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Abstract: This paper aims to investigate the optimal sorting of orders reflecting on the material
changing lead time over the machines in the roofing manufacturing industry. Specifically, a number of
jobs were sorted together based on the material used and then consolidated for subsequent processes,
i.e., assigned to the corresponding machines. To achieve the optimal sorting for the received orders, a
combinatorial dispatch rule was proposed, which were Earliest Due Date (EDD), First In First Out
(FIFO), and Shortest Processing Time (SPT). The sequence of orders organized by the scheduling
algorithm was able to minimize the changing material lead time and also maximize the number
of orders to be scheduled in the production. Consequently, on-time delivery could be achieved.
Tests based on real data have been set up to evaluate the performance of the proposed algorithm in
sorting the received orders. As a result, the proposed algorithm has successfully reduced the material
changing lead time by 47.3% and 40% in the first and second tests, respectively.

Keywords: manufacturing industry; dispatch rule; Earliest Due Date (EDD); First In First Out (FIFO);
Shortest Processing Time (SPT); Make-To-Order (MTO)

1. Introduction

In the era of the Fourth Industrial Revolution, many countries aspire to embrace the
digital transformation of manufacturing or production plants. However, many Small and
Medium Industries (SMI) or Small and Medium Enterprises (SME) are not ready for the
industrial revolution, especially in Malaysia [1]. In recent years, there are many Industry
4.0-related programs and incentives offered by the government, such as the Readiness
Assessment, Intervention Fund, Domestic Investment Fund (DISF), and Automation Capital
Allowance (Automation CA), with the aim of assisting the SMIs and SMEs to work towards
Industry 4.0 [2]. Industry 4.0 growth is inevitable and may impact the traditional business
manufacturing industry that is labor-intensive and cost-sensitive [3]. In fact, market demand
is very dependent on the economic conditions, the rise of new markets, and product
diversity [4]. The integration of planning and scheduling not only satisfies customers’
requirements but also optimizes the resources and achieves on-time delivery. Insufficient
modal and lack of advanced technology are some of the main reasons that many old
players in the industry resist the digital transformation [5]. First of all, when SMEs begin
the transition to Industry 4.0, they refuse to start from scratch, and secondly, SMEs tend to
become overwhelmed by the multitude of technologies that are currently available on the
market [6]. Ultimately, most of the processes in the manufacturing industry are similar as
in Figure 1.
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Figure 1 shows a simple process of production. It shows that proper production plan-
ning is important because each step of the process affects the others. In conjunction with
this, the main goal of production planning is to achieve high customer satisfaction with
a low cost [8]. Production planning can be divided into the product structure, material
requirement planning, and uncertainty management [9]. As the customer demand is in-
creasing, the manufacturers realize that most of them are facing the same problem in the
production stage. This resulted in the emergence of modern production planning tools and
methods in the late 19th century.

In the past, traditional manufacturing systems focused on reducing cost and improving
efficiency. However, they have not been able to follow the current trends, such as agile
manufacturing, networked manufacture, mass customization, intelligent manufacture, and
et cetera [10]. In fear of being eliminated by the competitors, a lot of SMIs and SMEs were
forced to transform their business model. The transformation allowed them to cater to
fluid customer demand. However, their demands may change often and dramatically in
some cases [11].

Resource limitation is one of the common challenges. Hence, scheduling is essential
to handle the allocation of resources based on the job sequence [12]. The output of the
schedules is a production plan to estimate the start and end times for every job and machine.
The jobs are planned according to certain optimization criteria while the scheduling per-
formance is evaluated based on performance indicators such as costs, resource utilization,
and adherence to deadlines. To strengthen the competitiveness of Malaysia as a production
location, the manufacturing industry has to respond quickly and more flexibly according
to the business models.

The objectives of production planning are to reduce inventory levels, increase ma-
chine utilization, and improve customer responsiveness [13]. Based on these objectives,
many manufacturers are willing to provide customization services to improve customers’
satisfaction [14]. For example, Make-To-Order (MTO) is a business model that refers to a
just-in-time philosophy due to the zero-inventory level between the stage of production
and distribution [15]. This is to cater to personal customization, as shown in Figure 2.
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Figure 2. Manual production planning.

Due to the different requirements of every customer, production has to produce
products according to the needs of the customer. In this situation, productivity is restricted
due to the maximum capacity of each machine. This is where material management plays
an important role in production. When a manufacturing process has ended for one order,
the next order may require another raw material. This may cause a long changing material
lead time, as the operator has to request the raw material needed, and then perform material
handling until the machine is set up.

