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Abstract: The computer generation of poetry has been studied for more than a decade. Generating
poetry on a human level is still a great challenge for the computer-generation process. We present
a novel Transformer-XL based on a classical Chinese poetry model that employs a multi-head
self-attention mechanism to capture the deeper multiple relationships among Chinese characters.
Furthermore, we utilized the segment-level recurrence mechanism to learn longer-term dependency
and overcome the context fragmentation problem. To automatically assess the quality of the generated
poems, we also built a novel automatic evaluation model that contains a BERT-based module for
checking the fluency of sentences and a tone-checker module to evaluate the tone pattern of poems.
The poems generated using our model obtained an average score of 9.7 for fluency and 10.0 for tone
pattern. Moreover, we visualized the attention mechanism, and it showed that our model learned
the tone-pattern rules. All experiment results demonstrate that our poetry generation model can
generate high-quality poems.
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1. Introduction

The first collection of classical Chinese poems, known as the Book of Songs, was
compiled by Confucius over 2500 years ago. By the time of the Tang Dynasty (618 to
907 AD), numerous brilliant and timeless classical poems had been composed. Meanwhile,
the regulated verse and quatrain had become the most popular forms of classical poetry [1].
Poems with eight sentences, regulated by tone and rhyming-rules, are known as the
regulated verse. In addition, each sentence consists of five or seven Chinese characters.
The quatrain is akin to the regulated verse but only comprises four sentences, such as the
example of a 5-character quatrain shown in Figure 1.

To ensure poetry has a harmonic melody, four tonal patterns are created in the regu-
lated verse and quatrain, such as alternative-rule, opposite-rule, alike-rule, and rhyming-
rule. Firstly, the tones of traditional Chinese characters are divided into two categories
of poetry rhythm: the Ping-tone (level tone) and Ze-tone (oblique tone). Secondly, for
the alternative-rule, the Ping-tone and Ze-tone exist alternately at the 2nd, 4th, and 6th
positions in a sentence of 7-character poetry, and only at the 2nd and 4th positions in
5-character poetry. The opposite-rule states that in a pair of sentences, the tone of the next
sentence in the 2nd, 4th, and 6th positions must be contrary to that of the previous sentence
in the corresponding locations. The alike-rule is a rule that applies to the sentences in two
adjacent pairs. At the 2nd, 4th, and 6th positions, the tone of the first sentence in the next
pair must be the same as the tone of the second sentence in the previous pair. To make
the poem sound better, the rhyming-rule requires the rhymed last position of even lines
with the Ping-tone type of tones, and simultaneously, odd lines have to remain unrhymed,
except for the first line.
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Figure 1. An example of a 5-character quatrain where P and Z represent Ping-tone and Ze-tone, 
respectively. The circled P and Z denote the key positions that must obey the basic tone rules. The 
underscored Ps represent these positions that must be rhymed. 

Classical Chinese poetry not only boasts rich imagery and a lovely cadence, but it 
also preserves Chinese culture and history. Therefore, automatic poetry generation is an 
interesting and challenging research topic. The study of automatic poetry generation is 
beneficial for constrained language generation and ancient Chinese text comprehension 
tasks. It can also assist poets in creating poems, and contribute to the teaching process and 
research of ancient poetry. 

Automatic poetry generation has attracted the attention of many researchers in recent 
years. The template-based method masks some words of an existing poem as template, 
and then replaces them with some other words to produce a new poem. The poetry 
generated by this method has been improved in grammar, but the flexibility is too poor. 
The statistical approach to generating classical Chinese poetry [2] has been proposed, 
which takes certain keywords as input and generates sentences one by one to form a 
poem. However, these traditional methods rely to a high degree on professional 
knowledge in poetry and, therefore, require experts to design many manual rules to 
constrain the rhythm and quality of the generated poetry. 

