis for Classifying Defects

Ultrasonic GWs through the defects (numbered #1 to #5) were measured ten times
for each defect at three measuring angles (0◦, 45◦, and 90◦), as illustrated in Figure 2b.
Figure 6a,b show the results of the LDA in the S0 and A0 modes, respectively, obtained
by the STFT between specimens with and without defects. The lines in Figure 6a,b are
discriminant lines obtained by the LDA to classify the defects.

Figure 6. Results of LDA in (a) S0 and (b) A0 mode.
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In the two modes, the average discrimination rate by the LDA was 80.3% for S0 mode
and 74.0% for A0 mode, as summarized in Table 2.

Table 2. Average classification rates for defects by LDA in S0 and A0 modes.

S0 Mode Classification Rate A0 Mode Classification Rate

No defects (150) 83.4% No defects (150) 80.7%
With defects (150) 77.4% With defects (150) 67.3%

Total (300) 80.3% Total (300) 74.0%

Table 2 shows that the classification rates for defects in the S0 and A0 modes were
80.3% and 74.0%, respectively. We thought that the LDA using S0 mode would be useful
for the classification of no-defect specimens. As a method to classify the defects using
LDA, first, all specimens were classified in S0 mode. Second, misclassified specimens were
re-classified in A0 mode. For this purpose, the experimental data were randomly divided
into two groups. As mentioned above, for the calibration set, no- and with-defect data were
classified using the discriminant line in S0 mode, as shown in Figure 7a. Then, misclassified
defect data (defect data within the no-defect region in Figure 7a) were classified again using
the discriminant line in A0 mode, as shown in Figure 7b. From Figure 7a and Table 3, 15
no-defect data and 18 with-defect data were misclassified.

Figure 7. Classification results of (a) calibration data set classified by LDA in S0 mode and (b) data in
the calibration data set misclassified by LDA in A0 mode.

Table 3. Classification results for calibrating set by LDA in S0 and A0 modes.

Step I in S0 Mode Misclassified Data Step II in A0 Mode Misclassified Data

No defects (100) 19 No defects (19) 4
With defects (100) 25 With defects (25) 5

Total (200) 43 Total (43) 9

Figure 7b shows the classification results for misclassified data in the calibrating data
set by LDA in A0 mode. The defect data misclassified by LDA in S0 mode were classified
as defect data by LDA in A0 mode. From the results of Figure 7a,b, the classification rate
for the calibrating set was 95.5%.

To validate the two newly developed discriminant lines in Figure 7a, the validation
data set was applied to them. Table 4 shows the validation results of the newly developed
LDA models for classifying the defects. The final classification rate was 97% (97 of 100).
Based on the above results, we determined that the artificial defects of the 304SS specimen
were successfully classified by the LDA model based on the difference in the number of
pixels obtained by STFT between with-defect and no-defect specimens.
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Table 4. Classification results of the newly developed LDA model for classifying the defects by
validation set.

Step I in S0 Mode Misclassified Data Step II in S0 Mode Misclassified Data

No defects (50) 4 No defects (4) 3
With defects (50) 7 With defects (7) 0

Total (100) 11 Total (11) 3

5. Conclusions

In this study, an ultrasonic GW technique was applied to detect artificial defects in
304SS plate specimens used in an LHSV. The ultrasonic GWs were generated and received
by 2.25 MHz ultrasonic transducers with wedges. Five kinds of defects were artificially
fabricated on the surfaces of plate specimens. The angles of transmission and reception
of ultrasonic GWs through the defects were 0◦, 45◦, and 90◦. As a parameter used to
classify the defects, the differences in the number of pixels obtained by the STFT of the
received ultrasonic GW signals between no- and with-defect specimens were used. A linear
discriminant analysis was performed to classify the defects using the differences in S0 and
A0 modes. The experimental data were divided into two groups: one was a calibration
set and the other a validation set. An LDA model for the classification of defects was
developed and validated. The classification rate for the validation set was about 97%. As a
result, the classification accuracy of the proposed method, as shown by the final verification
result, is very high compared with those of methods designed in other studies [40–43]. This
result demonstrated that the defects of a specimen to be used for an LHSV can be classified
with high accuracy using the newly developed LDA model. Additionally, as it shows high
accuracy, we suggest that LDA, which has not been studied much for detecting defects
by classifying signals until now, has the potential to be widely used together with other
techniques [40,43], if conditions are met.

In the future, non-destructive evaluation studies are planned to detect internal defects
in the same environmental conditions as the temperature and pressure of the LHSV being
operated. In addition, based on this study, pixel-based ultrasound signal detection technol-
ogy is expected to expand to research that increases accuracy by applying machine learning
and deep learning models.
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