Besides that, the complexity of sorting the orders at the stage of production planning
will be higher due to the different order and delivery dates set by the customers. This
may also affect the on-time delivery. It is difficult to achieve sorting optimization with so
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many different parameters in the production planning phase, such as time, product quality,
and profit. Moreover, the performance of production planning will be inconsistent due to
human involvement. Figure 2 shows the manual production planning:

Traditionally, once a customer makes an order, the order is submitted to the production
office. The production office personnel manually assign the material according to the
customer’s request based on experience. Then, those orders are sent to the planner to
arrange the production schedule. However, each order is printed out as a hard copy. If there
are any amendments, they are recorded on the hard copy, which is inconvenient. From the
system layer point of view, the process of the data transfer still requires human involvement.

The optimization of production scheduling is viewed as a complicated task. Therefore,
most of the schedulers prefer to employ simulation-based software or a manual decision-
making process [16]. In this work, we integrated domain expert knowledge to generate the
decisions. Priority dispatching rules were used for production planning, such as First-in-
First Out (FIFO), Shortest Processing Time (SPT), and Earliest Due Date (EDD). The main
objective of this research is to achieve sorting optimization in order to reduce the material
changing lead time in the production and also to achieve On-Time Delivery expectations by
customers. We adopted the methodology proposed by [17] in the case study of the roofing
manufacturing industry. Oluyisola et al. proposed the following steps:

• Step 1. Preliminary study.
• Step 2. System requirements specification.
• Step 3. Identify data sources and choose relevant analytics that fits the problem.
• Step 4. Design system and data architecture with consideration for integration with

extant systems.
• Step 5. Implement with considerations for development methodologies, continuous

innovation, and long-term adaptability.

Based on the aforementioned objective, the main contribution of our work is to im-
plement a digital transformation on the legacy machines in the roofing manufacturing
industry. This is a case study that used real data, and which, in the near future, can be
generalized to a large-scale project.

2. Related Work
2.1. An Overview of SMIs and SMEs in Malaysia

According to the World Bank, approximately 98.5% of the business establishments in
Malaysia are SMEs, which proves the importance of SMEs in Malaysia [18]. However, they
are lacking resources in some respects, such as talent, funds, and technology. Table 1 shows
the definition of SMEs in Malaysia.

Table 1. Definition of SMEs in Malaysia. Adapted with permission from Ref. [19]. Copyright 2020
SME Corp. Malaysia Secretariat.

Category Manufacturing Services and Other Sectors

Medium
Sales Turnover: RM15 mil to RM50 mil

OR
Employees: From 75 to 200 people

Sales Turnover: RM3 mil to RM20 mil
OR

Employees: From 75 to 200 people

Small
Sales Turnover: RM300,000 to RM 15 mil

OR
Employees: From 5 to 75 people

Sales Turnover: RM300,000 to RM3 mil
OR

Employees: From 5 to 30 people

Micro
Sales Turnover: Less than RM300,000

OR
Employees: Less than 5 people

Sales Turnover: Less than RM300,000
OR

Employees: Less than 5 people

The definition of the SME in Malaysia was reviewed in 2013. Lately, it was endorsed
during the 14th NSDC Meeting in July 2013, and all sectors were covered. Table 1 shows that
SMEs are defined as a company with a sales turnover that is not more than RM50 million
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or where the maximum number of full-time employees is 200 people in the manufacturing
sector. Besides that, for the services and other sectors, SMEs are defined as the company’s
sales turnover, not more than RM20 million, or the number of full-time employees not more
than 75 people. Due to the ever-changing market demand, it will be incredibly challenging
for SMEs to adopt Industry 4.0 effectively. With the consideration of return-on-investment,
some may remain with their existing technology if they can still survive in the moment.

2.2. Optimization Algorithm for Scheduling

Production scheduling needs to send the information to the machine at the shop floor
once the orders are scheduled and update the status once the order has been done. There
are two major scheduling algorithms, which are the exact optimization methods and the
approximate methods. Figure 3 shows an overview of the scheduling algorithms.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

The definition of the SME in Malaysia was reviewed in 2013. Lately, it was endorsed 

during the 14th NSDC Meeting in July 2013, and all sectors were covered. Table 1 shows 

that SMEs are defined as a company with a sales turnover that is not more than RM50 

million or where the maximum number of full-time employees is 200 people in the man-

ufacturing sector. Besides that, for the services and other sectors, SMEs are defined as the 

company’s sales turnover, not more than RM20 million, or the number of full-time em-

ployees not more than 75 people. Due to the ever-changing market demand, it will be 

incredibly challenging for SMEs to adopt Industry 4.0 effectively. With the consideration 

of return-on-investment, some may remain with their existing technology if they can still 

survive in the moment. 