Deep learning methods have made great progress in machine translation and text 
generation. In classical Chinese poetry generation, a language model based on a recursive 
neural network (RNN) [3,4] can learn poetry’s structure, semantics, and coherent 
constraints without additional manual rules concerning limitations of rhyming and tone. 
However, the RNN-based model has difficulties in generating long sentences because the 
gradient vanishing problem restricts the RNN to operate only on a short-term memory. 
Attention Based Sequence-to-Sequence Model [5,6] was also introduced to study classical 
Chinese poetry generation. The attention and long-short term memory (LSTM) 
mechanism [7] in sequence-to-sequence models facilitates semantic consistency throughout 
the generated poetry, but it is still difficult for the model to catch effective long-term 
relationships because the context information of the RNN encoder decays as the time step 
increases. 

An important problem is that the above methods only focus on generating the 
quatrains. Since RNNs inherently lack the ability to capture long sequences, these RNN-
based models cannot effectively compose longer poetry, such as the regulated verse. 
Therefore, we propose a novel model for the automatic generation of poetry that can 
generate longer poems with high consistency. The model learns the deep semantic 
representation of Chinese characters in context and uses the multi-head attention 
mechanism [8,9] to capture various relationships between the sentences of poems. 

Another challenging task is the automatic evaluation of the quality of poetry. The 
common approaches for assessing the quality of poems rely on human experts or some 
automated metrics such as the Bilingual Evaluation Understudy (BLEU) method [10] and 
the Metric for Evaluation of Translation with Explicit Ordering (METEOR) [11]. The 
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Classical Chinese poetry not only boasts rich imagery and a lovely cadence, but it
also preserves Chinese culture and history. Therefore, automatic poetry generation is an
interesting and challenging research topic. The study of automatic poetry generation is
beneficial for constrained language generation and ancient Chinese text comprehension
tasks. It can also assist poets in creating poems, and contribute to the teaching process and
research of ancient poetry.

Automatic poetry generation has attracted the attention of many researchers in recent
years. The template-based method masks some words of an existing poem as template,
and then replaces them with some other words to produce a new poem. The poetry
generated by this method has been improved in grammar, but the flexibility is too poor.
The statistical approach to generating classical Chinese poetry [2] has been proposed,
which takes certain keywords as input and generates sentences one by one to form a poem.
However, these traditional methods rely to a high degree on professional knowledge in
poetry and, therefore, require experts to design many manual rules to constrain the rhythm
and quality of the generated poetry.

Deep learning methods have made great progress in machine translation and text
generation. In classical Chinese poetry generation, a language model based on a recursive
neural network (RNN) [3,4] can learn poetry’s structure, semantics, and coherent constraints
without additional manual rules concerning limitations of rhyming and tone. However,
the RNN-based model has difficulties in generating long sentences because the gradient
vanishing problem restricts the RNN to operate only on a short-term memory. Attention
Based Sequence-to-Sequence Model [5,6] was also introduced to study classical Chinese
poetry generation. The attention and long-short term memory (LSTM) mechanism [7] in
sequence-to-sequence models facilitates semantic consistency throughout the generated
poetry, but it is still difficult for the model to catch effective long-term relationships because
the context information of the RNN encoder decays as the time step increases.

An important problem is that the above methods only focus on generating the qua-
trains. Since RNNs inherently lack the ability to capture long sequences, these RNN-based
models cannot effectively compose longer poetry, such as the regulated verse. Therefore,
we propose a novel model for the automatic generation of poetry that can generate longer
poems with high consistency. The model learns the deep semantic representation of Chinese
characters in context and uses the multi-head attention mechanism [8,9] to capture various
relationships between the sentences of poems.

Another challenging task is the automatic evaluation of the quality of poetry. The
common approaches for assessing the quality of poems rely on human experts or some
automated metrics such as the Bilingual Evaluation Understudy (BLEU) method [10]
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and the Metric for Evaluation of Translation with Explicit Ordering (METEOR) [11]. The
evaluation of the quality of numerous poems by human experts is time-consuming and
expensive. BLEU and METEOR compute the n-gram overlap between generated sentences
and references, mainly for tasks such as machine translation, but for tasks such as poetry
generation and dialogue response generation, these metrics have little correlation with
human judgments [12]. To solve this problem, we propose an automatic evaluation model
for classical Chinese poetry that includes two modules: the tone-pattern-checker and text-
fluency-checker. The tone-pattern-checker uses the formerly mentioned rules of rhythmic
poems to calculate the score of poems. The text-fluency-checker module uses a pre-trained
BERT model based on the classical Chinese poetry corpus to check the fluency of the poem
and the consistency among the sentences, and finally gives a score.