2.2. Optimization Algorithm for Scheduling 

Production scheduling needs to send the information to the machine at the shop floor 

once the orders are scheduled and update the status once the order has been done. There 

are two major scheduling algorithms, which are the exact optimization methods and the 

approximate methods. Figure 3 shows an overview of the scheduling algorithms. 

 

Figure 3. Types of scheduling algorithms. Adapted with permission from Ref. [20]. Copyright 2019 

Yisheng Zou. 

The exact optimization methods were applied to solve the scheduling problem from 

the 1950s to the 1980s. For example, the efficient rule method, the mathematical program-

ming method, and the branch and bound method. As the scheduling problems become 

more complex, the exact optimization method is not suitable for a practical scheduling 

problem because it is unable to reach a solution efficiently [21]. 

The past decade has seen the rapid development of the approximate methods in solv-

ing scheduling problems. For example, constructive methods, artificial intelligence meth-

ods, local search methods, and meta-heuristic methods. 

Generally, the exact optimization algorithm, such as the mathematical programming 

method and the branch and bound method, are more suitable to solve problems with a 

small size. In contrast, approximate algorithms such as metaheuristic methods can solve 

large-scale problems [22]. However, no single approach can solve all Job Shop Scheduling 

(JSP) problems [23]. Hence, hybrid methods are used for different situations in JSPs. 

2.2.1. Artificial Intelligence (AI) Methods, Local Search Methods, and Metaheuristic 

Methods 

Figure 3. Types of scheduling algorithms. Adapted with permission from Ref. [20]. Copyright 2019
Yisheng Zou.

The exact optimization methods were applied to solve the scheduling problem from the
1950s to the 1980s. For example, the efficient rule method, the mathematical programming
method, and the branch and bound method. As the scheduling problems become more
complex, the exact optimization method is not suitable for a practical scheduling problem
because it is unable to reach a solution efficiently [21].

The past decade has seen the rapid development of the approximate methods in
solving scheduling problems. For example, constructive methods, artificial intelligence
methods, local search methods, and meta-heuristic methods.

Generally, the exact optimization algorithm, such as the mathematical programming
method and the branch and bound method, are more suitable to solve problems with a
small size. In contrast, approximate algorithms such as metaheuristic methods can solve
large-scale problems [22]. However, no single approach can solve all Job Shop Scheduling
(JSP) problems [23]. Hence, hybrid methods are used for different situations in JSPs.

2.2.1. Artificial Intelligence (AI) Methods, Local Search Methods, and
Metaheuristic Methods

Recent advances in AI have enabled intelligent solutions to handle scheduling prob-
lems in real-time [24]. However, the AI methods require a distinct cyclical nature that
demands constant iteration, tuning, and improvement to find the best solution. The local
search method is a greedy methodology used to solve a big combinatorial optimization
problem within a reasonable time [25]. As the local search method is very dependent on
time, it can achieve optimization if there is sufficient time given. Metaheuristic methods
use a set of intelligent strategies to explore and exploit the search base to find the opti-
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mal solution [26]. Many metaheuristic methods focus on reducing the makespan in flow
shops [27]. The metaheuristic method can solve large and more complex problems than
the local search method. Other than that, Chiang et al. [28] applied clustering methods to
optimize storage location planning and consolidated picking strategy for 98 orders with a
preplanned storage space. This indicates that the time required for local search methods or
metaheuristic methods can be saved with the help of domain knowledge.

In summary, AI methods are suitable for dynamic job shops to deal with random job
arrivals with unexpected machine breakdowns. Local search methods are more efficient to
solve large combinatorial optimization problems, while metaheuristic methods are more
efficient to solve larger and more complex optimization problems in a reasonable time
frame. These algorithms are usually iteratively learnt and modified to reach the desired
result. This may not be suitable to implement in our case study that sorts orders based on
their urgency and product customization.

2.2.2. Dispatch Rule Algorithms in Constructive Methods

The constructive method is one of the methods in the approximate methods that solves
the JSP efficiently in a dynamic environment [29]. Since production in the roofing industry
relies on individual customers [7], i.e., the dynamic environment, constructive methods
were utilized for our scheduling algorithm. One of them is the priority dispatch rule. As a
priority function, dispatch rules calculate the priority values of the operation so that the
operation will process from the job with highest priority [30]. In manufacturing, especially
in the roofing industry, the business model is based on the MTO. Hence, our scheduling
algorithm consists of a set of priority rules to schedule the jobs to ensure the products are
delivered based on the customer’s requirement. Subsequently, customer satisfaction can
also be improved.

3. Methods
3.1. Definition

In this work, many items may belong to one order, and each order was assigned to one
job J when m machines {M1, M2, . . . , Mm} were available. Each job requires one machine
to complete the process of production at a time. In the development of the production
scheduling system, there are a few parameters that require input from users, such as holiday
information, shift information, overtime shift information, and machine information. The
definition and notation are shown as below:

Pi = The processing time for job i;
Df = Due date, i.e., the delivery date of the finished goods;
STi = Setup time; the time for setup, including material change;
Ci = Completion time for job i;
Ci = di + Ci,j-1 + Pij (SOi + Pi +STi).

To solve the sorting optimization, reducing the changing material lead time and
achieving on-time delivery are essential. There were a few sequencing and scheduling
rules used in the algorithm. The Dispatch Rule Algorithms are shown as Table 2.

Table 2. Formalization for Dispatch Rule Algorithms.

Rule Definition Description

(1) FIFO Ci,j−1 Jobs are scheduled for work in the same sequence as they arrive at the machine.
(2) SPT Pij Jobs are scheduled in ascending order of processing times.
(3) EDD di Jobs are scheduled in ascending order of due dates.

Some other significant functions used for analysis are as shown below:

• Makespan time: the length of time that elapses from the start of work to the end.

Mt = Ft − St
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• Setup time: setup time that includes material changing time.
• Total setup time: the sum of setup time

TSTi = ΣSTi

3.2. Assumption

The problem of scheduling normally can be solved by replacing another machine
where the factory may have several machines to manufacture the same product. The
following assumptions are commonly found in the literature for planning theory:

(1) Machines are always available and do not break down suddenly.
(2) Each machine can only process one job at a time.
(3) No changes are allowed once the schedule is confirmed by the manager.
(4) Every material data extracted from the ERP System is the latest data.
(5) Material is always available for production
(6) All finished goods produced on that date will be delivered to the customer.
(7) Inputs such as machine detail, holiday detail, shift detail, and machine breakdown

detail are keyed in by the user and we expect all the inputs are correct
(8) Unscheduled orders that have the same due date are postponed to the next day.
(9) The Application Programming Interface (API) for production sheets only generates

confirmed orders.
(10) All confirmed orders on a selected day belong to a day prior
(11) The expected setup time including material change is fixed in a time of 15 min
(12) Machine capacity in a time range from 8 am to 5 pm is 45k square feet.

3.3. Dispatch Rule Algorithms

Dispatch rule algorithms use priority levels to solve JSP problems. For example, First-
in-First Out (FIFO), Earliest Due Date (EDD), and Shortest Processing Time (SPT) can be
adopted to determine which job is to be executed next during the production stage if there
are available machines [31]. Manufacturers are responsible to set their priority level to
determine the rules of their own JSP. Previous study has shown that the dispatch rule can
perform well when using one or multiple fixed rules in solving the JSP [32,33]. Most of
them achieved satisfactory results in their research.

FIFO is the first basic rule in the dispatch rule algorithm. FIFO processes jobs in an
orderly manner according to the first arrival of the customer’s order. There were many
researchers who used FIFO as the basic rules [34–39] due to its simple algorithm. It has
no complexity in decision making [40]. For every scheduling algorithm, FIFO can be the
baseline algorithm to measure the performance for decision making. EDD arranges the
orders according to the Earliest Due Date. Previous research showed that it could improve
on-time performance [41–44]. Lastly, the Shortest Processing Time (SPT) algorithm executes
jobs that have the Shortest Processing Time first. A random initialization process can be
used by the SPT dispatch rule to optimize the makespan [45]. Besides that, there are many
combinatorial dispatch rules that include the SPT as one of the rules in the research, such
as [36,39,46–48]. When a schedule is constructed based on the SPT dispatch rule, it will
arrange the schedule with a random starting point and select the next order with the lowest
total processing time and setup time.

3.4. Proposed Method

The proposed methods were designed with consideration for integration with extant
systems, as shown in Figure 4. Algorithm A1 was used when only one machine was
available, while Algorithm A2 was used for balancing the jobs between two machines.
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3.4.1. General Data Flow Chart

A general data flow diagram is shown in Figure 4 to illustrate the data flow from the
beginning to the end of the planning process.

From Figure 4, there were two different data inputs. The first data input was to
gather the input from the user and the second data input was to extract the production
sheet information and the material information from the company’s ERP database. For
the user input, a group of the parameters were gathered, such as machine information,
holiday information, shift information, machine breakdown information, and overtime
shift information. The other inputs, such as production sheets and material information,
were extracted from the ERP system database through the APIs.