In summary, the main contributions are three-fold:

(1) We propose a novel classical Chinese poetry generation model based on Transformer-
XL, which learns the deep representative of Chinese characters and captures longer-
term dependencies of Chinese poetry.

(2) We develop a novel automatic evaluation model for classical Chinese poetry that
consists of a fluency checking module and a tone-pattern checking module.

(3) We visualize the attention mechanism in our model and show that our model fully
captures the tone pattern of poems.

The rest of the paper is organized as follows: in Section 2, we review the related works
of classical Chinese poetry composition. In Section 3, we state the classical Chinese poetry
generation model and the automatic evaluation model. We summarize the experimental
results and the analysis of our poetry model in Section 4. Finally, we provide a brief
conclusion in Section 5.

2. Related Works

The statistical machine translation-based poetry generation [2] learns tone and rhyming
from a line that is regarded as a source sentence. Then, it translates the previous line into
the next line, which is regarded as a target sentence by the machine translating model.
Statistical methods of poetry generation require additional expert rules to constrain the
rhythm of poetry.

However, RNN-based sequence-to-sequence models [13–19] of Chinese poetry gen-
eration can capture poetic content and form with no additional manual rules. A Chinese
poetry generation model based on the RNN [13] was presented, in which the poem lines
were composed incrementally, taking into account everything that had been generated so
far. A new generative model was proposed by Yan [14] that adopted a polishing scheme
to generate one poem incrementally and iteratively by refining each line. A conditional
variational autoencoder (VAE) in [17,18] is employed to enhance the thematic consistency
of generated verses with the title. Yang et al. [19] proposed a novel poetry generation model
that employs a sequence-to-sequence model with attention mechanisms and incorporates
the mutual information to strengthen the relationship between manually selected style
inputs and generated style-specific outputs. Since RNNs inherently lack the ability to
capture long sequences, the above RNN-based approaches only focus on the generation of a
quatrain and cannot effectively generate an eight-line regulated verse with high consistency.

Some text generation models based on a generative adversarial network (GAN) [20,21] also
explored the generation of classical Chinese poetry. The above-mentioned models can
compose quatrains without any prior knowledge of special structure rules in poetry, such
as tonal patterns rules used to create quatrains. Nevertheless, they only investigated the
generation of quatrains due to lacking a deep understanding of the semantics of poetry. To
address the above issue, we present a novel poetry generation model that utilizes the pure
self-attention mechanism to capture the deep semantics of Chinese characters and adopts
the segment level recurrence mechanism to learn the longer-dependency among sentences
in poems.
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3. Methods

The Chinese language is usually expressed as a sequence of Chinese characters, and
it can be abstracted into a probabilistic model that maximizes the joint probability of
each legal sentence in the language. The probability of a sequence (c1, c2, . . . , cT) can be
commonly factorized as the product of conditional probability.

P(c1, c2, . . . , cT) = ∏T
t=1 P(ct|c1, c2, . . . , ct−1), (1)

The goal of language modeling is to learn the distribution function of sentences in
the language.

The representation of word vectors is crucial for language models. In the early one-hot
vector method, word vectors are independent and cannot reflect the correlation between
words. Word embedding, such as Skip-gram [22] and Glove [23], represent the semantic
information of words by word vectors in an embedding space, where semantically similar
words are close to each other in the space. However, the word vectors learned by this
method are fixed, which is obviously not suitable for polysemous words. ELMo [24]
solved the word sense disambiguation problem by learning deep contextualized word
representations, but limited by LSTM, it cannot capture long-term dependencies. By
adopting a multi-head self-attention mechanism, the transformer learns dynamic word
embedding and captures long-term dependencies. Transformer-based models, such as
Transformer-XL, GPT [25], and BERT [26], have achieved state-of-the-art results in many
NLP tasks. Therefore, we propose a poetry automatic generation model using Transformer-
XL and a BERT-based poetry automatic evaluation model.