The information gathered was saved in the production scheduling database. Orders
would go through the proposed algorithms, as shown in Figure 5, according to the priority
level so to create a production schedule. The user selected the material information to
determine the materials used in each order. Once the production schedule was confirmed,
the production schedule data was then stored in the database and was ready to be sent
out to the machine on the shop floor through the APIs. Referring to Appendix A, an ERD
diagram of database structure was designed with all the parameters needed.

3.4.2. Scheduling Algorithm Flow Chart

The scheduling algorithm flow chart is shown in Appendix A. To minimize the com-
plexity, the schedule must settle the order within one day. When the schedule starts, a date
was selected according to the requested date for the orders. Then, all the data were gathered,
such as shift information, machine information, and holidays. The orders were sorted
based on Algorithm A1 (Appendix B). In our work, the top priority of the scheduling is the
requested date, followed by the profile, color, and length. Then, a job order was created.

The requested date was cross-checked with the holiday information. If the delivery
date clashed with the holiday, the orders were brought forward to the next day. At the
same time, the machine available time was calculated according to the shift information,
overtime shift information, and machine breakdown information. Meanwhile, the number
of available machines was checked. If there was one machine, the start time and end time
were calculated according to the machine’s available time. If there was more than one
machine, Algorithm A2 (Appendix C) was executed to do job balancing, followed by the
SPT algorithm. Then, only the start time and end time were calculated. This updated
schedule was available for planners’ adjustment. Once the planner confirmed the schedule,
it was sent to the manager for approval. Lastly, it was stored as the final schedule. The
notation of Algorithms A1 and A2 is shown in Table 3.

3.4.3. Algorithm for Optimal Sorting

In Algorithm A1, the dispatch rule algorithms, such as FIFO and EDD, were used.
Due to the MTO model, the company has its own priority rule based on the customer’s
requirement. Hence, the rule set by the company was arranged in the order of priority by
having the requested date as the top priority, followed by color, thickness, profile, and
length. Due to the packaging reason, the length was arranged from the longest to the
shortest. According to Algorithm A1 in Appendix B, Df is the date that is input by the user.
The Df also refers to the delivery date which was requested by customers. At this point, the
first rule applied was EDD to extract the orders with the same delivery date. Among these
orders, the second rule, i.e., FIFO, was used. Consequently, for Ao, each of the orders was
arranged in the FIFO manner, then sorted by using the aforementioned priority rule.

At last, all the orders were grouped based on the production number, in which one
production number might have multiple orders that used the same materials. At this point,
the total production orders, PO, were arranged by following the SPT rule. This is because
the orders which have the same color and thickness were arranged together. The equation
of this algorithm is di + Ci,j-1 + Pij.
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Table 3. Description of production-line notation.

Notation Description

i Job (i, i + 1 ∈ I)
I Total of jobs
k Machines (k ∈M)
M The total number of machines
o Order (o,o + 1 ∈ PO)
PO Total production orders
Ami The set of alternative machines on which job i can be processed (AMi ⊆M)
Oitc Demand of job that cannot be produced on time in day tc
Ti Set of total items in the orders
Ao Arranged orders
Go Grouped orders
Mc Machine capacity
Coc Current order color
Cot Current order thickness
Poc Previous order color
Pot Previous order thickness
STi Setup time of job i

3.4.4. Balancing Algorithm in Reducing Material Changing Lead Time

Algorithm A2 was used when there was more than one machine available. In this
algorithm, SPT and balancing were used to minimize the changing material lead time,
which is the setup time. At first, the machine available time was calculated, MAT, and
grouped orders, GO, were gathered. To do the balancing, a job was created according to the
order, o in GO. Once everything was gathered, the job was assigned to the machine and the
job assignment was based on the total number of machines M. While assigning the first job,
the system chose the machine k which had the most available time. Algorithm A2 checked
the color and thickness against the previous job. If the current job had the same color and
thickness, then the job was assigned to the same machine to reduce the changing material
lead time. On the other hand, if the color and thickness of the job were different from
the previous job, then the current job was assigned to the machine which had the highest
available time. This algorithm assigned jobs until the machine ran out of available time.

4. Result and Discussion

Two tests were carried out to evaluate the proposed algorithms. The first test was to
evaluate the algorithm on one machine, while the second test was for two machines. The
comparison was done in terms of the number of orders and the total setup time before
and after the proposed algorithm was implemented. Each test used the same set of orders,
which was 87.

4.1. Result in One Machine Test

The result of using and without using algorithms for only one machine is shown
in Table 4. From Table 4, it is seen that more orders could be arranged after using the
proposed algorithms.

Table 4. The overall performance of the total number of orders and total setup time used in the schedule.

Type of Machine Number of Orders in Schedule Total Setup Time (min)

one machine with using algorithms 37 150

one machine without using algorithms 20 285

The performance with and without algorithms in a working day using one machine
is shown in Figure 6. The bar chart shows that before using the proposed algorithm, the
machine can handle 20 orders per day in the working hours. After applying the proposed
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algorithms, the machine can increase the number of orders to 37 orders. There were 17 orders
more than without using the proposed algorithms. Overall, the number of orders has
increased by 20% after using the proposed algorithms.
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Figure 7 shows the performance of the total setup time before and after applying the
proposed algorithm in the scheduling system. From the chart itself, the total setup time
used in a day has reached 285 min, which is 4 h and 45 min in a day of working hours.
After applying the proposed algorithms, the total setup time was reduced from 285 min
to 150 min, which was 47.3% reduction from original setup time. It means the material
changing lead time was also reduced. With lower material changing lead time, the machine
can settle more orders.
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4.2. Result in Two Machines Test

The performances of the total number of orders in the schedule and the total setup
time in minutes were evaluated with the use of two machines test, and the results are
presented in Figures 8 and 9, respectively. Table 5 shows the overall performance of the
total number of orders in the schedule and the total setup time used in the schedule.



Appl. Sci. 2022, 12, 6499 11 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18 
 

 

Figure 7. The performance of total setup time for one machine. 

4.2. Result in Two Machines Test 

The performances of the total number of orders in the schedule and the total setup 

time in minutes were evaluated with the use of two machines test, and the results are 

presented in Figures 8 and 9, respectively. Table 5 shows the overall performance of the 

total number of orders in the schedule and the total setup time used in the schedule. 

Table 5. The overall performance of the total number of orders and total setup time used in the 

schedule. 

 Total Number of Orders in Schedule Total Setup Time (min) 

Two machines without using algorithms 42 570 

Two machines using algorithms 75 345 

 

Figure 8. The overall performance of the number of schedules for two machines. 

Figure 8 shows the overall performance of the total number of orders in the schedule. 

Before the two machines applied the proposed algorithms, the number of orders arranged 

in the schedule was 42. The total number of orders in the schedule has increased to 75 

after applying the proposed algorithms. There were 33 orders increased after applying the 

proposed algorithms. 

Figure 9 presents the overall performance of the setup time for two machines. The 

total amount of setup time before these two machines applied the proposed algorithms 

used about 570 min, which was 9 h and 30 min to change material. Given this, most of the 

time in the production line was used to change material. Hence, the material changing 

lead time was very high. However, the total time for the setup of two machines was de-

creased to 345 min which was 5 h 45 min, while the overall setup time was reduced by 

Figure 8. The overall performance of the number of schedules for two machines.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18 
 

approximately 40% after applying the proposed algorithms. Table 6 shows the total num-

ber of orders in the schedule and the total setup time used in the schedule for each ma-

chine during the two machines’ test. 

 

Figure 9. The overall performance of setup time for two machines. 

Table 6. The performance of schedule for each machine in the two machines’ test. 

Machines Total Number of Orders in Schedule Total Setup Time (min) 

M1 without algorithms 23 300 

M1 with algorithms 36 210 

M2 without algorithms 19 270 

M2 with algorithms 39 135 

Figure 10 shows the changes of the two machines with and without applying the 

proposed algorithm. For the first machine, M1, the schedule generates 23 orders without 

applying the algorithms, and it reached 36 orders after applying the proposed algorithm. 

For the second machine, M2, at first, it only got 19 orders. Once the proposed algorithms 

were applied, the number of orders reached 39 in the schedule. 

 

Figure 10. The performance of the total number of orders for each machine. 

Figure 11 shows the performance of the total setup times for each machine. When the 

proposed algorithm was not applied to machine M1, the total setup time for M1 is 300 

min. It was the same as machine 2, which had a total of 270 min for setup time. When the 

proposed algorithm was applied to these two machines, the setup time for machine M1 

was reduced to 210 min and reduced to 135 min for M2. This is expected due to the fact 

that the factor of setup time imposed additional constraints on the scheduling problem. 

The reduced setup times had minimized the idle time of the machines and created more 

balanced schedules. 

Figure 9. The overall performance of setup time for two machines.

Table 5. The overall performance of the total number of orders and total setup time used in the schedule.

Total Number of Orders in Schedule Total Setup Time (min)

Two machines without using algorithms 42 570

Two machines using algorithms 75 345

Figure 8 shows the overall performance of the total number of orders in the schedule.
Before the two machines applied the proposed algorithms, the number of orders arranged
in the schedule was 42. The total number of orders in the schedule has increased to 75 after
applying the proposed algorithms. There were 33 orders increased after applying the
proposed algorithms.