3.1. Transformer-Xl Model

To capture longer-dependencies, Transformer-XL is presented, which combines the ad-
vantages of RNN sequence modeling with the transformer self-attention mechanism [27–30].
On each segment of the input data, it adopts the transformer’s attention module and em-
ploys a recurrent mechanism to learn the dependencies between successive segments.
The dependency that Transformer-XL learned is 80% longer than RNNs and 450% longer
than vanilla transformers [31], resulting in superior performance on both short and long
sequences [8].

Transformer-XL adopts the self-attention with the multi-heads mechanism of the
vanilla transformer, but the difference is that it adopts a more simplified and efficient
framework with only a decoder, instead of the encoder-decoder framework. The self-
attention mechanism captures the dependencies between words within a sentence, whereas
the traditional attention mechanism captures the dependence between words in source
sentences and words in target sentences.

The vanilla transformer needs to be fragmented when processing long text sequences,
which causes the semantic segmentation problem. The transformer-XL introduces a recur-
rence mechanism that recursively reuses the hidden state of the previous segment when
calculating the hidden state of the current segment. Thus, the Transformer-XL model can ob-
tain deeper dependencies and more abundant representations than the vanilla transformer.

3.2. Classical Chinese Poetry Generation Model

We exploit the power of capturing the longer-term dependency of Transformer-XL
to construct the classical Chinese poetry generation model (CCPTXL) [32] in Figure 2 in
three steps. The transformer block consists of 16 layers and each layer adopts a multi-head
mechanism with 10 heads. The classical Chinese poetry generation model can output
poems according to the input Chinese characters as shown in Figure 2a.

Firstly, the model uses an embedding approach to convert the input sequence into
vectors, and then it combines the embedding vectors with relative positional encodings.
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Secondly, the transformer block’s multi-head attention module calculates the attention
scores of the input sequence. As we all know, any two Chinese characters can have various
relationships, including meaning, part-of-speech, form, tone, rhyme, and more. We use
a multi-head attention module with ten heads to learn these relationships. The input
embeddings are mapped into different sub-spaces such as Q, K, V, and then the attention
scores are calculated by Equations (2) and (3). We utilize the Layer-Normalization module
to normalize the optimization space to speed up model convergence. The vectors from the
previous module are then projected to a higher dimensional space by the Feed-Forward
module, making it easier to discern between the various forms of information in the vectors.

AttentionScore = softmax
(

QKT
√

dk

)
V (2)

MultiHeadAttention = Concat( head1, head2, . . . , headh)WO (3)

Finally, we employ a fully connected layer to project the vectors from the 16 stacked
Transformer Blocks into a larger vocabulary vector space. Then the following softmax
module calculates each character’s probability and selects the character with the highest
probability as the output of each time step.

3.3. Automatic Evaluation Model Based on BERT-CCPoem

Automatically evaluating the quality of generated poems is also a very challenging is-
sue. Human experts [2,12–19] or the automatic metrics BLEU technique [2,13,14,16–18,20,21]
are the most prevalent approaches for assessing the quality of poems. The evaluation of the
quality of a large number of poems by human experts is time-consuming and expensive.
Moreover, different experts have their appreciation preferences for poems, so it inevitably
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leads to a certain subjectivity. BLEU is an automated and inexpensive measure standard for
machine translation that achieves a high correlation with human judgments of quality, but
poetry generation is fundamentally different from machine translation. First, the source
and target sentences in machine translation attempt to have the same meaning, but the
poetry creation is different. The target sentence does not repeat the meaning of the source
sentence, although it is based on the source sentence. Second, BLEU is a method based on
word mechanical matching, which cannot compute the sentences relationship according to
the semantic meaning of words. Thus, both tone-pattern-checker and text-fluency-checker
are important in an automatic poetry evaluation model. The tone-pattern-checker can give
a score after identifying whether a poem follows the tone and rhyming-rules of poetry.
The algorithm of a tone-pattern-checker is shown in Algorithm 1, and consists of structure
detection and tone rhyming detection. The structure detection is to determine whether
a poem follows the format of the 5-character quatrain, 7-character quatrain, 5-character
regulated verse, or 7-character regulated verse. The tone rhyming detection is to detect
whether a poem obeys the alternative-rule, opposite-rule, alike-rule, and rhyming-rule, and
finally gives a corresponding score.