Figure 9 presents the overall performance of the setup time for two machines. The
total amount of setup time before these two machines applied the proposed algorithms
used about 570 min, which was 9 h and 30 min to change material. Given this, most of the
time in the production line was used to change material. Hence, the material changing lead
time was very high. However, the total time for the setup of two machines was decreased to
345 min which was 5 h 45 min, while the overall setup time was reduced by approximately
40% after applying the proposed algorithms. Table 6 shows the total number of orders in
the schedule and the total setup time used in the schedule for each machine during the two
machines’ test.
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Table 6. The performance of schedule for each machine in the two machines’ test.

Machines Total Number of Orders in Schedule Total Setup Time (min)

M1 without algorithms 23 300

M1 with algorithms 36 210

M2 without algorithms 19 270

M2 with algorithms 39 135

Figure 10 shows the changes of the two machines with and without applying the
proposed algorithm. For the first machine, M1, the schedule generates 23 orders without
applying the algorithms, and it reached 36 orders after applying the proposed algorithm.
For the second machine, M2, at first, it only got 19 orders. Once the proposed algorithms
were applied, the number of orders reached 39 in the schedule.
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Figure 11 shows the performance of the total setup times for each machine. When
the proposed algorithm was not applied to machine M1, the total setup time for M1 is
300 min. It was the same as machine 2, which had a total of 270 min for setup time. When
the proposed algorithm was applied to these two machines, the setup time for machine
M1 was reduced to 210 min and reduced to 135 min for M2. This is expected due to the
fact that the factor of setup time imposed additional constraints on the scheduling problem.
The reduced setup times had minimized the idle time of the machines and created more
balanced schedules.
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4.3. Information Provided through User Interface

After Algorithms A1 and A2 were implemented, the system generated the production
schedule, as shown in Figure 12. Subsequently, the planner had to confirm the schedule
based on the domain experience and the standard operating procedure of the company.
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This is in conjunction with the limitation discovered in the previous study [17], where
the methodology to implement a smart production planning and control requires expe-
rience and judgement to guarantee that all the relevant contextual variables have been
taken into account when evaluating the fit of objectives and priorities with the planning
environment variables.
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Figure 12 shows the schedule information, such as production date, JobID, production
ID, estimated start time, estimated end time, total in square feet per order, resource ID,
time used, setup time, break time, machine break time, and end shift time. Each JobID
consists of one or more order items. According to the information shown in the system,
users can easily understand the arrangement of the orders, the estimated start time and
end time, the total square feet used per order, the machines assigned, the time to produce
the order, the setup time, break time, and break down time. This has allowed the planners
to have a general view of the production schedule and made it easier for them to perform
adjustments. In terms of the computational time, it took from 4 to 6 s for one machine
process and from 7 to 9 s for two machines to process. However, the computational time
might be affected by the existing network infrastructure.

5. Conclusions

In this work, we applied dispatch rule algorithms to the problem of production plan-
ning in a roofing manufacturing industry. With the priority level set by the proposed
dispatch rule, the optimal sequence of orders was achieved. Besides that, the proposed
algorithm was also able to cater for the ever-changing demand of customers in the roof
manufacturing industry. We demonstrated that the sorting optimization was achieved by
maximizing the total number of orders produced in a day of working hours. Besides that,
the algorithm that grouped materials into the same color and thickness successfully reduced
the material changing lead time. The results show that the proposed algorithms successfully
reduced 47.3% and 40% of the material changing lead time in the first test and the second
test, respectively. Besides that, our work balanced the production line through the use of
dispatch rules by increasing the number of setup activities performed by both machines. It
also helped to reduce the duration of the whole production process, as shown in Figure 1.
Currently, the proposed method focuses only on one product. In future work, it will be
important to examine the rules on a per-product basis and investigate alternative strategies
for more dynamic planning.



Appl. Sci. 2022, 12, 6499 14 of 17

Author Contributions: Conceptualization, Y.M.L.; Data curation, S.C.X.R.; Formal analysis, S.C.X.R.;
Funding acquisition, W.P.L. and T.T.T.; Investigation, S.C.X.R.; Methodology, S.C.X.R.; Project admin-
istration, Y.M.L. and W.P.L.; Resources, S.C.X.R., Y.M.L. and W.P.L.; Software, S.C.X.R.; Supervision,
J.K.C.; Writing—original draft, S.C.X.R.; Writing—review & editing, J.K.C. and C.W.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Asia Roofing Sdn. Bhd. grant number 77008 and the APC
was funded by Inti International University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are not publicly
available due to privacy or ethical and commercial restrictions.

Acknowledgments: The research work presented in this paper is supported by Asia Roofing Indus-
tries Sdn. Bhd. In addition, the authors also would like to thank Fast Track SBOi Sdn. Bhd. for
supporting the system interoperability.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18 
 

Appendix A 

 

Figure A1. Scheduling algorithm flow chart. 

  

Figure A1. Scheduling algorithm flow chart.



Appl. Sci. 2022, 12, 6499 15 of 17

Appendix B

Algorithm A1 Arrange Orders with Priority Level (di + Ci,j-1 + Pij)

1 Begin
2 /* select order with delivery date */
3 Input Df
4 /* Arrange order by First In First Out and Priority */
5 Ao = order arranged according to priority level (color, thickness, product and
6 Length (desc))
7 /* Grouping according to same product number*/
8 Go = Group orders according to the production number
9 END

Appendix C

Algorithm A2 Assign Order to Machine Using SPT and Balancing (Balancing + Pij)

1 Begin
2 /* get machine available time */
3 Get MAT
4 /* get Grouped Order */
5 Get Go
6 /* balancing with more than one machine*/
7 FOR each o in Go
8 Create Job in schedule
9 /* get the machine that has more available time */
10 Get M = MAT > = Pi
11 /* check with previous color and thickness */
12 IF Coc == Poc && Cot == Pot THEN
13 Do not Add STi
14 Assign to previous M
15 ELSE
16 Add STi
17 Get M = MAT > = Pi
18 END IF
19 END LOOP
20 END
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15. Yağmur, E.; Kesen, S. Integrated production and outbound distribution scheduling problem with due dates. In Developments of

Artificial Intelligence Technologies in Computation and Robotics; World Scientific: Singapore, 2020.
16. Georgiadis, G.; Elekidis, A.; Georgiadis, M. Optimization-Based Scheduling for the Process Industries: From Theory to Real-Life

Industrial Applications. Processes 2019, 7, 438. [CrossRef]
17. Oluyisola, O.E.; Bhalla, S.; Sgarbossa, F.; Strandhagen, J.O. Designing and developing smart production planning and control

systems in the industry 4.0 era: A methodology and case study. J. Intell. Manuf. 2022, 33, 311–332. [CrossRef]
18. Khin, A.; Chiun, F.; Seong, L. Identifying the factors of the successful implementation of belt and road initiative on small–medium

enterprises in malaysia. China Rep. 2019, 55, 345–363. [CrossRef]
19. SME Definition. Available online: https://smecorp.gov.my/index.php/en/policies/2020-02-11-08-01-24/sme-definition?id=371

(accessed on 2 May 2022).
20. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0.

J. Intell. Manuf. 2017, 30, 1809–1830. [CrossRef]
21. Mohan, J.; Lanka, K.; Rao, A. A review of dynamic job shop scheduling techniques. Procedia Manuf. 2019, 30, 34–39. [CrossRef]
22. Xu, R.; Chen, H.; Liang, X.; Wang, H. Priority-based constructive algorithms for scheduling agile earth observation satellites with

total priority maximization. Expert Syst. Appl. 2016, 51, 195–206. [CrossRef]
23. Leusin, M.; Frazzon, E.; Uriona Maldonado, M.; Kück, M.; Freitag, M. Solving the Job-Shop Scheduling Problem in the Industry

4.0 Era. Technologies 2018, 6, 107. [CrossRef]
24. Fazel Zarandi, M.; Sadat Asl, A.; Sotudian, S.; Castillo, O. A state of the art review of intelligent scheduling. Artif. Intell. Rev. 2018,

53, 501–593. [CrossRef]
25. Ospina, G.; De Landtsheer, R. Towards distributed local search through neighborhood combinators. In Proceedings of the 10th

International Conference on Operations Research and Enterprise Systems, Vienna, Austria, 4–6 February 2021.
26. Desale, S.; Rasool, A.; Andhale, S.; Rane, P. Heuristic and meta-heuristic algorithms and their relevance to the real world: A

Survey. Int. J. Comput. Eng. Res. Trends 2015, 351, 2349–7084.
27. Ding, J.; Song, S.; Gupta, J.; Zhang, R.; Chiong, R.; Wu, C. An improved iterated greedy algorithm with a tabu-based reconstruction

strategy for the no-wait flowshop scheduling problem. Appl. Soft Comput. 2015, 30, 604–613. [CrossRef]
28. Chiang, T.; Che, Z.; Lee, C.; Liang, W. Applying Clustering Methods to Develop an Optimal Storage Location Planning-Based

Consolidated Picking Methodology for Driving the Smart Manufacturing of Wireless Modules. Appl. Sci. 2021, 11, 9895. [CrossRef]
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