Algorithm 1 Tone-Pattern-Checker

1: Input: one quatrain or regulated verse noted as X, tone_score = 0;
2: if the structure of X follows the rules of quatrain or regulated verse then
3: tone_score = 2
4: end if
5: if X follows the alternative-rule then
6: tone_score = tone_score + 2
7: end if
8: if X follows the opposite-rule,
9: tone_score = tone_score + 2;

10: end if
11: if X follows the alike-rule then
12: tone_score = tone_score + 2
13: end if
14: if X follows the rhyming-rule then
15: tone_score = tone_score + 2
16: end if
17: return tone_score.

The text-fluency-checker is responsible for detecting whether a poem follows ancient
Chinese grammatical norms, whether it reads fluently, whether the collocation of words
is reasonable, and whether the sentences are coherent. Moreover, it gives corresponding
quantitative scores to poems.

By using the deep representations of ancient Chinese provided by the pre-trained BERT-
CCPoem [33], we model poem fluency evaluation as a text classification problem, as shown
in Figure 3. The BERT model is a transformer-based bidirectional mask language model that
has achieved SOTA results on many natural language processing tasks, including GLUE,
SQuADv1.1, SQuADv2.0, and others. BERT-CCPoem is a pre-trained BERT-based model
for classical Chinese poetry by the Research Center for Natural Language Processing of
Tsinghua University. BERT-CCPoem learns plentiful semantic and grammatical information
on Chinese characters because it is trained on a large amount of the Chinese corpus.
Therefore, using the semantic vectors provided by BERT-CCPoem, we add a classifier over
BERT-CCPoem to fine-tune a text-fluency-checker.
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4. Experiment and Results
4.1. Dataset Preparation

We collected 123,672 classical Chinese poems from the Internet as our corpus. Our cor-
pus mainly contains regulated verse and quatrain poems with 5-character and 7-character,
having all kinds of poetry styles, such as pastoral, descriptive, romantic, and more. We
randomly chose 80% of our corpus as a training set, 10% as a validation set, and 10% as a
test set.

4.2. Training

We detail the CCPTXL model structure and parameters in Table 1. The vocabulary
size of our corpus is 10,091. The dimension of word embedding vectors was set to 410.
We used 41-dimensional vectors Q, K, and V in the attention layer. We had 16 identical
transformer-blocks and employed 10 heads of attention, as shown in Figure 2. The total
number of trainable parameters was 46M. In order to better converge to the global optimum,
we trained our model using Adam optimization and dynamic learning rate policy. The
initial learning rate was 0.0001, which then decayed using the cosine schedule. To prevent
the model from overfitting, the dropout mechanism was used in the Multi-head layer and
Feed Forward layer, and the dropout rate was set to 0.1.

Table 1. The model structure and parameters.

Layers Output Size Trainable Parameters

Embedding layer (100, 64, 410) 4,137,310
Multi-head layer 1 (100, 64, 410) 10,758,400

Feed Forward layer 1 (100, 64, 410) 27,552,000
Linear_softmax layer (100, 64, 10,091) 4,137,310

The total number of trainable parameters 46,585,020
1 There are 16 identical Multi-head layer and Feed Forward layers.

4.3. Evaluation for Generated Poems

In order to fine-tune a text-fluency-checker, we first needed to construct positive and
negative data sets. It was easy to build the positive data set by directly extracting some
poems from the classical Chinese poems’ dataset, whereas it was hard to create a negative
data set of numerous poems written by humans. Therefore, we introduced noise into the
manual poetry, which caused the original correct word order to be disrupted, resulting in a
certain degree of grammatical errors, thereby automatically generating a large number of



Appl. Sci. 2022, 12, 6497 8 of 15

negative poems. In addition, we were able to control the degree of grammatical errors in
the negative data set according to the amount of noise introduced.

From the classical Chinese poems dataset, we randomly extracted 12,000 poems that
consisted of 6000 5-character and 6000 7-character regulated verse poems. The selected
dataset consisted of 3 levels. Level 0 was a completely correct human-made poetry dataset
without noise; Level 1 introduced 30% noise; and Level 2 introduced 60% noise on the
original poetry dataset. To fine-tune the BERT-CCPoem model, we use the training dataset
of 3 levels, which amounts to 36,000 poems. We also generated the validation dataset and
testing dataset, which amounts to 7200 and 3600 poems, correspondingly.

The text-fluency-checker gives a total score of 10, and each poem can get 10, 7, or
4 points corresponding to Level 0, Level 1, and Level 2, respectively. In the tone-checker,
each poem also receives a total score of 10, with 2 points for the structure of quatrain or
regulated verse, 2 points for the alternative-rule, 2 points for the opposite-rule, 2 points for
the alike-rule, and 2 points for the rhyming-rule.

We generated two 1000-poems-datasets by our CCPTXL model and a classical Chi-
nese poetry model based on sequence to sequence with attention (CCPSA), respectively.
Moreover, we also randomly extracted 1000 human-made poems from the classical Chinese
Poetry Dataset (CCPD). Each of the three evaluation datasets consisted of 500 5-character
and 500 7-character regulated verse. Besides assessing the three poetry datasets above, we
also evaluated the example quatrains in [2,12,13,15–19] using the text-fluency-checker and
the tone-checker. Although the number of example poems shown above is 1, 2 or 3 at most,
it still has some reference values. The average scores are shown in Table 2.

Table 2. The Comparison of Poems’ Scores.

Poems Tone-Checking Score Fluency-Checking Score

SMT Models [2] 7.0 10.0
Images2Poem [12] 9.5 6.5
RNNPG [13] 9.8 10.0
Attention Model [15] 8.5 7.0
PG [16] 9.0 10.0
CVAE-HD [17] 10.0 10.0
CVAE-D [18] 9.0 7.0
SPG [19] 10.0 10.0
CCPSA 1 6.9 7.6
CCPD 1 9.5 9.3
CCPTXL (our model) 1 10.0 9.7

1 The models generate regulated verses, whereas the other models only generate quatrains. Bold numbers
represent the highest performance.

The average fluency-checking score from our CCPTXL model was higher than from
CCPSA. Furthermore, it also obtained a higher score than these randomly chosen poems
from CCPD. SPG [19] and CAE-HD [17] obtained high scores on fluency but they are
only quatrains, whereas our generated regulated verses are twice as long as theirs. This
demonstrates that our poem model can generate more fluent and coherent longer sentences.
The distribution of the poems of each data set on the three levels is shown in Figure 4.
Among the generated 1000 poems from our model, 98.3% were evaluated as Level 0, 1.7%
as Leve1, and no poems were Level 2. This shows that our model can stably compose
high-quality poems.

The tone-checking scores of poems were calculated by the tone-checker, in which each
poem is checked and scored according to the tone and rhyming rules. Our CCPTXL model
obtained the highest score of 10, as shown in in Table 2. This shows that almost all the
poems generated by our model can obey the tone and rhyming rules of regulated verse.
Figure 5 shows that the poems composed by our CCPTXL model scored 9–10 and 8–9,
accounting for 89.5% and 7.9%, respectively. The result indicates that our model accurately
captured the tone and rhyme features.
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4.4. Analysis of the Generated Poems

Our poetry model not only completely captured the tone and rhyme rules of classical
Chinese poetry, but also even some advanced patterns. There is a very typical expressive
pattern of classical Chinese poetry in which a poet usually describes the objective landscape
or things and then sublimes the previous description into his feeling, opinion, or philosophy
at the final lines. An example of the 7-character regulated verse generated by our poetry
model shown in Figure 6 has eight sentences (four pairs) with 7 characters in each sentence.

We utilized the example in Figure 6 to verify the tonal and rhyming rules that our
poetry model grasped. The annotations of the tonal patterns in the right column in Figure 6
show that the generated poem fully adheres to the four basic rules. As we described
earlier for the alternate-rule, the tones of the 4th and 6th characters are determined by the
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2nd. When visualizing what the poetry model learned, we found strong evidence for this
rule, and we further figured out which parts are responsible for the alternative-rule in the
attention module with multi-layers and multi-heads.

The horizontal axis represents the last characters of the current character to be gener-
ated, and its maximum length is 100. The vertical axis represents the ten heads in a layer.
We adopt a heat map method to be more intuitive, where the grey squares represent the
attention scores. The darker the color of a grey square, the greater the attention score, which
means that the character on the corresponding horizontal axis is more important to the
generation of the current character.
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Figure 7a shows that the 4th character lamp (燈) with the 2nd character dim (點) has
the maximum attention score at head 5 in layer 4. Figure 7b also shows that at head 5 in
layer 4, the largest attention score exists between the 6th character bamboo (竹) and the
4th character lamp (燈). This indicates that the 4th character strongly depends on the 2nd
character and the 6th character on the 4th character. Moreover, their tonal pattern is Ze-tone,
Ping-tone, and Ze-tone in order, i.e., Ze-tone and Ping-tone appear alternately. Thus, this
kind of strong dependency in the same line of poetry can only be the alternative-rule. The
same situation also appears in Figure 7c,d. After observing and counting many sentences
with different heads at different layers, we conclude that head 5 in layer 4 completely
controls the alternative-rule.

According to the opposite-rule, in a pair of sentences, such as lines 1 and 2 in Figure 6,
the tone of the second character dim (點) in line 1 is Ze-tone, so the second character book
(書) in line 2 must be Ping-tone. In Figure 8a, the character book (書) has a large attention
score on the character dim (點) at head 6 in layer 8. Based on more observations of the same
phenomenon as Figure 8, we infer that head 6 in layer 8 controls the opposite-rule in the
first and last pair, but head 5 and head 6 in layer 8 catch the opposite-rule in the second
and third pair.

In Figure 9a, the visualization of the alike-rule shows that the second character reason
(因, Ping-tone) in line 3 must follow the same tone as the second character book (書, Ping-
tone) in line 2. In Figure 9b,c, the adjacent pairs also follow the alike-rule, in which the tone
of the first sentence in the next pair must be the same as the tone of the second sentence in
the previous one. After many observations of generated poems, we conclude that the head
8 or head 2 in layer 10 represents the alike-rule.
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For the rhyming-rule, the last characters in the even lines i.e., sun (陽, yang), bag
(囊, nang), frost (霜, shuang), and monarch (王, wang) have the same rhyming and are all
Ping-tone. In Figure 10a, we can find that bag (囊) has a very strong dependency on sun
(陽) at head 8 in layer 15 and the same phenomenon goes for frost (霜) with a dependency
on bag (囊) and monarch (王) with a dependency on frost (霜), as seen in Figure 10 b,c.
In addition, monarch (王) has not only a very strong dependency on frost (霜) but also a
relatively strong relationship on the more distant rhyming character bag (囊), as shown in
Figure 10c.
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After much observation, we confirmed that the head 8 in layer 15 controls the rhyming-rule.
Through visualizing the poetry rules, we demonstrate that our model learns the tonal

patterns and rhyming rules very well. Moreover, our poetry generation model also acquired
some knowledge of expression patterns that are more advanced and abstract than basic
tonal rules. For example, the poem generated in Figure 6 describes some objective scenery
or things in lines 1 to 6, such as the lamp and bamboo study room, book and story, history,
wind, and rain, but in the last two lines, our model combines the preceding scene and
expresses its emotions and views on life like a real poet. This expression pattern is a very
typical way of writing ancient Chinese poetry.
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5. Conclusions and Future Work

In this paper, we proposed a novel classical Chinese poetry model. Benefiting from
the multi-head self-attention and segment-level recurrence mechanism, our model can
capture the longer-term dependency of Chinese characters. Furthermore, by visualizing
our poetry model and analyzing the attention score, we prove that our poetry model fully
captures the tone pattern of classical Chinese poetry. We also present a novel automatic
poem evaluation model that consists of fluency checking and tone-pattern checking. The
experimental results from the evaluation system show that our model obtains an average
score of 9.7 for fluency and 10.0 for tone pattern. The comprehensive experiments confirmed
that our poetry generation model can generate high-quality poetry. For future work, we
will consider enhancing the diversity of generated poems according to the same keywords.
We also plan to improve the automatic evaluation model in terms of theme consistency and
meaningfulness of poetry.
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